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1. INTRODUCTION

In this note, we define the notion of stable map complexity for a compact orientable
3-manifold bounded by (possibly empty) tori counting the minimal number of singular
fibers of codimension 2 of stable maps into the real plane, and prove that this number
equals the minimal number of vertices of its branched shadows. As a consequence, we
give a complete characterization of hyperbolic links in the 3-sphere whose exteriors have
stable map complexity 1 in terms of Dehn surgeries. We also provide relation between
the stable map complexity, shadow complexity, and hyperbolic volumes. This note is
adapted from the talk at the Camp-style Seminar “Topology, Geometry and Algebra of
low-dimensiional manifolds (2015)” held in Numazu. We refer the readers to [11] for
the details. Throughout the note, we will work in the smooth category unless otherwise
mentioned.

2. PRELIMINARIES

2.1. Shadows and branched shadows of 3-manifolds. A compact polyhedron $P$ is
said to be almost-special if each point of $P$ has a neighborhood homeomorphic to one of
the five local models shown in Figure 1: A point of $P$ having a neighborhood shaped on

(iv) (v)

FIGURE 1. The local models of an almost-special polyhedron.

the model $(iii\rangle$ is called a true vertex of $P$ , and we denote the set of true vertices of $P$ by
$V(P)$ . The set of points of $P$ having neighborhoods on the models (ii), (iii) or (v) is called
the singular set of $P$ , and we denote it by $S(P)$ . The set of points having neighborhoods
shaped on the models (iv) or (v) is called the boundary of $P$ , and we denote it by $\partial P.$

A point having a neighborhood shaped on the model (v) is called a boundary-vertex of
$P$ , and we denote the set of boundary-vertices of $P$ by $BV(P)$ . Throughout the note,
we set $c(P)=|V(P)|+|BV(P)|$ . The polyhedron $P$ is said to be closed if $\partial P=\emptyset.$ $A$

component of $P\backslash S(P)$ is called a region.
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Let $P$ be an almost-special polyhedron. A coloring of $\partial P$ is a map from the set of
components of $\partial P$ to $\{i, e, f\}$ . Then with respect to the coloring, $\partial P$ decomposes into

three peaces $\partial_{i}P,$ $\partial_{e}P$ and $\partial_{f}P$ . An almost special polyhedron is said to be boundary-

decorated if it is equipped with a coloring of $\partial P$ . If $\partial_{f}(P\rangle=\emptyset,$ $P$ is said to be proper.

Definition 2.1. Let $M$ be a compact orientable 3-manifold and La (possibly empty)

link in $M$ . A boundary-decorated almost-special polyhedron $P$ properly embedded in a
compact oriented smooth 4-manifold $W$ is called a shadow of $(M, L)$ if

$\bullet$ $W$ collapses onto $P$ after equipping the natural PL structure $oX1W$ ;
$\bullet$ $P$ is locally flat, that is, each point $p$ of $P$ has a neighborhood $Nbd(p;P)$ that lies
in a 3-dimensional submanifold of $W$ ; and

$\bullet$ $(M, L)=(\partial W\backslash IntNbd(\partial_{e}F;\partial W), \partial_{i}P)$ .

When $L=\emptyset$ , we say that $P$ is a shadow of $M$ for simplicity.

In [22, 23], Turaev proved that any pair of a compact orientable 3-manifold with no
spherical boundary components and $a$ (possibly empty) link in it has a shadow. In [6, 8],

the shadow complexity of $(M, L)$ , denoted by $sc(M, L)$ , was defined to be the minimal
number of true and boundary vertices in any of its shadows.

A branched polyhedron is defined to be an almost-special polyhedron $P$ equipped with
an orientation of each of its regions so as to satisfy the following condition:

$\bullet$ the orientations on each component of $S(P)\backslash V(P)$ induced by the three germs
of regions do not coincide (See Figure 2).

(i) $\langle ii)$ $\langle i)\dot{\lambda})$ く $iv\rangle$ ($v$)

FIGURE 2. The local models of a branched polyhedron.

We refer the reader to Benedetti-Petronio [4] for general properties of branched polyhedra.

Definition 2.2. Let $M$ be a compact orientable 3 manifold and $La$ (possibly empty)

link in $M$ . A shadow $P$ of $(M, L)$ equipped with a branching is called a branched shadow

of $(M, L)$ .

In [6, Theorem 3.1.7] and [7, Proposition 3.4], Costantino showed that any pair of a
compact orientable 3-manifold with no spherical boundary components and $a$ (possibly
empty) link in it has a branched shadow.

Definition 2.3. Let $M$ be a compact orientable 3-manifold and La (possibly empty) link
in $M$ . The branched shadow complexity of $(M, L)$ , denoted by $bsc(M, L)$ , is the minimal
number of true and boundary-vertices in any of its branched shadows. A branched shadow
$P$ of $(M, L)$ is said to be minimal if it satisfies $c(P)=bsc(M, L)$ , that is, it contains the
least possible number of true and boundary-vertices.

A gleam on an almost-special polyhedron $P$ is a coloring of all the interior regions of $P$

with half integers satisfying a certain condition. We call an almost-special polyhedron $P$

equipped with gleams a shadowed polyhedron. In [22, 23], Turaev showed the following:
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(1) If an almost-special polyhedron $P$ is embedded in a compact oriented smooth
4-manifold $W$ is a shadow of $\partial W$ , then there exists a canonical coloring of the
interior regions of $P$ with half integers, that is, we have the canonical gleam on $P.$

(2) (TUraev’s reconstruction) Rom a shadowed polyhedron $P$ , we can reconstruct a
compact oriented smooth -manifold $W$ and an embedding $P\mapsto W$ in a unique
way (up to diffeomorphism) so that $P\subset W$ is a shadow of $\partial W$ and the canonical
gleam on $P$ given by the embedding $P\mapsto W$ coincides with the prefixed gleam
on $P.$

We note that, in this correspondence, the gleam of a region of a shadow is the generaliza-
tion of the Euler number of closed surfaces embedded in oriented 4-manifolds.

2.2. Stable maps and their Stein factorizations. Let $M$ be a closed orientable 3-
manifold. Let $f$ be a smooth map of $M$ into $\mathbb{R}^{2}$ . We denote by $S(f)$ the set of singular
points of $f$ , that is, $S(f)=\{p\in M|$ rank $df_{p}<2\}$ . A map $f$ of $M$ into $\mathbb{R}$ is said
to be stable if there exists an open neighborhood of $f$ in $C^{\infty}(M, \mathbb{R}^{2})$ such that for any
map $g$ in this neighborhood there exist diffeomorphisms $\Phi$ : $Marrow M$ and $\varphi$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$

satisfying $g=\varphi ofo\Phi^{-1}$ . Here $C^{\infty}(M, \mathbb{R}^{2})$ is the set of smooth maps of $M$ into $\mathbb{R}^{2}$ with
the Whitney $C^{\infty}$ topology. If $f$ is stable, there exist local coordinates centered at $p$ and
$f(p)$ such that $f$ is locally described in one of the following way:

(1) $(u, x, y)\mapsto(u, x)$ ;
(2) $(u, x, y)\mapsto(u, x^{2}+y^{2})$ ;
(3) $(u, x, y)\mapsto(u, x^{2}-y^{2})$ ;
(4) $(u, x, y)\mapsto(u, y^{2}+ux-x^{3})$ .

In the cases of (1), (2), (3), and (4), $p$ is called a regular point, a definite fold point, an
indefinite fold point and a cusp point, respectively. Further, we require that

(5) $f^{-1}\circ f(p)\cap S(f)=\{p\}$ for a cusp point $p$ ;
(6) restriction of $f$ to $S(f)\backslash$ {cusp points} is an immersion with only normal crossings.

Conversely, if a smooth map satisfies the above conditions, then it is a stable map. The
stable maps form an open dense set in the space $C^{\infty}(M, \mathbb{R}^{2})$ .

Let $M$ be a compact orientable -manifold with (possibly empty) boundary consisting
of tori. A smooth map $f$ of $M$ into $\mathbb{R}^{2}$ is called an $S$-map if

(1) the restriction of $f$ to Int $M$ is a stable map (here a stable map means that, as in the
case where $M$ is closed, there exists an open neighborhood of $f$ in $C^{\infty}(IntM, \mathbb{R}^{2})$

such that for any map $g$ in this neighborhood there exist diffoemorphisms $\Phi$ :
$Marrow M$ and $\varphi$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ satisfying $g=\varphi ofo\Phi^{-1}$ );

(2) for each $p\in\partial M$ there exist local coordinates $(u, x, y)$ centered at $p$ , where $\partial M$

corresponds to $\{x=0\}$ , and local coordinates of $f(p)$ such that $f$ is locally
described as $(u, x, y)\mapsto(u, x)$ .

As in Saeki [20], we denote by $S_{0}(f)$ and $C(f)$ the sets of definite fold and cusp points,
respectively, of the restriction of $f$ to Int $M.$

Let $f$ be an $S$-map of a compact orientable -manifold $M$ with (possibly empty) bound-
ary consisting of tori into $\mathbb{R}^{2}$ . We say that two points $p_{1}$ and $p_{2}$ are equivalent if they are
contained in the same component of the fibers of $f$ . We denote by $W_{f}$ the quotient space
of $M$ with respect to the equivalence relation and by $q_{f}$ the quotient map. We define the
map $\overline{f}:W_{f}arrow N$ so that $f=\overline{f}oq_{f}$ . The quotient space $W_{f}$ , or the composition $\overline{f}oq_{f}$

is called the Stein factorization of $f$ . The Stein factorization $W_{f}$ is homeomorphic to a
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polyhedron, that is, the underlying space of a finite 2-dimensional simplicial complex. By
Kushner-Levine-Porto [13] and Levine [16], the local models of the Stein factorization $W_{f}$

can be summarized as in Figure 3. In the case of Figure 3 (iv) ( $(v)$ , respectively), the

type $I1^{2}$ type $II^{\theta}$

(i) (ii) (\"ui) $(iv\rangle$ (v) $(vi\rangle$

FIGURE 3. The local models of a stable map and its Stein factorization for:
(i) a regular point; (ii) a definite fold point; $(iii)-(v)$ indefinite fold points;
(vi) a cusp point.

singular fiber $q_{f}^{-1}oq_{f}(p)$ is said to be of type $II^{2}$ (II3, respectively) (cf. Saeki [21]). We

denote by $II^{2}(f)$ and $11^{3}(f)$ the sets of singular fibers of types $II^{2}$ and $II^{3}$ , respectively, of
$f.$

Stable maps are defined without any condition of the dimensions of both source and
target manifolds. They are especially used for obtaining topological information of the
source manifold from the types of their singularities and singular fibers. A typical example
is the usage of critical points of a Morse function, which is nothing else but a stable map
of a manifold into the real line. Here we provide a history of the study of stable maps of
3-manifolds into $\mathbb{R}^{2}$ :

(1) (Levine [15]) The cusp points of a stable map of a closed 3-manifold into $\mathbb{R}^{2}$

can be eliminated by a homotopical deformation. This implies that every closed
3-manifold admits a stable map into $\mathbb{R}^{2}$ without cusp points.

$(2\rangle$ (Burlet-de Rham [5]) If a closed 3-manifold $M$ admits a stable map into $\mathbb{R}^{2}$ with
only definite fold points, then $M$ is either the -sphere or connected sums of $S^{2}\cross_{l}9^{1}.$

(3) (Saeki [20]) A closed 3-manifold admits a stable map with neither non-simple
crossings nor cusp points if and only if $M$ is a graph manifold. Here we recall
that a compact orientable 3-manifold is called a graph manifold if we can cut it off
by embedded tori into $S^{1}$ -bundles over surfaces. (This is a generalization of (2)
above.)

(4) (Costantino-Thurston [8], Gromov [10]) For a stable map $f$ from a closed 3-
manifold $M$ into $\mathbb{R}^{2}$ , the following holds:

$||M||\leq 10 (\#II2(f)+\#II^{3}(f))$ .

Here $||M||$ is the Gromov norm of M. (This is a generalization of the “only if’
part of (3) above.)
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Definition 2.4. Let $M$ be a compact, orientable 3-manifold with (possibly empty) bound-
ary consisting of tori and La (possibly empty) link in $M$ . Let $f$ : $Marrow \mathbb{R}^{2}$ be an $S$-map.
We say that $f$ is an $S$-map of $(M, L)$ (or simply $ofL$) if $S_{0}(f)\supset L$ . An $S$-map $f$ of $(M, L)$

is said to be proper if $S_{0}(f)=L$ . When $M$ is a closed 3-manifold, we call $f$ a stable map
of $(M, L)$ .

3. BRANCHED SHADOW COMPLEXITY AND STABLE MAP COMPLEXITY

The following is one of our main theorems.

Theorem 3.1. Let $M$ be a compact, orientable 3-manifold with (possibly empty) $boundarrow$

$ary$ consisting of tori and $La$ (possibly empty) link in M. Then we have $bsc(M, L)=$

$smc(M, L)$ .

The inequality $bsc(M, L)\leq smc(M, L)$ follows essentially from Costantino-Thurston [8,
Theorem 4.2]. In fact, the Stein factorization $W_{f}$ of a given $S$-map of $(M, L)$ is already
“almost” a branched shadow of $(M, L)$ . However, the local model of $W_{f}$ shown on the left
hand side of Figure 4 is not allowed as a local model of a branched shadow. This model
corresponds to a type $II^{3}$ singular fiber of $f$ (recall Figure 3). Replacing each of these
parts of $W_{f}$ with the one shown on the right hand side of Figure 4, we obtain a branched
shadow of $(M, L)$ .

FIGURE 4. Local replacement of $W_{f}.$

The proof of $bsc(M, L)\geq smc(M, L)$ is much more complicated. We can show that,
given a minimal branched shadow $P$ of $(M, L)$ , one can actually construct an $S$-map so
that each vertex of $P$ corresponds to a type $II^{2}$ singular fiber, and no other types $II^{2}$ or
$II^{3}$ singular fibers are created.

Remark 3.2. Let $(M, L)$ be as in Theorem 3.1, and let $f$ : $(M, L)arrow \mathbb{R}^{2}$ be an S-
map. If $II^{3}(f)=\emptyset$ , the Stein factorization $W_{f}$ is exactly a branched shadow of $(M, L)$ .
Suppose that $II^{3}(f)\neq\emptyset$ , and let $N_{1},$ $N_{2}$ , . . . , $N_{n}$ be closed neighborhoods of the singular
fibers of type $II^{3}$ . As we have seen in Figure 3, each $N_{i}$ is a genus 3 handlebody. By the
proof of Theorem 3.1, we may construct a map $g_{i}:N_{i}arrow \mathbb{R}^{2}$ using the shadowed branched
polyhedron depicted in Figure 4. Exchanging $f$ with $9i$ inside $N_{i}$ for each $i\in\{1, 2, \cdots, n\},$

we get a new $S$-map $(M, L)arrow \mathbb{R}^{2}$ having no singular fibers of type $II^{3}.$

Theorem 3.1 and an easy combinatorial argument allow us to obtain the subadditivity
of the stable map complexities under connected sums and torus sums. Further, we have
the following.

Corollary 3.3. Let $M$ be a compact, orientable 3-manifold with (possibly empty) boundary
consisting of tori and $L$ $a$ ink in M. Then we have $smc(M)\leq smc(M, L)=smc(E(L))$ .
Here $E(L)$ is the exterior of the link $L.$
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$A$ (possibly empty) link in a compact orientable 3-manifold is called a graph link if its
exterior is a graph manifold. The following proposition is a direct consequence of Saeki
[20], Costantino-Thurston [8, Proposition 3.31] and Theorem 3.1.

Proposition 3.4. Let $M$ be a compact, orientable 3-manifold with (possibly empty) bound-
ary consisting of tori and $La$ (possibly empty) link in M. Then the following conditions
are equivalent:
(1) $sc(M, L)=0$ , (2) $bsc(M, L)=0$ , (3) $L$ is a graph tink.

4. STABLE MAPS OF LINKS

Let $L$ be a link in $S^{3}$ , and $D_{L}$ be its diagram on a disk $D$ . It is easy to see that the
mapping cylinder

$P_{D_{L}}^{*}=((L\cross[0,1])uD)/(x, 0)\sim\pi(x)$

is a non-proper shadow of $(S^{3}, L)$ . Fixing an orientation of $L$ , we may equip a branching
of $P_{D_{L}}^{*}$ in a natural way. Suppose that the region $R$ of $P_{D_{L}}^{*}$ touching $\partial D$ is an annulus and
the orientations of the arcs of $R\cap D_{L}$ induced by $L$ are compatible. Then by collapsing
the branched polyhedron $P_{D_{L}}^{*}$ from $\partial D$ , we obtain a proper shadow $P_{D_{L}}$ of $(S^{3},$ $L\rangle$ . By
the argument of Theorem 3.1, we can actually construct a stable map of $(S^{3}, L)$ whose
Stein factorization is homeomorphic to $P_{D_{L}}.$

Example 4.1. The left-hand side in Figure 5 shows a diagram $D_{K}$ of the figure-eight
knot $K$ . The right-hand side in the figure illustrates the branched polyhedron $P_{D_{K}}$ con-
structed from $D_{K}$ . Then we have a proper stable map $f$ : $(S^{3}, K)arrow \mathbb{R}^{2}$ with Stein

factorization $(S^{3}, K)arrow^{q_{f}}P_{D_{K}}arrow^{f^{\overline{}}}\mathbb{R}^{2}$ such that $|II^{2}(f)|=2,$ $1I^{3}(f)=\emptyset$ and $C(f)=\emptyset.$

The configuration of the preimages of the points $x_{1},$ $x_{2}$ , . . . , $x_{6}$ in $P_{D_{K}}$ is shown in the
figure.

FIGURE 5. Regular and singular fibers of a stable map of the figure-eight
knot. $q_{f}^{-1}(x_{1})$ and $q_{J}^{-1}(x_{2})$ are regular fibers of $f.$ $q_{f}^{-1}(x_{3})$ is a singular $fit$)$er$

of type $I^{0}.$
$q_{f}^{-1}(x_{4})$ is a singular fiber of type $1^{1}.$

$q_{f}^{-1}(x_{6})$ and $q_{f}^{-1}(x_{6})$ are
singular fibers of type $II^{2}.$

The following is a consequence of Corollary 3.3 and the above observation.

Corollary 4.2. Let $M$ be a closed orientable 3-manifold obtained from $S^{3}$ by surgery
along a non trivial link $L\subset S^{3}$ . Then there exists a stable map $f$ : $Marrow \mathbb{R}^{2}$ without cusp
points such that $|II^{2}(f)|\leq cr(L)-2$ and $II^{3}(f)=\emptyset.$

Remark 4.3. A result similar to Corollary 4.2 is obtained in Kalmar-Stipsicz [12, The-
orem 1.2]. The numbers of singular fibers of types $II^{2}$ and $II^{3}$ , and cusp points in our
Corollary 4.2 are less than theirs $(in$ particular, $C(f)=\emptyset$ in our result).
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5. LINKS WITH BRANCHED SHADOW COMPLEXITY 1

Developing the technique obtained in the previous sections, we can provide the complete
list of hyperbolic links in $S^{3}$ with $smc(S^{3}, L)=1.$

Theorem 5.1. Let $L$ be a hyperbolic link in $S^{3}$ . Then $smc(S^{3}, L)=1$ if and only if the
exterior of $L$ is diffeomorphic to a 3-manifold obtained by Dehn filling the exterior of one
of the six links $L_{1},$ $L_{2}$ , . . . , $L_{6}$ in $S^{3}$ along some of (possibly none of) boundary tori, where
$L_{1},$ $L_{2}$ , . . . , $L_{6}$ are illustrated in Figure 6.

$L1 L_{2} L_{3}$

$L_{4} L_{S} L_{6}$
FIGURE 6. The links $L_{1},$ $L_{2}$ , . . . , $L_{6}$ in $S^{3}.$

Each of the links $L_{1},$ $L_{2}$ , .. ., $L_{6}$ of this theorem is a hyperbolic link having the volume
$2V_{oct}$ , where $V_{oct}=3.66\ldots$ is the volume of the ideal regular octahedron. See Costantino-
Thurston [8, Proposition 3.33]. We note that by Agol-Storm-Thurston [3, Theorem 9.1],
the link $L_{1}$ is a minimal volume hyperbolic link that contains a meridional incompress-
ible planar surface. See also Agol [1, Example 3.3]. In [24] Yoshida proved that the
complement of $L_{6}$ is the minimal volume orientable hyperbolic -manifold with 4 cusps.

The idea of proof of Theorem 5.1 is as follows. We first list up the possible shapes of
the neighborhood of the singular sets of the branched polyhedra having a single vertex.
Every branched shadow $P$ of a hyperbolic link $L$ with $bsc(S^{3}, L)=1$ is obtained by
attaching a piece of polyhedra (called a tower) shown in Figure 7. This comes from the
assumption that the exterior of $L$ does not admit an essential torus. Then we can see

FIGURE 7. A tower.

that attaching a tower to a branched shadow corresponds to Dehn filling the correspond-
ing 3-manifold. The resulting shadow must be simply-connected, because, in general,
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the natural projection from a closed 3-manifold onto its shadow induces a surjective ho-
momorphism from their fundamental groups. $($Note that $a$ shadow $of (S^{3}, L)$ is also a
shadow of $S^{3}.$ ) The correspondence between links in $S^{3}$ and the neighborhoods of the
singular sets of branched polyhedra having a single vertex are shown in Figure 8. Here,

$\iota$
$\iota$

$\emptyset$

FIGURE 8. The correspondence between links in $S^{3}$ and the neighborhoods
of the singular sets of branched polyhedra having a single vertex.

there is no links COl.responding to the branched polyhedron illustrated on the bottom left
side of Figure 8, because in what way we attach towers to it, the polyhedron cannnot be
simply-connected.

The next corollary follows from Theorems 3.1 and 5.1.

Corollary 5.2. Let $L$ be a hyperbolic link in $S^{3}$ . Then there exists a stable map $f$ :
$(S^{3}, L)arrow \mathbb{R}^{2}$ without cusp points such that $|II^{2}(f)|=1$ and $II^{3}\langle f$) $=\emptyset$ if and only if the
exterior of $L$ is diffeomorphic to a 3-manifold obtained by Dehn filling the exterior of one
of the $S\dot{i}X$ tinks $L_{1},$ $L_{2},$ $\rangle L_{6}$ in Theorem 5.1 along some of (possibly none of) boundary
tori.

Example 5.3. For the figure-eight knot $K$ , there exists a stable map with a unique
singular fiber of type $II^{2}$ as shown in Figure 9, and no singular fibers of type $II^{2}$ . Since
the only links of the stable map complexity $0$ are graph links by Proposition 3.4, we have
$smc(\mathcal{S}^{3},$ $K\rangle=1.$

6. STABLE MAPS AND HYPERBOLIC VOLUME

Throughout the section, we consider a particular type of polyhedron, a special polyhe-
dron. An almost-special polyhedron $P$ is said to be special if there is no loop without
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FIGURE 9. A configuration of the singular fiber of type $II^{2}$ in the figure-
eight knot complement.

vertices in $S(P)$ and each region of $P$ is a disk. We note that in this case, $S(P)$ is con-
nected and $P$ is closed. We call a shadow of a -manifold that is a special polyhedron a
special shadow of $M$ . Remark that every closed orientable 3-manifold admits a branched,

special shadow by the moves described in Turaev [23] and Costantino [6].
Let $M$ be a closed orientable 3-manifold with special shadow $P$ and $\pi$ : $Marrow P$

be the projection induced by the collapsing $W\searrow P$ , where $M=\partial W$ . Set $M_{S(P)}=$

$\pi^{-1}(Nbd(S(P);P$ Costantino-Thurston [8] showed that $M_{S(P)}$ admits a complete, fi-
nite volume hyperbolic structure realized by gluing $2c(P)$ copies of a regular ideal oc-
tahedron. Thus, in particular, we have $vol(M_{S(P)})=2c(P)V_{oct}$ . Since each region of a
special polyhedron is a disk, $M$ is obtained from $M_{S(P)}$ by attaching solid tori, i.e., by
Dehn fillings. In particular, by the 6-Theorem of Agol [2] and Lackenby [14] and the
Geometrization Theorem of Perelman [17, 18, 19], if all slope lengths of the Dehn fillings

are more than 6 then $M$ admits a complete finite volume hyperbolic structure. Since the
hyperbolic structure of $M_{S(P)}$ is explicitly given by the ideal octahedra, the slope lengths
of Dehn fillings can be calculated in terms of the combinatorial structure of the special
polyhedron $P$ and the gleams on its regions.

Let $P$ be a shadowed, special polyhedron. For each region $R$ of $P$ , set $s1(R)=$

$\sqrt{(2g)^{2}+k^{2}}$ , where $g \in\frac{1}{2}\mathbb{Z}$ is the gleam on $R$ and $k$ is an integer counting how many
times the boundary of the closure of $R$ passes through the vertices of $P$ . We can show that
$s1(R)$ is nothing but the slope length of the Dehn filling for the corresponding boundary
torus when we obtain $M$ from the hyperbolic manifold $M_{S(P)}$ . We set $s1(P)=\min_{R}s1(R)$ ,

where $R$ varies over all regions of $P.$

Proposition 6.1. Let $M$ be a closed orientable 3-manifold. Let $P$ be a branched, special

shadow of M. If $s1(P)>2\pi$ , then we have

$2 smc(M)V_{oct}(1-(\frac{2\pi}{s1(P)})^{2})^{3/2} \leq 2c(P)V_{oct}(1-(\frac{2\pi}{s1(P)})^{2})^{3/2}$

$\leq vol(M)<2smc(M)V_{oct}.$

In fact, the first inequality follows essentially from Theorem 3.1 and Futer-Kalfagianni-
Purcell [9, Theorem 1.1]. Here we recall that $s1(R)$ is nothing but the slope length of the
Dehn filling for the corresponding boundary torus when we obtain $M$ from the hyper-
bolic manifold $M_{S(P)}$ . The second inequality is a consequence of Costantino-Thurston [8,

Theorem 3.37] and Theorem 3.1.

From Proposition 6.1 we have the following result that concerns the coincidence of
shadow complexities, branched shadow complexities and stable map complexities.
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Theorem 6.2. Let $M$ be a closed orientable 3-manifold, and let $P$ be a branched, special
shndow of M. If $s1(P)>2\pi\sqrt{2c(P)}$, then we have $sc(M)=bsc(M)=smc(M)=c(P)$ .
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