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1. INTRODUCTION

This note is a summary of the author’s talk at the workshop “Topology, Geometry and
Algebra of low-dimensional manifolds”’

Let $M$ be a hyperbolic once-punctured torus bundle over $S^{1}$ . Then $M$ admits a canon-
ical decomposition into ideal polyhedra by Epstein-Penner [6] and Weeks [18]. In fact,
$J\emptyset$rgensen [ $12]$ has constructed the canonical decomposition of $M$ . The canonical decom-
position induces a triangulation of the peripheral torus. Thus we have a triangulation of
the complex plane $\mathbb{C}$ as the lift of the triangulation of the torus to the universal cover.
On the other hand, we have another tesscllation of $\mathbb{C}$ which nicely reflects the nature of
the Cannon-Thurston map associated with $M$ . The tessellation is called the “Cannon-
Dicks-Thurston fractal tessellation” (see Definition 2.4).
Dicks and Sakuma [5] have proved that there exists a nice relation between the two

tessellations. In particular, the two tessellations share the same vertex set.
It is natural to expect that similar results hold in a more general setting, and the

author has been trying to realize this expectation for hyperbolic fibered two-bridge links.
The first task is to generalize the fractal tessellation to more general hyperbolic punctured
surface bundles, and the author announced such a generalization for hyperbolic punctured
surface bundles in [14], provided that all singularities of the stable and unstable foliations
of the monodromy are at punctures of the fiber surface. The condition is satisfied for
the hyperbolic fibered two-bridge knots with slope $r$ such that $r$ has a continued fraction
expansion $\pm[2$ , 2, . . . , 2$]$ . The main purpose of this note is to present an idea of the proof
of the following theorem.

Theorem 1.1. For the hyperbolic fibered two-bridge knot $K$ with slope $12/29=[2$ , 2, 2, 2$],$

the triangulation induced by the canonical decomposition and the fractal tessellation share
the same vertex set.

After the announcement of this result at the workshop, the author learned the work
of Gueritaud [10, 11], which generalizes the fractal tessellation and establishes beautiful
relation between (veering” ideal triangulations (cf. [1]) of hyperbolic punctured surface
bundles and the fractal tessellations, generalizing the result of Dicks and Sakuma. Moti-
vated by this work, the author proved the following theorem.

Theorem 1.2 ([15, Theorem 1.1]). The canonical decomposition of a hyperbolic fibered
two-bridge link $K(r)(0<|r|<1/2)$ is veering if and only if the slope $r$ has the continued

fraction expansion $\pm[2$ , 2, . . . , 2$].$
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As a consequence of Gueritaud’s result and the above theorem, the canonical decom-
position of such a two-bridge knot and the fractal tessellation are intimately related. In

particular, Theorem 1.1 follows immediately.

2. THE CANNON-DICKS-THURSTON FRACTAL TESSELLATION

In this section, we will recall some properties of the Cannon-Dicks-Thurston fractal

tessellations. Let $F$ be a complete hyperbolic punctured surface of finite area, and let
$p_{0}$ : $\gamma r_{1}(F)arrow PSL(2,\mathbb{R})$ be the holonomy representation of $F$ . For a pseudo-Anosov
homeomorphism $h$ of $F$ , the mapping torus $M_{h}$ $:=F\cross[O, 1]/(x, 0)\sim(h(x), 1)$ admits
a complete hyperbolic structure, by Thurston’s work. Let $\rho$ : $\pi_{1}(F)arrow PSL(2, \mathbb{C})$ be

the restriction of the holonomy representation of $M$ to $\pi_{1}(F)$ . Generalizing the work of

Cannon and Thurston [4], Bowditch proved the following theorem.

Theorem 2.1. There exists a unique $\pi_{1}(F)$ -equivariani continuous surjection $\omega$ from the

timit set of $\Gamma_{0}=p_{0}(\pi_{1}(F))$ to that of $\Gamma=\rho(\pi_{1}(F))$ .

This surjection $\omega$ is called a Cannon-Thurston map. Note that the limit sets of $\Gamma_{0}$

and $\Gamma$ are equal to the boundary of the hyperbolic plane $\partial \mathbb{H}^{2}$ and the boundary of the

3-dimensional hyperbolic space $\partial \mathbb{H}^{3}=\hat{\mathbb{C}}$ , respectively. Thus the surjection $\omega$ is a sphere

filling curve.
Moreover, Bowditch has given a complete description of the combinatorics of the

Cannon-Thurston map.

Theorem 2.2 ([3, Theorem 9.1]). Let $\mathcal{F}\pm be$ the stable and unstable foliations of $h$ , and

let $ノ^{}=\sim\pm$ be the lift of $\overline{J^{\sim}}\pm to$ the universal cover $\mathbb{B}^{2}$ . For any leaf of $\tilde{\mathcal{F}}_{\star}$ , the images of its
endpoints under the Cannon-Thurston map $\omega$ are identical. Furthermore, this generates

all the identifications occuwing under $\omega.$

For the case when $F$ is a once-punctured torus, Cannon and Dicks [4] have introduced a

certain fractal tessellation of the complex plane $\mathbb{C}=\hat{\mathbb{C}}\backslash \{\infty\}$ , where oc is a parabolic fixed

point of $\Gamma$ . The fractal tessellation nicely reflects the behavior of the Cannon-Thurston
map. This result was extended by Gueritaud [11] to a more general setting as follows.

Proposition 2.3 (cf. [11, Theorem 1.2]). Suppose that all singularities of the invariant

foliations $\mathcal{F}_{\pm}$ of the pseudo-Anosov homeomorphism $h$ are at punctures of F. Then there

exists a $\mathbb{Z}$ -family of Jordan curves $J_{i}$ of $\partial \mathbb{H}^{3}$ , bounding domains $D_{i}$ , with the following

properties:

(1) For each $i\in \mathbb{Z}$ , the Jordan curve $J_{i}$ passes through $\infty$ , a parabolic fixed point of
$\Gamma.$

(2) For each $i\in \mathbb{Z},$ $D_{i}\supset D_{i+1}.$

(3) $\bigcap_{i\in \mathbb{Z}}D_{i}=\emptyset$ and $\bigcup_{i\epsilon \mathbb{Z}}D_{i}=\mathbb{C}.$

(4) For $i,$ $i’\in \mathbb{Z},$ $ij|i-i’|>1$ , then $J_{i}\cap J_{i’}=\{\infty\}.$

(5) For $i,$ $i’\in \mathbb{Z},$ $if|i-i^{J}|=1$ , then $J_{i}\cap J_{i’}$ is a discrete set which accumulates at $\infty$

from both directions.
(6) The closure of each component of $\partial \mathbb{H}^{3}\backslash \bigcup_{i\in \mathbb{Z}}J_{i}$ is homeomorphic to the disk.

Moreover, Gu\’eritaud describes the way in which the Cannon-Thurston map $\omega$ fills
$\hat{\mathbb{C}}=\partial{\} 83$ (see [11, Section 1.2], and see also [4]). By the above proposition, we have a
CW-decomposition of the complex plane $\mathbb{C}=\partial\Re^{3}\backslash \{\infty\}.$
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Definition 2.4. The symbol $C$ denotes the CW-decomposition of $\mathbb{C}$ defined as follows:

$C^{(0)}= \bigcup_{i\in Z}(J_{i}\cap J_{i+1})\backslash \{\infty\},$

$C^{(1)}=$ { $c1(\gamma)|\gamma$ is a component of $J_{i}\backslash (J_{i-1}\cup J_{i+1})$ , $i\in \mathbb{Z}$ },
$C^{(2)}=$ { $c1(\delta)|\delta$ is a component of $\partial \mathbb{H}^{3}\backslash \bigcup_{i\in Z}\sqrt{}i,$ $i\in \mathbb{Z}$ }.

We call $C$ the Cannon-Dicks-Thurston fractal tessellation (a fractal tessellation, in brief)
associated with the Cannon-Thurston map $\omega.$

In order to state the main result, we introduce the notion of a “spider

Definition 2.5. Suppose that all singularities of the invariant foliations $\mathcal{F}_{\pm}$ of the pseudo
Anosov homeomorphism $h$ are at punctures of $F.$

(1) Let $p$ be a parabolic fixed point of $\Gamma_{0}$ . We denote by $s(p)$ the union of the leaves
of $\tilde{\mathcal{F}}_{\pm}$ which have $p$ as an endpoint, and we call it the spider with head $p$ . We call an
endpoint of a leaf of $\mathfrak{s}(p)$ a foot of $\mathfrak{s}(p)$ .

(2) A parabolic fixed point $p$ of $\Gamma_{0}$ with $p\neq\infty$ is called a neighbor of $\infty$ if the number
of points of $\mathfrak{s}(\infty)\cap s(p)$ is equal to 2, where $\infty$ is the parabolic fixed point of $\Gamma_{0}$ such that
$\omega(\infty)=\infty.$

Note that, by Theorem 2.2, the preimage of $\omega(p)\in\partial \mathbb{H}^{3}$ , under the Cannon-Thurston
map $\omega$ , is equal to the set of all feet of $\mathfrak{s}(p)$ . By the construction of $C$ , we have the
following lemma.

Lemma 2.6. Suppose that $v$ is a vertex of the fractal tessellation. Then there exists a
unique parabolic fixed point $p$ of $\Gamma_{0}$ such that $v=\omega(p)$ . Furthermore, $p$ is a neighbor of
$\infty.$

3. SINGULAR EUCLIDEAN STRUCTURE ON THE FIBER SURFACE OF THE TWO-BRIDGE

KNOT WITH SLOPE 12/29

In this section, we describe the stable and unstable foliations of the monodromy, $h,$

of the hyperbolic fibered two-bridge knot $K$ with slope 12/29. To this end, we give a
singular Euclidean structure on the fiber surface, $F$ , with respect to which $h$ acts by
affine transformation, following the construction of Thurston [17] (cf. [7]).

First of all, we recall the fiber surface $F$ of $K$ and the monodromy $h$ . The rational
number 12/29 has the following continued fraction expansion:

$12/29=[2, 2, 2, 2 ] = \frac{1}{2+\frac{}{2+\frac{11}{1}}}.$

$2+_{\overline{2}}$

Thus the two-bridge knot $K$ is the boundary of the fiber surface $F$ obtained by succes-
sively plumbing the unknotted four positive and negative Hopf-bands (see Figure 1). The
symbols $\alpha_{1},$ $\alpha_{2},$

$\beta_{1}$ and $\beta_{2}$ denote the simple loops in $F$ as shown in Figure 1. Each of
them is a core curve of a Hopf-band. For a simple loop $\gamma,$ $T_{\gamma}$ denotes the Dehn twist
along $\gamma$ . Let $T_{A}$ (resp. $T_{B}$ ) be the product of $T_{\alpha_{1}}$ and $T_{\alpha_{2}}$ (resp. $T_{\beta_{1}}$ and $T_{\beta_{2}}$ ). Then the
monodromy $h$ is a pseudo-Anosov homeomorphism $T_{A}\circ(T_{B})^{-1}.$
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FIGURE 1. The fiber surface of the hyperbolic fibered two-bridge knot $K$

with slope 12/29.

Next, we give a singular Euclidean structure on the fiber surface $F$ . We cut $F$ into

three octagons, $F_{1},$ $F_{2}$ and $F_{3}$ , as illustrated in Figure 2(a). Let $E_{i}$ be the rectangle

$F_{1} F_{2} F_{3}$

$E_{1}$

$\alpha_{1}$

$\beta_{1}$

$\beta_{1} \beta_{2}$

(b)

FIGURE 2. (a) The octagons $F_{1},$ $F_{2}$ and $F_{3}.$ (b) The Euclidean rectangles
$E_{1},$ $E_{2}$ and $E_{3}.$

obtained from $F_{i}$ by collapsing each of the four components of $F_{i}\cap\partial F$ into a point, for

each $i\in\{1$ , 2, 3 $\}$ . Set $\mu=(1+\sqrt{5})/2$ . Identify each rectangle $E_{i}$ with the Euclidean
rectangle as illustrated in Figure 2(b). For any Euclidean rectangles $E_{i}$ , the length of
the edges crossed $\alpha_{1}$ or $\beta_{2}$ (resp. $\alpha_{2}$ or $\beta_{1}$ ) is equal to 1 (resp. $\mu$). This gives a singular

Euclidean structure on $F.$

We can see that the homeomorphisms $T_{A}$ and $T_{B}$ , respectively, act by affine transforma-

tions on $F$ , and their derivative $dT_{A}$ and $dT_{B}$ can be described by the following matrices
$D_{A}$ and $D_{B}$ :

$D_{A}=(\begin{array}{ll}1 \mu 0 1\end{array})$

$D_{B}=(\begin{array}{ll}1 0-\mu 1\end{array}).$
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Since the monodromy $h$ is equal to $T_{A}o(T_{B})^{-1}$ , it acts on $F$ by affine transformation with
respect to the singular Euclidean structure, such that its derivative $dh=dT_{A}o(dT_{B})^{-1}$

is described by the following matrix $D_{h}$ :

$D_{h}=D_{A}(D_{B})^{-1}=(\begin{array}{lll}1+ \mu^{2} \mu\mu 1\end{array}).$

The stable and unstable foliations of the monodromy $h$ are described as follows. Set
$\lambda=(\mu+3+\sqrt{7\mu+6})/2$ . Let $v_{+}$ be the vector $(1, (-\mu+\sqrt{\mu+5})/2)^{T}$ Then the vector
$v_{+}$ is an eigenvector of $D_{h}$ , and $\lambda$ is the eigenvalue associated with $v_{+}$ . Hence the set
consisting of the straight lines on $F$ with the same slope $(-\mu+\sqrt{\mu+5})/2$ forms a foliation,
$\mathcal{F}_{+}$ , which is invariant under $h$ . In fact, the invariant foliation $\mathcal{F}_{+}$ is the stable foliation
of $h$ with dilatation $\lambda$ . Similarly, the vector $v_{-}:=(1, (-\mu-\sqrt{\mu+5})/2)^{T}$ is the other
eigenvector of $D_{h}$ , and it gives the unstable foliation, $\mathcal{F}_{-}$ , of $h.$

4. IDEA OF THE PROOF OF THEOREM 1.1

First of all, we recall the edges of the canonical decomposition, $\mathcal{D}$ , of $S^{3}\backslash K$ , where
$K$ is the hyperbolic two-bridge knot with slope 12/29. By the work of Gu\’eritaud [8]
$(cf. [2,9,16 we can see$ that $the$ edges $of \mathcal{D} are as$ shown $in$ Figure $3(a)$ . Moreover, by
the author’s previous work [13], the canonical decomposition $\mathcal{D}$ is “layered” with respect
to the fiber structure of $S^{3}\backslash K$ . In particular, each edge of $\mathcal{D}$ can be isotoped into the
fiber surface $F$ (see Figure $3(b)$ ).

(b)

FIGURE 3. The edges of the canonical decomposition $\mathcal{D}$ of $S^{3}\backslash K.$

By Lemma 2.6, each vertex of the fractal tessellation $C$ corresponds a unique neighbor $p$

of $\infty$ . On the other hand, each vertex of the cusp triangulation induced by the canonical
decomposition $\mathcal{D}$ is contained in a unique edge of $\mathcal{D}$ . Since the edges of $\mathcal{D}$ are isotoped
into the fiber surface $F$ , what we need to show is the following identity:

{ $\pi(g_{p})|p$ is a neighbor of $\infty$ } $=\mathcal{D}^{(1)},$

where $g_{p}$ is the vertical geodesic, in $\mathbb{H}^{2}$ , above $p\in\partial \mathbb{H}^{2}$ , and $\pi$ : $\mathbb{H}^{2}arrow F=\mathbb{H}^{2}/\Gamma_{0}$ is the
natural projection. By using the singular Euclidean structure introduced in Section 3, we
can describe each neighbor of $\infty$ . Hence we can prove the above identity.

152



REFERENCES

[1] 1. Agol, Ideal triangulations of pseudo-Anosov mapping tori, Topology and geometry in dimen-

s\’ion three, Contemp. Math., vol. 560, Amer. Math. Soc., Providence, RI, 2011, pp. 1-17, DOI

10. $1090/conm/560/11087.$

[2] H. Akiyoshi, M. Sakuma, M. Wada, and Y. Yamashita, Punctured torus groups and 2-bridge knot

groups. $I$, Lecture Notes in Mathematics, vol. 1909, Springer, Berlin, 2007.
[3] B. H. Bowditch, The Cannon-Thurston map for punctured-surface groups, Math. Z. 255 (2007),

no. 1, 35-76, DOI $10.1007/s00209-O\langle$)$6-0012-4.$

$|4]$ J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-
1355, DOI 10. $2140/gt.2007.11.1315.$

[5] W. Dicks and M. Sakuma, On hyperbolic once-punctured-torus bundles III: compamng two tessella-

tions of the complex plane, Topology Appl. 157 (2010), no. 12, 1873-1899.
[6] I3. B. A. Epstein and R. C. Penner, Euclidean decompositions of noncompact hyperbolic manifolds,

J. Differential Geom. 27 (1988), no. 1, 67-80.
[7] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49,

Princeton University Press, Princeton, NJ, 2012.
[8] I$\dagger$ . Gu\’eritaud, Hyperbolic geometry and canonical triangutations in dimension three (2006), 164.

Thesis (Ph.D.)-University of Southern California.
[9] –, On canonical triangulations of once-punctured torus bundles and two-bridge link comple-

ments, Geom. Topol. 10 (2006), 1239 DOI 10.$2140/gt.2006.10.1239$ . With an appendix by

David Futer.
$|10]$–, Veering mangutations and the Cannon-Thurston Map, Oberwolfach Rep. 9 (2012), 1419-

1421, DOI $1\zeta\rangle.4171/OWR/2012/24.$

$|11]$–,
$Vee\prime\dot{\eta}ng$ triangulation and Cannon-Thurston maps, available at arXiv : 1506.03387 [math.

GTI.
[12] T. Jrge$\mathfrak{n}$sen, On pairs of once-punctured tori, Kleinian groups and hyperbolic 3-manifolds (Warw\’ick,

2001), London Math. Soc. Lecture Note Ser., vol. 299, Cambridge Univ. Press, Cambridge, 2003,

pp. 183-207, DOI 10. $1017/CB09780511542817.010.$
[13] N. Sakata, Canonical decompositions of hyperbolic fibered two-bridge link complements, Topology

Appl. 196 (2015), 821-845, OOI 10. $1016/j.$topol.$2015.05.054.$
[14] –, A generalization of the Cannon-Dicks fractal tessellation, Talk at “The Tenth East Asian

School of Knots and Related Topics”, Shanghai, China, Jan. 26–29, 2015.
[15] –, Veering structures of the canonical decompositions of hyperbolic fibered two-bridge link com-

plements, in preparation.
[16] M. Sakuma and J. Weeks, Examples of canonical decompositions of hyperbolic link complements,

Japan. J. Math. (N.S.) 21 (1995), no. 2, 393-439.
[17] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math.

Soc. (N.S.) 19 (1988), no. 2, 417-431, DOI 10.1090/S0273-0979-l988-l5685-6.

[18] J. R. Weeks, Convex hulls and isometries of cusped hyperbolic 3-manifolds, Topology Appl. 52 (1993),

no. 2, 127-149, DOI $10.1016/0\lambda 66-8641(93)90032-9.$

$DEi)AR’fMEN\Upsilon$ OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, $1arrow 3-1$

KAGAMIYAMA, $HIGASBI-H\ddagger$ROSHiMA, $739arrow 8526$ , JAPAN (RESEARCH FELLOW o\S JAPAN SOCiETY FOR

THE PROMOTION OF SCIENCE)
$\mathcal{B}$-mail address: $sakata202988e-05Wiroshima-u$ . ac. jp

153


