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Abstract

Let $(B, p)$ denote the best choice problem and $(D, p)$ the duration
problem when the total number $N$ of objects is a bounded random
variable with prior $p=(p_{1}, p_{2}, \ldots, p_{n})$ for a known upper bound $n.$

Gnedin (2005) discovered the correspondence relation between these
two different optimal stopping problems. That is, for any given prior
$p$ , there exists another prior $q$ , such that $(D, p)$ is equivalent to $(B, q)$ .
This paper, motivated by his discovery, attempts to find the alternate
correspondence $\{p^{(m)}, rn\geq 0\}$ such that $(D, p^{(7n-1)})$ is equivalent to
$(B, p^{(m)})$ for all $m\geq 1$ , starting with $p^{(O)}=(O, \ldots , O, 1)$ . To be more
precise, the duration problem is distinguished into $(D_{1}, p)$ or $(D_{2}, p)$ ,
referred to as MODEL 1 or MODEL 2, depending on whether the
planning horizon is $N$ or $n$ . The aforementioned problem is MODEL 1.
For MODEL 2 as well, we can find the similar alternate correspondence
$\{p^{[m]}, 7n\geq 0\}$ . We treat both the no-information model and the full-
information model and examine the limiting behaviors of their optimal
rules and optimal values related to the alternate correspondences as
$narrow\infty.$

1 Introduction

In the best-choice problem, a version of the secretary problem (see, e.g.
Samuels (1991) for a survey), a fixed known number $n$ of rankable objects
appear one at a time in random order with all $n!$ permutations equally
likely (1 being the best and $n$ the worst). Each time an object appears, we
must decide either to select it and stop observing or reject it and continue
observing, based on the relative rank of the current object with respect to
its predecessors. The objective is to find a stopping rule that maximizes the
probability of selecting the best of all $n$ objects. Evidently we can confine
our selection to a relatively best object. For ease of description, we often
call an object candidate, if it is relatively best upon arrival.

As a different version of the secretary problem, Ferguson et $a1.(1992)$

considered the optimal stopping problem, referred to as the duration prob-
lem, in the same framework described above. We only select a candidate.
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Define $T_{k}$ as the time of the first candidate after $k$ if there is one, and as
$n+1$ if there is none. Then the duration of holding a candidate selected at
time $k$ is $(T_{k}-k)/n$ (division by $n$ is for normalization) and the objective of
this problem is to find a stopping rule that maximizes the expected duration
of holding a candidate.

These two classical problems with fixed horizon $n$ were generalized to
the problems with random horizon by introducing uncertainty about the
number $N$ of the actually available objects. The selection must be made by
time $N$ . Throughout this paper, we simply assume the random variable $N,$

independent of the arrival order of the objects, to be bounded by $n$ and have
a prior distribution $p=$ $(p_{1,X’2}, . . . , p_{n})$ , where $p_{k}=P\{N=k\}$ are such
that $\sum_{k=1}^{n}p_{k}=1$ and $p_{n}>$ O. It is also assumed $n\geq 2$ , unless otherwise
specified. Define, for later use, $rr=(\pi_{1}, \pi_{2}, \ldots , \pi_{n})$ and $\sigma=(\sigma_{1}, \sigma_{2\}}\ldots , \sigma_{n})$ as
functions of $p$ where, for $1\leq k\leq n,$

$\gamma r_{k} = p_{k}+p_{k+1}+\cdots+p_{n}$

$\sigma k = \pi_{k}+(n-k)p_{k}.$

When $N$ has a prior $p$ , we simply denote the best-choice problem by
$(B, p)$ and the duration problem by $(D, p\rangle.$ Though $the$ objective $of (B, p)$

is to select the best of all $N$ objects, $(D, p)$ can be distinguished into two
problems denoted by $(D_{1}, p)$ or $(D_{2}, p)$ , depending on whether the final
stage of the planning horizon is $N$ or $n$ . That is, the duration of a candidate
selected at time $k$ is defined as $(T_{k}-k)/n$ as before, but if no further
candidate appears by time $N,$ $T_{k}$ is interpreted as $N+1$ for $(D_{1}, p)$ and
as $n+1$ for $(D_{2}, p)$ . The problem $(D_{k}, p)$ , $k=1$ , 2, is referred to as the

MODEL $k$ of the duration problem. We denote the optimal values of the
problems $(B, p\rangle and (D_{k}, p)$ by $v_{n}^{B}(p)$ and $v_{n}^{D_{k}}(p)$ respectively to make
explicit the dependence on $n$ and $p$ . Note that the classical problems occur
if $N$ degenerates to $n$ (i.e. $p=(O,$ $\ldots$ , O, 1 in which case there exists no
difference between $(D_{1}, p)$ and $(D_{2}, p)$ .

A stopping rule is said to be simple if, for a given positive integer $\mathcal{S}_{n}(\leq n)$ ,
it passes over the first $s_{7\iota}-1$ objects and stops with the first candidate if
any, The value $s_{n}$ is referred to as the critical number of the simple rule.
It is well known that the optimal rules of the classical problems are simple.
However, the form of the optimal rule depends on $p$ , implying that it is not
necessarily simple. Define

$p^{(O)}=(0, \ldots, O, 1) , p^{(1\rangle}=(\frac{1}{n}, \ldots, \frac{1}{n}, \frac{1}{n}\rangle$

as two special priors. $p^{(O)}$ corresponds to the fixed horizon and $p^{(1\rangle}$ to
the random horizon with $N$ uniform on $\{$ 1, 2, . . . , $7X\}$ . Then Ferguson et al.
(1992) recognized the equivalence between $(D_{1}, p^{(O)})$ and $(B, p^{(1)})$ . Extend-
ing this equivalence, Gnedin (2005) discovered the further correspondences
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between the MODEL 1 of the duration problem and the best-choice prob-
lem According to the former half of Proposition 4.1 and Corollary 4.1
of Gnedin (2005), this discovery can be stated as Proposition 1.1 for our
framework.

Proposition 1.1. $($Equivalence between $(D_{1}, p)$ and $(B,$ $q$ For any given
prior $p=(p_{1},p_{2}, \ldots,p_{n})$ on $N$ , there $exi\mathcal{S}t\mathcal{S}$ another prior $q=(q_{1}, q_{2}, \ldots, q_{n})$

defined from $p$ as

$q=\frac{\pi}{E[N]}$

$\mathcal{S}uch$ that $(D_{1}, p)i_{\mathcal{S}}$ equivalent to $(B, q)$ in the sense that these two problems
have the same optimal rules. Moreover, their optimal values only differ by
the factor $\perp E_{n}NJ$ , namely,

$v_{n}^{D_{1}}( p)=\frac{E[N]}{n}v_{n}^{B}(q)$ .

Proposition 1.2. $($Equivalence between $(D_{2}, p)$ and $(B,$ $q$ For any given
prior $p=$ $(p_{1},p_{2}, \ldots , p_{n})$ on $N$ , there $exist\mathcal{S}$ another prior $q=(q_{1}, q_{2}, \ldots, q_{n})$

defined from $p$ as

$q=\frac{\sigma}{n}$

such that $(D_{2}, p)$ is equivalent to $(B, q)$ in the sense that these two problems
have the same optimal rules and the same optimal values. $Thu\mathcal{S},$

$v_{n}^{D_{2}}(p)=v_{n}^{B}(q)$ .

We omit the proof of Proposition 1.2, because it goes quite parallel to
that of Proposition 4.1 of Gnedin (2005).

The set $\{p^{[\ovalbox{\tt\small REJECT} r\iota]}=(p_{1}^{[n]}7,p_{2}^{[rn]}, \ldots,p_{n}^{[rn]})$ , $m\geq 0\}$ with $p^{[O]}=(0, \ldots , 0,1)$

is referred to as the alternate correspondence of type 2, if $(D_{2}, p^{[7n-1]})$ is
equivalent to $(B, p^{[rn]})$ for all $m\geq 1.$

Our main concerns are to find the explicit expressions of the two alternate
correspondences (the type $k$ corresponds to the MODEL $k$ of the duration
problem, where $k=1$ , 2). We als$0$ examine the optimal rules md the optimal
values related to these alternate correspondences. Of further interest is to
derive the limiting values of $v_{n}^{B}(p^{(m)})$ and $v_{n}^{B}(p^{[7n]})$ as $narrow\infty$ . These are
discussed in Section 2.1.

In contrast to the above no-information model in which the observa-
tions are the relative ranks of the objects, the full-information model is
the problem in which the observations are the true values of $N$ objects
$X_{1},$ $X_{2}$ , . . . , $X_{N}$ , assumed to be i.i. $d$ . random variables from a known con-
tinuous distribution, taken without loss of generality to be the uniform dis-
tribution on the interval $[0$ , 1 $].$ $N$ is also assumed to be independent of
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$X_{1},$ $X_{2}$ , . . .. Let $L_{k}= \max\{X_{1}, X_{2}, . . . , X_{k}\}$ and call the $kth$ object (or $X_{k}$ )
a candidate if it is a relative maximum, i.e. $X_{k}=L_{k}$ . Consider a class of
stopping rules of the form

$TN( a)=\min\{k:X_{k}=L_{k}\geq ak\}\wedge N,$

where a $=(a_{1}, a_{2}, \ldots, a_{7l})$ is a given sequence of thresholds satisfying the
monotone condition $1\geq a_{1}\geq a_{2}\geq\cdots\geq a_{n}\geq$ O. This rule is said to be a
monotone rule (with thresholds a). It is well known that the optimal rules
of the classical problems, i.e. problems with fixed horizon, are monotone
(cf. Gilbert and Mosteller (1966) and Ferguson et al. (1992)). This full-
information model is considered in Section 3.

2 Alternate correspondences

2.1 No-information model

If the optimal rule of $(B, p)((D_{k}, p), k=1,2)$ is simple, we denote its
(optimal) critical number by $s_{n}^{B}(p)(s_{n}^{D_{k}}(p))$ . The following theorem gives
the main results concerning the alternate correspondences.

Theorem 2.1.
(a) (Alternate correspondence of type 1.) Let $p^{(O)}=(0, \ldots, O, 1)$ and

$p_{k}^{(7n\rangle}= \frac{(^{n+rn-1-k}m-1)}{(\begin{array}{l}n+rn-1rn\end{array})}, 1\leq k\leq n,$

for $rn\geq 1$ . Then $\{p^{(rn)}, m\geq 0\}$ is the alternate correspondence of type 1,

The optimal rute is simple for both $(D_{1}, p^{(rn)})$ and $(B, p^{(rn)})$ , and we have
the fotlowing relations for $\gamma n\geq$ O.

$s_{n}^{D_{1}}(p^{(7n\rangle}\rangle = s_{r\iota}^{B}(p^{(7n+1)})$ ,

$v_{n}^{D_{1}}( p^{(7\gamma}t)) = \frac{7n+n}{(m+1)n}v_{n}^{B}(p^{(\tau n+1)})$ .

$(b\rangle$ (Alternate correspondence of type 2.) Let $p^{[0]}=(0, \ldots , O, 1)$ and

$p_{k}^{[7\gamma\iota]}=( \frac{n-k+1}{n})^{\ovalbox{\tt\small REJECT}\gamma\iota}-(\frac{n-k}{n})^{rn} 1\leq k\leq n_{\rangle}$

for $m\geq 1$ . Then $\{p^{[\uparrow 7\iota]}, m\geq 0\}$ is the alte veate correspondence of type 2.
The optimal rule is simple for both $(D_{2}, p^{[7n]})$ and $(B, p^{[l7\iota]})$ , and we have
the following relations for $7n\geq$ O.

$s_{n}^{D_{2}}(p^{[\ovalbox{\tt\small REJECT}\gamma\iota]}) = s_{n}^{B}(p^{[7n+1]})$ ,
$v_{n}^{D_{2}}(p^{[m]}) = v_{n}^{B}(p^{[\ovalbox{\tt\small REJECT} 7\iota+1]})$ .
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Remark 2.1. The two random variables $N^{(\tau n)}$ and $N^{[\tau n]}$ can be related
to sampling balls from an urn without replacement and with replacement
respectively. Suppose that there exists an urn containing $n+m-1$ balls
numbered 1, 2, . . . , $n+m-1$ . We draw $m$ balls randomly from the urn with-
out replacement. Then $N^{(rn)}$ denotes the smallest of the $m$ numbers drawn.
Suppose that there exists an urn containing $n$ balls numbered 1, 2, . . . , $n.$

We draw $m$ balls one at a time randomly from the urn with replacement.
Then $N^{[\tau\gamma\iota]}$ denotes the smallest of the $m$ numbers drawn.

The following corollary gives the additional limiting relations if we define,

for $m\geq 0,$

$s^{[B,rn]}= \lim_{narrow\infty}\frac{\mathcal{S}_{n}B(p^{[rn]})}{n}, v^{[B,rn]}=\lim_{narrow\infty}v_{n}^{B}(p^{[\tau n]})$ ,

$s^{(D_{1},rn)}= \lim_{narrow\infty}\frac{s_{n}^{D_{1}}(p^{(\tau n)})}{n}, v^{(D_{1,7}n)}=\lim_{narrow\infty}v_{n}^{D_{1}}(p^{(\gamma n)})$ ,

$s^{[D_{2},\gamma r\iota]}= \lim_{narrow\infty}\frac{\mathcal{S}_{n}D_{2}(p^{[7n]})}{n}, v^{[D_{2,7}n]}=\lim_{narrow\infty}v_{n}^{D_{2}}(p^{[r\gamma\iota]})$ .

Corollary 2.1. We have the following relations for $m\geq$ O.

(a) $s^{[B,\tau n]}=\mathcal{S}(B,rn)$ , $v^{[B,rn]}=v^{(B,\tau n)}$

(b) $\mathcal{S}(D_{1,7}n)_{=}\mathcal{S}^{(B_{7}n+1)},$ $v^{(D_{1},rn)}= \frac{1}{\tau n+1}v^{(B,rn+1)}$

(c) $s^{[D_{2,7Y1}]}=s^{[B,rn+1]},$ $v^{[D_{2},\tau n]}=v^{[B,rn+1]}$

(d) $s^{[D_{2},rn]}=s^{(D_{1},rn)},$ $v^{[D_{2},rn]}=(m+1)v^{(D_{1,7}n)}$

The following theorem gives the limiting results. Table 1 gives some
numerical values.

Theorem 2.2. For $m\geq 2,$ $s^{(B,rn)}$ and $v^{(B,rn)}$ are calculated as follows.
(i) The value of $\mathcal{S}(B,rn)i_{\mathcal{S}}$ given $a\mathcal{S}a\mathcal{S}$olution x $\in(0,1)$ to the equation

$\frac{1}{2}\log^{2}x+(1+h_{n\tau-1})\log x+\sum_{j=1}^{\tau n-1}(\frac{1+h_{7\gamma\iota-1}-h_{j-1}}{j})(1-x)^{j}=0,$

where $h_{k}= \sum_{j=1}^{k}1/j,$ $k\geq 1$ and $h_{O}=0.$

(ii) The value of $v^{(B,rrz)}$ is given by

$v^{(B,\tau rb)}=ms \sum_{j=\tau\gamma\iota}^{\infty}\frac{(1-s)^{j}}{j}=-m\mathcal{S}(\log \mathcal{S}+\sum_{j=1}^{nz-1}\frac{(1-\mathcal{S})^{j}}{j})$ ,
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where, for easier reading, $s^{(B,rr\iota)}$ is abbreviated to $s.$

Table 1
Values of $s^{(B,\ovalbox{\tt\small REJECT} n\rangle}$ and $v^{(B,rn)}$ for $several_{7}n.$

$\frac{\gamma n}{01234510}$
$s^{(B,rn)}$$\overline{0.36790.13530.07750.05390.04120.03340.0171}$
$v^{(B,\gamma n\rangle}$ 0.3679 0.2707 0.2535 0.2469 0.2435 0.2414 0.2372

3 Full-information model

For the full-information model, the following results give a sufficient condi-
tion for the optimal rule to be monotone for each of the three problems and
also give, when this condition is met, the explicit expressions for the optimal
monotone thresholds and the optimal values.

Theorem 3.1.
(a) (Alternate correspondence of type 1.) The optimal rule?$\dot{S}$ monotone
for both $(D_{1}, p^{(7n)})$ and $(B, p^{\langle 7?Z)})$ , and we have the follouying relations for
$\gamma n\geq 0.$

$a^{D_{1}}(p^{(m)}) = a^{B}(p^{(7n+1)})$ ,

$v_{n}^{D_{1}}( p^{(rn)}) = \frac{m+n}{(rn+1)n}v_{n}^{B}(I)(\gamma n+1))$ ,

where $a^{B}(p)$ denotes the monotone thresholds corresponding to $p.$

(b) (Alternate correspondence of type 2.) The optimal rule is monotone for
both $(D_{2}, p^{[\iota]}\gamma\gamma)$ and $(B, p^{[7n]})$ , and $uye$ have the following relations for $m\geq$ O.

$a^{D_{2}}(p^{[7n]}) = a^{B}(p^{[rn+1]})$ ,
$v_{n}^{D_{2}}(p^{[rn]}) = v_{n}^{B}(p^{[\tau n+1]})$ .

Note that we use the same notations $v_{n}^{B}(p)$ and $v_{n}^{D_{k}}(p)$ to denote the
optimal values for the full-information model if no confusion occurs.

We now consider the limiting optimal values as $narrow\infty$ . Let, for $m\geq 0,$

$v^{(B,rr\iota\rangle} = \lim v_{n}^{B}(p^{(7n)})$ ,
$narrow\infty$

$v^{[B,m]} = \lim_{narrow\infty}v_{n}^{B[m]}(1\supset)$ ,

$v^{(b)} \chi)_{1_{)}7\gamma} = \lim_{narrow\infty}v_{n}^{D_{1}}(p^{(rn)})$ ,

$v^{[D_{2},rn]} = \lim_{narrow\infty}v_{\gamma\iota}^{D_{2}}(p^{[7\gamma\iota]})$ .
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Then, from Theorem 3.1, we obviously have the following results analogous
to Corollary 2.1.

Corollary 3.1. We have the following limiting $relation\mathcal{S}$ for $m\geq$ O.

(a) $v^{[B,\tau n]}=v^{(B,rr\iota)}$

(b) $v^{(D_{1,7\gamma t})}= \frac{1}{rn+1}v^{(B,rr\iota+1)}$

(c) $v^{[D_{2},rn]}=v^{[B,\tau n+1]}$

(d) $v^{[D_{2},rn]}=(m+1)v^{(D_{1},rn)}.$

The explicit expressions of $v^{(D_{1,7}n)}$ and $v^{[D_{2},zn]}$ have been already ob-

tained in Tamaki (2016), i.e. $v^{(D_{1,7}n)}$ appears as $v_{7n}^{(1)}$ in his Theorem 3.2 and
$v^{[D_{2)}rn]}$ as $v_{rn}^{(2)}$ in his Theorem 4.2 (the derivation is based on a planar Pois-
son process approach developed by Gnedin $(1996, 2004)$ or Samuels (2004)).

Because of $v^{(B,rn)}=mv^{(D_{1},rn-1)}$ from Corollary 3.1 (b) for $m\geq 1$ , if we let

$I(c) = \int_{c}^{\infty}\frac{e^{-x}}{x}dx, J(c)=\int_{0}^{c}\frac{e^{x}-1}{x}dx$

and introduce the additional functions

$I_{rn}(c) = \int_{c}^{\infty}\frac{m!e^{-x}}{x^{rn+1}}dx,$

$K_{rn}(c) = \int_{0}^{c}\frac{x^{rn}e^{x}}{m!}dx,$

$L_{\ovalbox{\tt\small REJECT} r\iota}(c) = \int_{0}^{c}\frac{7n!e^{-x}}{x^{rn+1}}K_{\tau r\iota}(x)dx$

for $m\geq 0$ , we can give $v^{(B,/n)}$ as follows.

Theorem 3.2. For $m\geq 1$ , let $c$, be a unique root $c$ of the equation

$\sum_{k=0}^{rn-1}\frac{(-c)^{k}}{k!}(1-L_{k}(c))=e^{-c}(1-J(c))$ .

Then

$v^{(B,rn)}$ $=$ $rn( \frac{(m-1)!K_{\tau n-1}(c)}{c^{rn-1}}-\frac{ce^{c}L_{rn-1}(c)}{m+c})(\frac{c^{7n-1}I_{rn-1}(c)}{(m-1)!}-\frac{c^{rrt}I_{rn}(c)}{m!})$

$+ \frac{m}{m+c}L_{7n-1}(c)$ ,

where $c_{m}$ is abbreviated to $c$ . For $m=0,$

$v^{(B,O)}=e^{-co}+(e^{co}-c_{O}-1)I(c_{O})\approx 0.5S016,$
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where $c_{O}\approx 0.80435$ is a unique root $c$ of the equation $J(c)=1.$
Table 2 presents some numerical values of $c_{rn}$ and $v^{(\mathcal{B},rn)}.$

Table 2
Values of $c_{rn}$ and $v^{\langle B,\iota)}\gamma\gamma$ for several $m.$

$0 1 2 m_{3} 4 5 10$
$c_{7\gamma\iota}$ 0.8044 2. 1198 3.6925$5.35S0443$692552070411 8.7423 17.3014

$v^{(B,rn)}$ 0.5802 0.4352 0.4045 0.3926 0.3865 0.3827 0.3753

See rfamaki$(2016b)$ for more detail of this paper.
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