B RAT IR SC AT R ZE 6k
%5 1991 % 2016 4E 82-87 82

HIGHER DIMENSIONAL THOMPSON GROUPS HAVE SERRE’S
PROPERTY FA

MOTOKO KATO

1. HIGHER DIMENSIONAL THOMPSON GROUPS nV

The Thompson group V is a subgroup of the homeomorphism group of the Cantor set
C. Brin [3] defined higher dimensional Thompson groups nV as generalizations of V. For
each n, nV is a subgroup of the homeomorphism group of C".

According to Brin’s paper [3], we give the definition of higher dimensional Thompson
groups. Hereafter, the symbol I denotes [0,1). Symbols I; and I, denote [0,1/2) x I™~!
and [1/2,1) x I}, respectively.

An n-dimensional rectangle is a subset of I”, defined inductively as follows. The first
rectangle is I™ itself. If R = [a,b;) X+« X [a;,b;) X - -+ X [a,, by,) is & rectangle, then for
all ¢ € {1,...,n}, the “i-th left half” and “the i-th right half” defined by

(1) Rz,,' = [al,bl) X e X [ai, (ai +b1)/2) X+ X [a,n,bn)
2) R,;=la1,b1) x -+ x [(a; + b;)/2,b;) X - -+ X [an, bs)

are again rectangles.

An n-dimensional pattern is a finite set of n-dimensional rectangles, with pairwise
disjoint, non-empty interiors and whose union is I™. A numbered pattern is a pattern with
a one-to-one correspondence to {0,1,...,7 — 1} where r is the number of rectangles in
the pattern. The following figure gives an example of a pair of 2-dimensional numbered
patterns, which are different as numbered patterns although they are the same as patterns.
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From now on, we will identify an n-dimensional rectangle with a subset of C™ and use
the common symbol. We start with identifying I™ with C". Let R be a rectangle which
is identified with a subset of C™:

(3) R =C"Na, 1] x - x [a/i, 3] x -+« x [a/y, )

Define rectangles R, ; and R, ; in the same way as we obtained (1) and (2). These rectangles
are identified respectively with the “i-th left third” and the “i-th right third” of R

(4) C*"N[a', b1 x - x[a's, (28" + V) /3] x -+ x [dy, b4)],

(5) C"N[a',b1] x -+ x [a@'s, (@' +2V3) /3] x -+ x [d/5, b n].

We proceed by induction. In the same manner, every pattern describes a division of C".
The following figure shows this correspondence, in the case of n = 2.
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We will construct a self-homeomorphism of C™ from a pair of numbered patterns with
the same number of rectangles. Let P = {P,;}o<i<r—1 and Q = {Q;:}o<i<r-1 be numbered
patterns. We define g(P, Q) : I™ — I™ which takes each F; onto @); affinely so as to
preserve the orientation, as drawn in the following figure. Namely, the restriction of
g(P,Q) to each P; has the form (z1,...,%n) = (a1 + 2%21,...,a, + 2~2,) for some
integers ji,...,Jn-

With the former identification of rectangles with subsets of C", the above construction
defines a self-homeomorphism of C™. We again write g(P, @) for this homeomorphism.

When n = 2, we illustrate g(P, Q) as a triplet of P, () and an arrow which indicates
the domain and the range. Below we show an example.
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The n-dimensional Thompson group nV is a subgroup of self-homeomorphisms of C"
which consists of the maps with the form g(P, Q). Every element of nV is identified with
a partially affine, partially orientation preserving bijection from I™ to itself.

Theorem 1.1 (Bleak and Lanoue [2]). n;V and noV' are isomorphic if and only if ny =
Tg.

Higher dimensional Thompson groups have some important properties in common with
Thompson groups.

Theorem 1.2 (Brin [4]). For alln € N, nV is simple.

2. THE NUMBER OF ENDS AND ACTIONS ON TREES

Let ' be a connected locally finite graph. We equip I' with graph metric. For a finite
subtree K, ||I’' — K| denotes the number of unbounded connected components of I' — K.
The number of ends of T, e(I'), is defined to be the supremum of ||I' — K|| taken over all
the finite subtrees.

Throughout this section, G denotes a finitely generated group and S denotes a finite
generating set of G. The Cayley graph I'c g is a graph whose vertex set is G, and there is
an oriented edge from g € G to h € G if some s € S satisfies g+ s = h. G acts freely on
I'g,s from the left.

The number of ends of G, e(G), is the number of ends of I'g .
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Proposition 2.1. ¢(G) satisfies the following.

(i) e(G) does not depend on the choice of S.
(if) (The Freudenthal-Hopf Theorem) e(G) is 0, 1, 2 or oo.
(iii) e(G) =0 if and only if G is finite.
(iv) e(G) =2 if and only if G has an infinite cyclic subgroup of finite index.

The following result, Stallings’ theorem, provides a group-theoretical characterization
of the case where ¢(G) > 2.

Theorem 2.2 (Stallings [9], Bergman [1]). e(G) > 2 if and only if G has a structure of
an amalgamated product or an HNN-extension on some finite subgroup.

In the light of this theorem, we can characterize the case of ¢(G) = 1 in terms of group
actions on trees. From now on, we consider only simplicial trees and simplicial actions
without edge-inversions. We say that G has property FA if every action of G on a tree T
has a fixed point. Here, a fixed point means z € T such that g(z) = z for every g € G.

Theorem 2.3 (Serre [8]). If an infinite group G has propery FA, then e(G) = 1.

The following proposition is a basic fact about group actions on trees. Let G be a group
acting on a tree. Let g € G. If some = € T satisfies g(z) = z, then g is said to be elliptic.
Otherwise, we say g is hyperbolic.

Proposition 2.4 (Serre [8]). Let G be a group acting on a tree T. Let g € G.

(i) Fix(g) ={z € T | g(z) =z } is either empty or a subtree of T

(ii) If g is hyperbolic, g acts on a unique simplicial line in T by translation. This line
is called the axis of g.

(iii) (Serre’s lemma) Assume that G is generated by a finite set of elements {s;}1<i<m
such that every element is elliptic, and the products of every two elements are
elliptic, equivalently, every two elements have a common fized point. Then there
18 ¢ € T which is fixred by every element of G.

3. nV HAS PROPERTY FA

We would like to explain the idea to show that each nV has property FA. First, we
take a finite generating set of nV. Next, we modify the generating set as to satisfy the
requirements of Serre’s lemma.

For every n, nV is known to have a useful presentation, described in the following. We
define X1, Xa 0, Ca0, mo, To € nV (2 < d' < n) as shown in the following figure. For
i>1, Xg; (1 <d < n) is defined inductively. On I, X,; restricts to the identity. For
z € I, we write = (x1,%2) where z; € [0,1/2) and z, € I™'. We define ¢ : I; — I™
by ¢(z1,x2) = (221,22). On I, Xy; = Xg; 1¢. Similarly, Cy ;, 7; and 7; restrict to the
identity on I, and Cy ;-1¢, m,_1¢ and 7;_1¢ on I}, respectively.
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X10=|0]1] 2 -1 0 |1]2 Xao=|0|1] 2 -1 0
1 > 1 !
f 4
To = {011] 2 —10i2] 1 To=101]1 =110
1 > 1
d/‘
1
Caro=[0]1 -
> 1 0
Theorem 3.1 (Hennig and Matucci [7, Theorem 23]). Let
(6) 2 = {Xgs,Ca i Ti, Ti}1<d<n, 2<d'<n, i20-
(i) T is a generating set of nV.
(ii) The elements of & satisfy the following relations:
(7) Xan i Xas = Xai X j1 (i< j,1<d,d <n),
(8) CajXai = XaiCu j+1 (i<j1<d<n,2<d <n),
9) Y; Xgi = Xai¥in (i<4Ye{mn7}1<d<n),
(10) 7 Xai = Xam; (i>j+1,1<d<n),
(11) 7;Cos = Ca gm; (i>j+1,2<d <n),
(12) T = MM (li = j] > 2),
(13) Ty = M7 (G>i+1),
(14) TiX1i = TiTip1 (¢ >0),
(15) CariX1i = XaiCu jraita (120,2<d <n),
(16) TiXd; = Xait1TiMip1 (:>0,1<d<n).

Relations (7), (8) and (9) are similar to the “almost commutative” relation of Thomp-
son’s group F. According to those relations, we can see that {Xq;, Ca i, 7, i Fi<m gener-
ates nV for every m > 1.

We would like to modify ¥ to consist of elliptic elements. For this purpose, we use the
following characterization for an element of nV to be elliptic.

Lemma 3.2. Let g € nV act identically on some rectangle. If nV acts on a tree, g s
elliptic.

The above lemma was shown in [6] in the case of n = 1. For each rectangle R C I", we
consider a subgroup which consists of elements whose supports are included in R. We may
observe that such subgroups are conjugate to each other, and that they are isomorphic to
V, which is simple. The proof depends on these facts, which are also true in the case of
nV for general n.
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Lemma 3.3. The set
(17) S = {Xd,h Xd,l(Xd,O)-la Cd',z, Mo, M3, 73 }15d5n,2_<_d'5n
generates nV.

We show the newly appeared elements X4;(X40) ™" in the figure below.

3
X11(X10) "t = |0]1]2|3] | = |ohy 3
L1
dy
. 3 2
Xd’,l(Xd’,O)_ = (0|1 =+ 10 3
2/, L

Each element of S restricts to the identity on some rectangle. If two elements restrict
to the identity on a rectangle, then their product again restricts to the identity on the
rectangle and is elliptic. If two elliptic elements commute, then they have a common fixed
point.

The following figure shows that almost all the pairs of elements of S satisfy one of those
two conditions. Solid segments represent the commutativity and dotted ones indicate that
two endpoints restrict to the identity on the same rectangle.

3
According to the relations in Theorem 3.1, we may confirm that the exceptional pairs
also have common fixed points.

Theorem 3.4. nV has property FA. Especially, e(nV) = 1.
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