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1. INTRODUCTION

We report a part of authors computer experiments on random braids. Here by a random
braid, we mean a braid which is obtained by taking random walks on braid groups. Let
$B_{n}$ denote the braid group of degree $n$ , or the $n$-strand braid group. We fix the standard
generating set $S_{n}$ $:=\{\sigma_{1}, . . . , \sigma_{n-1}\}$ for $B_{n}$ , where $\sigma_{i}$ is obtained by crossing i-th string
over $i+1$-th string. Recall that the braid groups can be regarded as the mapping class
groups of punctured discs. Random walks on mapping class groups have been studied by
several authors. Among them, one typical motivation is to study what kind of properties
hold with asymptotic probability one. It is also interesting to consider the $speed^{\rangle}$

’ of
convergence of the probability for a given property. A random walk is called simple if it is
determined by the uniform measure on a symmetric generating set. In this report, we only
consider the simple random walk associated to the symmetric generating set $S_{n}\cup S_{n}^{-1}.$

Namely, we define a probability measure $\mu$ : $B_{n}arrow[0$ , 1 $]$ by

$\mu(x)=\{\begin{array}{ll}\frac{1}{2n-2} if x\in S_{n}\cup S_{n}^{-1}0 otherwise.\end{array}$

Let $B_{n}^{N}$ denote the space of sample paths. We denote by $\omega_{i}$ the i-th coordinate of $\omega\in B_{n}^{N}.$

A subset $[x_{1}, x_{2}, . . . , x_{n}]$ $:=\{\omega\in B_{n}^{N}|\omega_{i}=x_{i}\}$ is called a cylinder set. Any probability
measure $\mu$ on $B_{n}$ induces the probability measure $\mathbb{P}$ on $B_{n}^{N}$ so that $\mathbb{P}([x_{1}, x_{2}, . , . , x_{n}])$ $:=$

$\mu(x_{1})\mu(x_{1}^{-1}x_{2})\cdots\mu(x_{n-1}^{-1}x_{n})$ . We consider the probability measure $\mathbb{P}$ that is determined
by the symmetric measure $\mu$ given above.

By the well-known Nielsen-Thurston classification, a braid is either periodic, reducible,
or pseudo-Anosov. Among the three types of braids, pseudo-Anosov is the most $\langle(generic$

”

one in many senses. In particular, for the simple random walk on $B_{n}$ , Maher [7] proved
(original statement is much more general, but we here only state for the simple random
walk) the probability that we get non pseudo-Anosov braids decays exponentially.

Theorem 1.1 ([7]). There exist $K>0$ and $c<1$ such that,
$\mathbb{P}$ ( $\omega_{n}$ is pseudo-Anosov) $>1-Kc^{n}.$

However it is in general difficult to compute the constants $K$ and $c$ in the statement.
The purpose of this paper is to report a computer experiment toward the question,

Question 1.2. For a given $n$ , how many steps do we need to have pseudo-Anosov elements
by the simple random walk on $B_{n}.$

This question is somewhat vague. Hence we first formalize it in terms of threshold
phenomena in \S 2. Then in \S 3, we explain how to see if given braids are pseudo-Anosov
or not. We use two methods, Thurston’s gluing equations and strict angle structures.
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Advantage and disadvantage of those methods in our context is also discussed in \S 3.
Finally in $\S 4_{\}}$ we show results of computer experiments.

2. THRESHOLD PHENOMENA

A threshold phenomena, or a phase transition is first observed by Erd\"os-R\’enyi [4] for
random graphs. In this section, we formalize it in the context of braid group $B_{n}$ . Let $P$

be a property of braids. We say that a function $F_{P}$ : $\mathbb{N}arrow \mathbb{N}$ is a threshold function if

$\lim_{narrow\infty}\mathbb{P}(w_{N(n)}$ is $P)=\{\begin{array}{ll}0 if \lim_{narrow\infty}N(7f)/F_{P}(n)=0,1 if \lim_{narrow\infty}N(n)/F_{P}(n)=+\infty_{\backslash ,\prime}\end{array}$

We want to consider the threshold phenomena for the property being pseudo-Anosov.
The existence of this function is known to be a dificult problem. For example, even for
well-known 3-SAT $pro$})$lem$ , the existence of such a function \’is open. Therefore it is worth

having computer $ex\mathfrak{x}$)eriments for this question. In this report, we focus on the second
property, namely we wi give an experiment regarding to a function $PA(n)$ such that for
$\lim_{narrow\infty}N(n)/PA(n)=+\infty$ , we have $\lim_{narrow\infty}\mathbb{P}$ ($\omega_{N(n)}$ is pseudo-Anosov) $=1$ . 0bviously

$PA(n)>n-1$ since for a braid with word length less than $n-1$ , there must be a string

unchanged. This implies the braid is reducible.

3. DETECTING PSEUDO-ANOSOV

There are several methods to see if given braids are pseudo-Anosov or not by computer.

One of the recent progress is due to Bell, who developed a computer $p^{I^{\cdot}O}$gram called flipper
[1]. By flipper, we can decide Nielsen-Thurston type of braids rigorously However,

although flipper is implemented very carefully and quick in certain sense, it is not enough
for our purpose. This is because to have a good picture for the threshold phenomena,

we need to deal with very long words in the braid group of high degree. Since our goal

is to have reasonable computer experiments, we only consider approximate computation.

Here we use the work of Thurston which says; a braid is pseudo-Anosov if and only if its
mapping torus is hyperbolic. We now explain two well known methods to check if a given

manifold is hyperbolic by computel$\cdot.$

3.1. Thurston’s gluing equation. For a given manifold $M$ , Thurston found a system of
complex polynomial equations whose solution with positive imaginary part corresponds

to the hyperbolic structure on $M$ . Thurston:s gluing equation can be approximately

solved by SnapPea: or SnapPy [3] developed by Culler Dunfield-Weeks et. al. Here

by approximately solved, we mean that SnapPea uses floating point arithmetic for the
computation and the result is not rigorous. (We can make it rigorous by using interval
arithmetic [6].) But this is good enough for our purpose. Indeed, as far as the author
knows, SnapPea have never given false positive. Note that SnapPea tries to find hyperbolic
structures, and hence its failure (evell with verified version in [6]) would never imply non-
hyperbolicity of the manifolds. Nevertheless, SnapPea can give certain information for

the function $PA(n)$ .

3.2. Strict angle structure. One another way to compute hyperbolicity is to use strict

angle structure. Roughly speaking strict angle structure is obtained by solving a “linear

part”’ of Thurston’s gluing equation. For $Thurston^{\}}s$ gluing equation and strict angle struc-
ture, see for example [5]. Although a strict angle structure does not directly correspond
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to the hyperbolic structure, Casson proved that if a manifold $M$ admits a strict angle
structure, then $M$ is hyperbolic (see e.g. [5, Theorem 1.1]). Burton-Budney-Pettersson
et.al developed a computer program called Regina [2] which computes strict angle struc-
tures (if any) of a given manifold. To have a strict angle structure, we must find a positive
solution of a linear equation of type $Ax=b$ where $A$ is a singular matrix. Hence unlike
the solution of Thurston’s gluing equation, the space of strict angle structures may have
positive dimension. For our purpose it suffices to find one strict angle structure. Regina
tries to find strict angle structures by a linear programing method. This can give a rigor-
ous certificate of the hyperbolicity of a given manifold. However even though the method
Regina uses is sophisticated, it is not fast enough for our purpose. Hence we again re-
sign to approximate solution. There are several numerical and iterative methods to solve
linear equations. However unlike the case of $Thurston^{\rangle}s$ gluing equation, simple applica-
tions of those methods do not work well. (Recall that SnapPea uses Newton’s method
to solve Thurston’s gluing equation. It works well since the solution if any, is unique by
Mostow-Prasad rigidity.) This is because the equations for strict angle structures may
have both positive and non-positive solution, and it often happens that by iterative meth-
ods, solutions converge to non-positive solutions even if there exist positive solutions. To
overcome this situation, we used randomly generated numbers. Since detailed explanation
of this method is beyond the scope of this report, we give a rough idea of the method. An
iterative method gives a function $F$ so that the sequence $\{x_{n}\}$ given by $x_{n+1}$ $:=F(x_{n})$

converges to a solution. A naive idea to use randomness is to give randomly an initial
value $x_{0}$ and try iterative methods. In our case this idea $didn^{\rangle}t$ work well, in most cases
even after reasonably many trials, we only get non-positive solution for manifolds which
are quite likely to be hyperbolic (e.g. manifolds which SnapPea thinks they are hyper-
bolic). Then next possible way is to use randomness at each step of iterative methods.
Namely at each step w$e’$‘push” randomly $x_{n}$ to the positive direction; $x_{n}’:=F(x_{n})+r_{n}$

where $r_{n}$ is some randomly chosen positive vector. Remember that we are looking for a
positive solution. After carefully setting when and what random positive vectors we add,
we can implement a reasonable program to check if a given manifold admits strict angle
structure. As is the case of SnapPea, our program uses approximate computation and is
not rigorous. However we have not seen any false positive with this program as well.

3.3. Advantage and disadvantage. As we have seen in this section, strict angle struc-
ture seems to have disadvantages to the solution of Thurston’s gluing equation; even
though equations are linear, it is harder to solve, and it does not correspond to the hyper-
bolic structure of the manifold. However the last disadvantage, not corresponding to the
hyperbolic structure, does become an advantage for our purpose for the following reason.
As pointed out by Rivin [8, \S 5.4], mapping tori obtained from random walks on mapping
class groups have injectivity radius converging to $0$ as the number of steps. Hence map-
ping tori of random braids are expected to have $vel\cdot y$ small injectivity radius. Since the
solution of Thurston’s gluing equation does correspond to the hyperbolic structure, if the
injectivity radius is too small for computer to treat, we have less hope to compute the
solution by computer. However since strict angle structure is irrelevant to the hyperbolic
structure, even for the manifold with small injectivity radius, it may be possible to com-
pute strict angle structure by computer. This observation will be made clear in the result
of the experiment.
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4. EXPERIMENTAL RESULT

The result of the experiments is summarized in the Figure 1. With authors PC, it took

around three days to get the data for $B_{90}$ by SnapPea, hence data for $B_{100}$ by SnapPea
is not given. Figure 1 shows the number of steps we needed to have more than 90% of
pseudo-Anosov braids. More precisely, for a given $n$ , we first generated 100 random braids

(by using python’s random function which is based on the Mersenne twvister) of length $k.$

Then check if given braids are pseudo-Anosov by using SnapPea or strict angle structure.
Here when we use SnapPea, we count a solution of type “all tetrahedra positively oriented”’

and “contains negatively oriented tetrahedra” as a hyperbolic solution. For each method,

we gradually increase $k$ and record when number of pseudo-Anosov braids is greater than
or equal to 90 among 100 randomly generated braids. As we have pointed out in \S 3, both
methods can miss pseudo-Anosov braids. It seems that for larg$e^{\rangle}$ manifolds, SnapPea

misses more than using strict angle structures. (Mapping tori of braids represented by

length 1800 word in $B_{90}$ are decomposed into about 2000 tetrahedra).
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FIGURE 1. Experimental result, SAS stands for strict angle structure.

By the data that we get by SnapPea, it seems quite likely that the function $PA(n)$ is

an exponential function of $n$ . Furthermore by computing the growth ratio, even the data

from strict angle structure suggest that $PA(n)$ is exponential. Therefore we conclude this

report by asking following question.
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Question 4.1. Does $PA:Narrow \mathbb{N}$ grow exponentially?

ACKNOWLEDGEMENT

The author thanks organizers of the conference “Topology, Geometry and Algebra of
low-dimensional manifolds” for giving him the opportunity to participate. The author
would like to thank Mark Bell for helpful conversation. This work is partially supported
by JSPS fellowship for young scientists.

REFERENCES

[1] Mark Bell: flipper (Computer Software), pypi. python. org/pypi/flipper, (2013-2015).
[2] B. Burton, R. Budney, W. Pettersson, et al., Regina: Software for 3 manifold topology and normal

surface theory, http: $//$regina. sourceforge. $net/$ , 1999-2014.
$[3_{!}^{\backslash }\fbox{Error::0x0000}$ M. Culler, N. Dunfield, and J. Weeks, SnapPy. a computer program for studying the topology of

3-manifolds, Available at http: $//$ snappy. computop. org.
[4] P. Erd\"os, A. $R\’{e} nyi_{i}$ On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci 5

(1960): 17-61.
[5] IiJ. Futer and F. Gu\’eritaud, From angled tnangulations to hyperbolic structures, Interactions, Between

Hyperbolic Geometry, Quantum Topology and Number Theory, Contemp. Math., vol. 541, Amer.
Math. Soc., Providence, RI, 2011, pp. 159-182.

[6] N. Hoffman, K. Ichihara, M. Kashiwagi, H. Masai, S. Oishi, and A. Takayasu, Verified computations
for hyperbolic 3-manifolds, Exper. Math., 25 (2016), Issue 1, 66-78.

[7] J. Maher, Exponential decay in the mapping class group, J. Lond. Math. Soc. (2) 86 (2012), no. 2,
366-386. A correction for the proof of Lemma 2.11 can be found in Maher’s webpage:
http: $//www$ . math. csi. cuny. edu/maher/research/index. html

[8] I. Rivin, Statistics of Random 3-Manifolds occasionally fibering over the circle, preprint,
arXiv: 1401.5736v4 [math.GT].

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO
$E$-mail address: masai@ms.u-tokyo.ac.jp

108


