
ロジスティック回帰に基づくテスト環境要因を考慮した

ソフトウェア信頼性評価に関する一考察

On Software Reliability Assessment Based on Logistic Regression

with Testing Environmental Factors

鳥取大学・大学院工学研究科 井上真二，山田 茂

Shinji Inoue and Shigeru Yamada

Graduate School of Engineering,

Tottori University

1 Introduction

A software reliability model [11, 13] is known as mathematical tool for quantitative assessment of soft-

ware reliability. In an actual software testing-phase, it must be natural to consider that the software relia-

bility growth process depends on the testing-environmental factors, such as testing-coverage, the number

of test-runs, and the debugging skill, which affect the software failure-occurrence or fault-detection phe-

nomenon. In the continuous-time software reliability modeling scheme, a testing-environment dependent

software reliability model has been proposed by the literature [4] In the discrete-time domain, Shibata

et al. [12] and Okamura et al. [10] proposed extended cumulative Bernoulli trial process models by con-
sidering the software metrics in software reliability assessment. On the other hand, the discrete-time

models also have been proposed by [12], [10], and [8] only in cumulative Bernoulli trial process modeling

approach [2].

In this research, we consider the software complexity which is measured by the number of program size

into software reliability assessment. Concretely, we extend the discrete program-size dependent software

reliability model following a discrete-time binomial process [5] for incorporating the effect of the testing-

environmental factors into the quantitative software reliability assessment and for flexibly depicting a
software reliability growth curve described by observed fault counting data. Further, we assume that the

discrete software failure-occurrence time distribution basically follows a discrete Weibull distribution for

flexibly describing the software failure-occurrence phenomenon, and consider the relationship between the

probability that a software failure caused by a fault is observed per the i-th testing-period and the related

testing-environmental factors by using a logistic regression modeling approach. This paper also discuss
parameter estimation method of our model proposed in this paper. Further, we conduct goodness-of-fit

comparisons of our model with the existing corresponding model.

2 Binomial-Type Software Reliability Model

A discrete binomial-type software reliability model [5] is developed based on the following basic as-
sumptions:

(A1) Whenever a software failure is observed, the fault which caused it will be detected immediately,

and no new faults are introduced in the fault-detection procedure.

(A2) Each software failure occurs at independently and identically distributed random times I with the

discrete probability distribution $P(i) \equiv Pr\{I\leq i\}=\sum_{k=0}^{i}p_{I}(k)(i=0,1,2, \cdot\cdot$ where $p_{I}(k)$ and
$Pr\{A\}$ represent the probability mass function for I and the probability of event A , respectively.

(A3) The initial number of faults in the software system, $N_{0}(>0)$, is a random variable, and is finite.

数理解析研究所講究録

第 1990巻 2016年 198-203 198

Now, let $\{N(i), i=0, 1, \}$ denote a discrete stochastic process representing the number of faults

detected up to the i-th testing-period. From the assumptions above, we have the probability mass

function that m faults are detected up to the i-th testing-period as

$P_{f}\{N(i)=m\}=\sum_{n}(\begin{array}{l}nm\end{array})\{P(i\rangle\}^{m}\{2-P(i)\}^{n-m}p_{\gamma}\{N_{0}=n\}$ $(m=0,1,2, \cdots , n)$. (1)

In Eq. (1), we consider the case that the probability distribution of the initial fault content, N_{0} , follows

a binomial distribution with parameters (K, λ) which is given as

$Pr\{N_{0}=n\}=(\begin{array}{l}Kn\end{array})\lambda^{n}(1-\lambda\rangle^{K-n} (0<\lambda<1;n=0,1, \cdots, K)$. (2)

Eq. (2) has the following physical assumptions:

(a) The software system consists of K lines of code (LOC) at the beginning of the testing-:)hase.

(b) Each code has a fault with a constant probability $\lambda.$

(c) Each software failure caused by a fault remaining in the software system occurs independently and

randomly.

These assumptions are useful to apply a binomial distribution to the probability mass function of the

initial fault content in the software system, and to incorporate the effect of the program size into software
reliability assessment [7]. The program size is one of the important metrics of software complexity which

influences $ti_{1}e$ software reliability growth process in the tegting-phase.

Substituting Eq. (2) into Eq. (1), we can derive the probability mass function of the number of faults

detected up to the i-th testing-period as

$P\mathfrak{r}\{N(i)=m\}=\sum_{n\simeq m}^{K}(\begin{array}{l}nm\end{array})\{P(i)\}^{m}\{1-P(i)\}^{n-m}(\begin{array}{l}Kn\end{array})\lambda^{n}(1-\lambda)^{K-n}$

$= (\begin{array}{l}Km\end{array})\{\lambda P(i)\}^{m}\sum_{n=m}^{K}(\begin{array}{l}K-mn-m\end{array})\{\lambda(1-P(i)\rangle\}^{n-m}(1-\lambda)^{K-n}$

$=(\begin{array}{l}Km\end{array})\{\lambda P(i)\}^{m}\{1-\lambda P(i)\}^{K-m} (m=0,1,2, \cdots K)$. (3)

From Eq. $(3\rangle$, several types of discrete software reliability model with the effect of program size can be

developed by giving suitable probability distributio}) s for the software failure-occurrence times, respec-
tively.

3 Discrete Software Failure Occurrence Time Distribution with TE

For flexible discrete software reliability growth modeling, we apply a discrete Weibull distribution [9]

to the software failure-occurrence time distribution, which is given by

$P(i)=1-(1-p_{i})^{i^{\gamma}})$ (4)

where p_{i} represents the probability that a software failure caused by a fault is observed per the i-th

testing-period, and γ denotes the shape i)arameter. The discrete Weibull distribution subsumes geometric

and Rayleigh distribution as the special cases. In this research, we assume that p_{i} depends on the

testing-environmental factors at the i-th testing-period and the relationship between p_{i} and the testing-

environmental factors can be given by

$p_{i}= \frac{1}{1+\exp[-\alpha\beta_{i}^{T}]}$. (5)

199

In Eq. (5), $\beta_{i}=(1,\beta_{1,i},\beta_{2,i}, \cdots , \beta_{n,i})$ represents the n kinds of testing-environmental factors at the i-th
testing-period, $\alpha=(\alpha_{0},\alpha_{1}, \cdots,\alpha_{n})$ is the coefficient vector, and A^{T} the transposed matrix of the matrix
$\mathcal{A}.$

4 Software Reliability Assessment Measures

We can derive software reliability assessment measures under the basic assumptions on the software

failure-occurrence phenomenon in Eq. (1). The expectation of the number of detected faults, $E[N(i)]$, is

derived as

$E[N(i)]=\sum_{z=0}^{n}z\sum_{n}(\begin{array}{l}nz\end{array})\{P(i)\}^{z}\{1-P(i)\}^{n-z}\cdot Pr\{N_{0}=n\}$

$=E[N_{0}]P(i)$ (6)

And its variance, $Var[N(i)]$, is also derived as

$Var[N(i)]=E[N(i)^{2}]-(E[N(i)])^{2}$

$=Var[N_{0}]\{P(i)\}^{2}+E[N_{0}]P(i)\{1-P(i)\}$ (7)

A discrete software reliability function is defined as the probability that a software failure does not

occur in the time-interval $(i,i+h](i, h=0,1,2, \cdots)$ given that the testing or the operation has been

going up to the i-th testing-period. Then, the discrete software reliability function, $R(i, h)$, under the

basic assumption in Eq. (1) is derived as

$R(i, h)= \sum_{k}Pr\{N(i+h)=k|N(i)=k\}Pr\{N(i)=k\}$

$= \sum_{k}[\{P(i)\}^{k}\{1-P(i+h)\}^{-k}\sum_{n}(\begin{array}{l}nk\end{array})\{1-P(i+h)\}^{n}\cdot Pr\{N_{0}=n\}].$

(8)

Concretely, we can derive the discrete software reliability function in the case that the initial fault content

follows the binomial distribution in Eq. (2) as

$R(i, h)= \sum_{z=0}^{K}Pr\{N(i+h)=k|N(i)=k\}(\begin{array}{l}Kz\end{array})\{\lambda P(i)\}^{z}\{1-\lambda P(i)\}^{K-z}$

$= \sum_{z=0}^{K}[\{P(i)\}^{z}\{1-P(i+h)\}^{-z}\cdot\sum_{n=0}^{K}(\begin{array}{l}nz\end{array})\{1-P(i+h)\}^{n}(\begin{array}{l}Kn\end{array})\lambda^{n}(1-\lambda)^{K-n}]$

$=[1-\lambda\{P(i+h)-P(i)\}]^{K}$ (9)

further, instantaneous and cumulative MTBFs, $MTBF_{I}(i)$ and $MTBF_{C}(i)$, are also derived as

$MTBF_{I}(i)=1/(E[N(i+1)]-E[N(i)])$, (10)

$MTBF_{C}(i)=i/E[N(i)]$, (11)

respectively.

5 Parameter Estimation Method

Suppose that we have observed N data pairs $(t_{i}, y_{1},\beta_{i})(i=0,1,2, \cdots, N)$ with respect to the cumula-

tive number of faults, y_{i} , detected during a constant time-interval $(0, t_{i}](0<t_{1}<t_{2}<\cdots<t_{N})$, and the

200

related data for the testing-environmentaJ factors, β_{i} . The likelihood function, t , for the binomial-type

software reliability model, $N(i)$, can be derived as

$t=Pr\{N(t_{1}\rangle=y_{1}, N(t_{2})=y_{2},$ $\cdots,$ $N(t_{N})=y_{N}\}$

$= \prod_{i=1}^{N}Pr\{N(t_{i})=y_{i}|N(t_{i-3})=y_{i-1}\}Pr\{N(t_{1})=y_{1}\}$, (12)

by using the Bayes’ formula and a Markov property. In Eq. $(12\rangle, t_{0}=0 and y_{0}=0.$ Thus, $Pr\{N(t_{0})=$

$y_{0}\}=Pr\{N(0\rangle=0\}=1$. The conditional probability in Eq. (12), $Pr\{N(t_{i})=y_{i}|N(t_{i-1})=y_{i-1}\}$, can

be derived as

$Pr\{N(t_{i})=y_{i}|N(t_{i-1})=y_{i-1}\}=(\begin{array}{l}K-y_{i-1}y_{i}-y_{\dot{t}-1}\end{array})\{x(t_{i-1}, t_{i})\}^{y.-y.-1}\{1-z(t_{i-i}, t_{i})\}^{K-y:}$, (13)

where

$z(t_{i-1}, t_{i})= \frac{\lambda\{P(t_{i}\rangle-P(t_{i-1})\}}{1-\lambda P(t_{i-1})}$. (14)

Then, we can rewrite Eq. (12) as

$t= \prod_{i=1}^{N}(\begin{array}{l}K-y_{i-1}y_{i}-y_{i-l}\end{array})\{z(t_{i-1}, t_{i})\}^{y;-y_{i-1}}\{1-z\langle t_{i-1}, t_{i})\}^{K-y}\dot{}$, (15)

by using Eq. (13). Accordingly, the logarithmic likelihood function can be derived as

$\log l\equiv L=\log K!-\log\{(K-y_{N})!\}$

$- \sum_{\grave{x}=1}^{N}$ iog$\{(y_{i}-y_{i-1})!\}+y_{N}\log A+\sum_{\prime,l=1}^{N}(y_{i}-y_{i-z})\log\{P(t_{i})-P(t_{i-\iota})\}$

$+(K-y_{N})\log\{1-\lambda P(t_{i})\}$. (16)

When we apply Eqs. (4) and (5) as the discrete software failure-occurrence times distribution, the

logarithmic likelihood function can be given as

$L= \log K!-\log\{(K-y_{N})!\}+y_{N}\log\lambda-\sum_{i=1}^{N}\{(y_{i}-y_{i-1})!\}$

$+ \sum_{i=1}^{N}(y_{i}-y_{i-1})\log\{(1-p_{i})^{t_{\mathfrak{i}’-1-}^{\wedge}}(1-p_{i})^{t_{i}^{\gamma}}\}+(K-y_{N})\log[1-\lambda\{1-\langle 1-p_{i})^{t_{N}^{\gamma}}\}]$, (17)

by using Eq. (16). We have to estimate the parameters $\lambda,$
γ , and α if we can know the program size $K.$

Accordingly, we can obtain the maximum-likelihood estimates $\hat{\lambda},$

$\hat{\gamma}$, and $\hat{\alpha}$ of the unknown parameters
$\lambda,$

γ , and α , respectively, by solving the simultaneous likelihood functions with $\lambda,$
γ , and α numerically.

6 Model Comparisons

We compare the performance of our model for software reliability assessment with the existing corre-
sponding model, which does not consider the effect of the testing-environmental factors, by using two

data sets collected from actual software testing-phases. The data sets are respectively called DS1 and

DS2. The details of the data are shown as follows:

DS1 : $(t_{i}, y_{i}, c_{i})(i=1,2, \cdots , 22; t_{22}=22,y_{22}=212, c_{22}=0.9198)$ where t_{i} is measublack on the basis

of weeks and the program size $K=1.630\cross 10^{6}$ (LOC) [3],

201

Table 1: Results of model comparisons based on the MSE and AIC.

$\overline{\overline{DSlOurModel27.3084488.62-2240.31}}MSEAICMLL$

$\frac{ExistingMode128.2564509.17-2251.59}{DS2OurM\circ de133.9546112.26-3052.13}$

Existing Model 39.713 6115. 94 -3054.97

DS2 : $(t_{i}, y_{i}, c_{i})\langle i=1$, 2, \cdots , 24; $t_{24}=24,$ $y_{24}=296,$ $c_{24}=0.9095)$ where t_{i} is measublack on the basis
of weeks and the program size $K=1.972\cross 10^{5}$ (LOC) [3],

where y_{i} represents the number of faults detected up to t_{i} and c_{l} is the CO testing-coverage attained up

to t_{i} . In this model comparisons we treat the CO testing-coverage as the testing-environmental factors
affecting the software failure-occurrence or fault-detection phenomenon. Thus, we treat that $\beta_{i}\equiv c_{t}.$

Regarding the actual data, DS1 shows the exponential software reliability growth curve and DS2 shows

the S-shaped one. And the existing corresponding model assumes that the software failure-occurrence
time distribution follows $P(i)=1-(1-p)^{i^{\gamma}}(i=0,1,2, \cdots)$ in Eq. (3) [6], where p represents the
probability that a software failure caused by a fault is observed per one testing-period and γ is the shape

parameter of the discrete Weibull distribution.

For quantitative comparisons in terms of fitting performance to the actual data, we use mean square

error (abbreviated as MSE) [11] and Akaike information criterion (AIC) [1]. Table 1 shows the results

of model comparisons based on the MSE, AIC, and MLL represents the maximum \log-likelihood, respec-
tively. From Table 1, we can say our model fits well to the actual data even though the actual data shows

the exponential or S-shaped software reliability growth curve.

7 Conclusion

We proposed an extended binomial-type software reliability model with the effect of the testing-

environmental factors on the software reliability growth process. Especially, the discrete software failure-

occurrence time distribution follows the discrete Weibull distribution basically. Further, we discussed a
parameter estimation method of our model, and conducted comparisons of the performance of our model

with that of existing corresponding model in terms of MSE. In future studies, we need to check the

performance of our model with existing models [8, 10, 12] by using a lot of software fault-counting data

with software metrics in the future studies because we have an enough time to obtain the appropriate

data sets and conducting numerical experiments.

Acknowledgement

This research was supported in part by the Grant-in-Aid for Scientific Research (C), Grant No.
22510150, from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the

Telecommunications Advancement Foundation.

References

[1] H. Akaike, “A new look at the statistical model identification,”IEEE ffinsactions on Automatic

Control Vol. AC-19, pp. 716-723, 1974.

[2] T. Dohi, K. Yasui and S. Osaki, “Software reliability assessment models based on cumulative Bernoulli

trial processes,”Mathematical and Computer Modelling, Vol. 38, pp. 1177-1184, 2003.

202

[3] T. Fujiwara and S , Yamada, “A new testing-path coverage meaagure - $Testing$-domain metrics based
on a software reliability growth model – Proc. 13th IEEE International Symposium on Software
Reliability Engineering (ISSRE’02), pp. 71-75, 2002.

[4] $\prime\iota$. Imanaka and rr . Dohi, “Burr XII distribution-based software reliability modeling Proceedings

of the 6th $\mathcal{A}sia$-Pacific International Symposium on Advanced Reliabitity and Maintenance Modeling

(APARM 2014 pp. 176-183, McGraw-Hill, $Taiw^{r}an$, 2014.

[5] S. Inoue and S. Yamada, (Generalized discrete software reliability modeling with effect of program

size IEEE $x\nu$ansactions on Systems, Man. and Cybernetics – Part A : Systems and Humans, Vol.
37, No. 2, pp. $170-179_{\backslash }$ 2007.

[6] S. Inoue and S. Yamada, ((Discrete program-size dependent software reliability assessment: Modeling,

estimation, and goodness-of fit comparisons IEICE 7ransactions on Fundamentals of Electronics,
Communications and Computer Sciences, Vol. E90-A, No. 12, pp. 2891-2902, 2007.

[7] M. Kimura, S. Yamada, H. Tanaka and S. Osaki “Software reliability measurement with prior-

information on initial fault content,“ Transactions of Information Processing Society of Japan, Vol.
34, No. 7, pp. 1601-1609, 1993.

[8] D. Kuwa an$d’r$. Dohi “Generalized logit-based software reliability modeling with metrics data,” Pro-

ceedings of the 37th Annual International Computer Software and Applications Conference (COMP-

SAC 2013), pp. 246-255, IEEE CPS, 2013.

[9] T. Nakagawa and S. Osaki “The discrete Weibuh $dist_{1}\cdot$ibution,” IEEE Transactions on Reliability,

Vol. R-24, No. 5, pp. 300-301, 1975.

[1e] H. Okamura, Y. Etani and T. Dohi “A multi-factor software reliability model based oxx logistic re-
gression,” Proceedings of the $21st$ IEEE international Symposium on Software Reliability Engineering

(ISSRE’10), pp. 31-40, IEEE CPS, 2010.

[11] H. Pham, “Software Reliabi}ity,’’Springer-Verlag, Singapore, 2000.

[12] K. Shibata, K. Rinsaka and T. Dohi, “Metrics-based software reliability models using non-
homogeneous Poisson processes Proceedings of The 17th International Symposium on Software Re-
hability Engineering (ISSRE’06), pp. S2-61, IEEE CPS, 2006.

[13] S. Yamada, “Software Reliability Modeling –Fundamentals and Applications–,“ SpringepVerlag,
Tokyo, 2013.

203

