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1. INTRODUCTION

The Chern-Simons perturbation theory established by S. Axelrod and I. M. Singer in
[1] and M. Kontsevich in [4] gives a topological invariant of a closed oriented -manifold
with an acyclic local system. In the construction of this invariant, a chain map called a
trace map plays an important role. A trace map is a chain map from the triple tensor
product of the given local system to the trivial local system. It is, however, difficult to
construct trace maps corresponding to the given local system. In this note, we give a
variant of the degree 1 part of the Chern-Simons perturbation theory to construct new
examples of trace maps.
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2. REVIEW OF THE DEGREE 1 PART OF THE CHERN-SIMONS PERTURBATION THEORY

In this section, we review the degree 1 part (i.e., the 2-loop term) of the Chern-Simons
perturbation theory based on the Kontsevich’s construction in [4]. Let $M$ be a closed
oriented 3-manifold. Let $E$ be a real local system on $M$ . We consider $E$ as a covariant
functor from the fundamental groupoid of $M$ to the category of finite dimensional real
vector space. Let $\rho_{E}$ : $\pi_{1}(M,x)arrow Aut(E_{x})$ be the characteristic representation of the
fundamental group corresponding to $E$ , where $x\in M$ is a base point of $M$ and $E_{x}$ is the
vector space corresponding to $x$ . We assume the following conditions:

$\bullet$ The image of $\rho_{E}$ is in $SO(E_{x})$ , namely $\rho_{E}$ is an orthonormal representation.
$\bullet$ $E$ is acyclic, that is $H_{k}(M;E)=0$ for any $k\in \mathbb{Z}.$

We will call such a local system an acyclic orthonormal local system.
Let $\mathbb{R}$ be the trivial local system on $M$ . Take a chain map $Tr:E^{\otimes 3}arrow \mathbb{R}$ (namely, for

any $x,$ $y\in M$ and a path $\gamma$ from $x$ to $y,$ $Tro(\gamma_{*}\otimes\gamma_{*}\otimes\gamma_{*})=Tr$). We will call such a
chain map a trace map corresponding to $E.$

Then for any cochain (resp. cocycle) $c\in C^{*}(M;E^{\otimes 3})$ , we get a cochain (resp. cocycle)
$Tr_{*}c\in C^{*}(M;\mathbb{R})$ . In many cases, it is difficult to find a non trivial example of a trace map.
For example, there is only the trivial trace map when the local system is corresponding
to the surjective orthonormal representation $\pi_{1}(M)arrow SO(2)$ . We show two examples of
trace maps.

Example 2.1. (1) (M. Kontsevich [4]) Let $\rho_{G}$ : $\pi_{1}(M)arrow G$ be a representation of the
fundamental group in a semi-simple Lie group $G$ and we denote by $p:\pi_{1}(M)arrow$

Aut(g) the composition of the adjoint representation of $G$ and $\rho_{G}$ where $g$ be the
he algebra of $G$ . Let $E$ be the local system corresponding to $\rho$ . In this setting we
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can take $Tr$ : $E\otimes E\otimes Earrow \mathbb{R}$ as $Tr(x\otimes y\otimes z)=\langle x,$ $[y, x]\rangle$ where $\langle,$ $\rangle$ is the inner

product of $g$ and $[,$ $]$ is the Lie bracket of $g.$

(2) $(G$ , Kuperberg and D. Thurston $[5]\rangle$ Let $M$ be a rational homology 3-sphere with

a base point $\infty\in M$ . Since the reduced homology groups $\tilde{H}_{k}(M\backslash \infty;\mathbb{R})$ are van-
ishing for all $k\in \mathbb{Z}$ , we can take $E$ as a trivial local system $\mathbb{R}$ . G. Kuperberg and

D. Thurston developed the Chern-Simons perturbation theory for this situation.

In this setting, $E\otimes E\otimes E=\mathbb{R}$ . We can take $Tr:E\otimes E\otimes E=\mathbb{R}arrow \mathbb{R}$ as the

identity map.

Remark 2.2. M. Futaki, in his master thesis [3], investigated trace maps via the repre-
sentation of the permutation group $\mathcal{S}_{3}$ . He gave an example of a trace map different from

Kontsevich’s or Kuperberg-Thurston’s trace map.

Let $p_{i}:M^{2}arrow M(i=1,2)\})e$ t$ $\backslash$e projections. Let $\Delta=\{(x, x)|x\in M\}cM^{2}$ . Let
$C_{2}(M)=B\ell(M^{2}, \Delta)$ be the manifold with corners obtained by real blowing-up of $M^{2}$

along A. We denote by $q$ : $C_{2}(M)arrow M^{2}$ the blow down map. We remark that $C_{2}(M)$

is a compactification of the configuration space $M^{2}\backslash \triangle.$ $q^{*}(p_{1}^{*}E\otimes p_{2}^{*}E)$ is a local system

on $C_{2}(M)$ . Let $\omega\in A^{2}(C_{2}(M);q^{*}(p_{1}^{*}E\otimes p_{2}^{*}E))$ be a closed 2-form on $C_{2}(M)$ . Since
$(q^{*}(p_{1}^{*}E\otimes p_{2}^{*}\mathcal{B}))^{\otimes 3}=q^{*}(p_{1}^{*}(E^{\otimes 3})\otimes p_{2}^{*}(E^{\otimes 3}))$ , $(7r\otimes Tr)\omega^{3}$ is a closed 6–form on $C_{2}(M)$

with trivial coefficient: $(Tr\otimes Tr)\langle J)^{3}\in A^{6}(C_{2}(M);\mathbb{R})$ .

Lemma 2.3. Let $w_{0},\omega_{1}\in A^{2}(C_{2}(M);q^{*}(p_{1}^{*}E\otimes p_{2}^{*}E))$ be closed 2-forms satisfying $\omega_{0}|_{\partial C_{2}(M)}=$

$\omega_{1}|_{\partial C_{2}(M)}$ . If $w_{0}|_{\partial C_{2}(M)}^{2}=0_{f}$ then

$\int_{C_{2}(M)}(Tr\otimes Tr)\omega_{0}^{3}=\int_{C_{2}(M)}(Tr\otimes Tr)\omega_{1}^{3}.$

Proof. Because the assumption, $\omega_{0}-\omega_{1}$ represents the cohomology class of $H^{2}(M^{2};p_{1}^{*}E\otimes$

$p_{2}^{*}E)$ . Since $H^{2}\prime(M^{2};p_{1}^{*}E\otimes p_{2}^{*}E\rangle=0,$ there exists $a 1-$form $\eta\in A^{1}(M^{2};p_{1}^{*}E\otimes p_{2}^{*}E)$

satisfying $d\eta=\omega_{0}-\omega_{1}$ . Because $\omega_{0}|_{\partial C_{2}(M)}^{2}=0$ , we can extendwe can extend $\omega_{0}^{2},$
$\omega_{0}\omega_{1},$

$\omega_{1}^{2}\in A^{2}\langle M^{2}\backslash$

$\triangle;(p_{1}^{*}E\otimes p_{2}^{*}E)^{\otimes 2})$ to $M^{2}$ as closed 2-forms. (We may assume that $\omega_{0}=\omega_{1}=0$ near
$\partial C_{2}(M)$ , by deforming $w_{0},$ $\omega_{1}$ by homotopy in near $\partial C_{2}(M)$ if necessary. ) Thanks to

Stokes’ theorem, we have

$\int_{C_{2}(M)}(Tr\otimes Tr)\omega_{0}^{3}-\int_{C_{2}(M\rangle}(Tr\otimes Tr)\omega_{1}^{3}$

$= \int_{C_{2}(M)}(Tr\otimes Tr)((\omega_{0}-\omega_{1}\rangle(\omega_{0}^{2}+\omega_{0}\omega_{1}+\omega_{1}^{2}))$

$=\prime_{M^{2}\backslash \Delta}(Tr\otimes Tr\rangle(d\eta|_{M^{2}\backslash \Delta}(\omega_{0}^{2}+\omega_{0}\omega_{1}+\omega_{1}^{2})\rangle$

$= \int_{M^{2}}(Tr\otimes Tr)(d(\eta(\omega_{0}^{2}+\omega_{0}\omega_{1}+\omega_{1}^{2}$

$= \int_{M^{2}}d\langle(Tr\otimes Tr)(\eta(\omega_{0}^{2}+w_{0}w_{1}+\omega_{1}^{2}$

$=0.$

$\square$

Let $\omega^{\partial}\in A^{2}(\partial C_{2}(M), q^{*}(p_{1}^{*}E\otimes p_{2}^{*}E))$ be a closed 2-form such that

$|(\langle\}^{\partial}]\in H^{2}(\partial C_{2}(M);q^{*}(p_{1}^{*}E\otimes p_{2}^{*}E))$
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is in the image of the restriction map

$r^{*}:H^{2}(C_{2}(M);q^{*}(p_{1}^{*}E\otimes p_{2}^{*}E))arrow H^{2}(\partial C_{2}(M);q^{*}(piE\otimes p_{2}^{*}E))$

and $(\omega^{\partial})^{2}=0$ . We take a closed 2-form $\omega\in A^{2}(C_{2}(M);q^{*}(p_{1}^{*}E\otimes p_{2}^{*}E\rangle)$ satisfying
$\omega|_{\partial C_{2}(M)}=\omega^{\partial}.$

Definition 2.4.

$I(M, E, Tr, \omega^{\partial})=\int_{C_{2}(M)}(Tr\otimes Tr)\omega^{3}.$

Example 2.5. Bott and Cattaneo proved in [2] that when $M$ is a homology 3-sphere we
can choose $\omega|_{\partial C_{2}(M)}=p(\tau)^{*}\iota_{*}\omega_{S^{2}}$ . Here $p(\tau)$ : $\partial C_{2}(M)\cong M\cross S^{2}arrow S^{2}$ is the projection
map induced by a framing $\tau$ : $TM\cong M\cross \mathbb{R}^{3}$ and $\omega_{S^{2}}\in A^{2}(S^{2};\mathbb{R})$ is a closed 2-form on
$S^{2}$ such that $\int_{S^{2}}\omega_{S^{2}}=1$ and $\iota$ : $\mathbb{R}arrow E\otimes E$ is a chain map defined by $\iota(1)=1_{E}$ , where
$1_{E}\in E\otimes E^{*}=E\otimes E$ is the evaluation map.

3. A VARIANT OF THE CHERN-SIMONS PERTURBATION THEORY

In this section we extend the invariant $I(M, E, Tr,\omega^{\partial})$ . The extended invariant is more
flexible than the original one. Let $E_{1},$ $E_{2}$ and $E_{3}$ be complex acyclic local systems on $M.$

We denote by $\overline{E_{1}},$ $\overline{E_{2}}$ and $\overline{E_{3}}$ the conjugate local systems of $E_{1},$ $E_{2}$ and $E_{3}$ respectively. Let
$Tr$ : $E_{1}\otimes E_{2}\otimes E_{3}arrow \mathbb{C}$ be a chain map. Take a closed 2-form $\omega_{i}^{\partial}\in A^{2}(\partial C_{2}(M);q^{*}(p_{1}^{*}E_{i}\otimes$

$p_{2}^{*}\overline{E_{i}}))$ such that $[\omega^{\partial}]\in H^{2}(\partial C_{2}(M);q^{*}(piE_{i}\otimes p_{2}^{*}\overline{E_{i}}))$ is in the image of the restriction
map $r^{*}:H^{2}(C_{2}(M);q^{*}(pi^{E_{i}}\otimes p_{2}^{*}\overline{E_{i}}))arrow H^{2}(\partial C_{2}(M);q^{*}(p_{1}^{*}E_{i}\otimes p_{2}^{*}\overline{E_{i}}))$ and $\omega_{i}^{\partial}\wedge\omega_{j}^{\^{o}}=0$ for
any $i=1$ , 2, 3 and $j=1$ , 2, 3. We take a closed 2-form $\omega_{i}\in A^{2}(C_{2}(M);q^{*}(piE_{i}\otimes p_{2}^{*}\overline{E_{i}}))$

satisfying $\omega_{i}|_{\partial C_{2}(M)}=\omega_{i}^{\partial}.$

Definition 3.1.

$I(M, (E_{i})_{i=1,2},{}_{3}Tr, ( \omega_{\grave{l}}^{\partial})_{i=1,2,3})=\int_{C_{2}(M)}(Tr\otimes Tr)(\omega_{1}\wedge\omega_{2}\wedge\omega_{3})$ .

Remark 3.2. $\bullet$ By the same reason as in Lemma 2.3, $I(M, (E_{i})_{i=1,2},{}_{3}Tr, (\omega_{\iota’}^{\partial})_{i=1,2,3})$

is independent of the choices of $\omega_{1},$ $\omega_{2}$ and $\omega_{3}.$

$\bullet$ We can not define $I(M, E, Tr,\omega^{\partial})$ for a non-acyclic local system $E$ . We expect
that it may be obtained as an appropriate limit of $I(M, (E_{i})_{i=1,2},{}_{3}Tr, (\omega_{i}^{\partial})_{1,2,3})$ .

4. AN EXAMPLE

Let $M=S^{1}\cross S^{1}\cross S^{1}$ . We denote by $[S_{1}^{1}]\in H_{1}(M;\mathbb{Z})$ the homology class represented
by the first $S^{1}$ factor. Let $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}\in U(1)\backslash \{1\}$ be any complex numbers satisfying
$\alpha_{1}\alpha_{2}\alpha_{3}=1$ . For $i=1$ , 2, 3, $E_{i}$ is the complex local system corresponding to the abelian
representation $\rho_{i}$ : $H_{1}(M;\mathbb{Z})arrow \mathbb{Z}[S_{1}^{1}]arrow U(1)$ , $n[S_{1}^{1}]\mapsto\alpha_{i}^{n},$ $n\in \mathbb{Z}$ . Here $H_{1}(M;\mathbb{Z})arrow$

$\mathbb{Z}[S_{1}^{1}]$ is the projection. In this situation, $H_{k}(M;E_{i})=0$ for any $k\in \mathbb{Z}$ and $i=1$ , 2, 3.
We next give a closed 2-form $\omega_{\iota’}^{\partial}\in A^{2}(\partial C_{2}(M);q^{*}(pi^{E}\otimes p_{2}^{*}\overline{E}))$ explicitly. We consider

$S^{1}$ as $\mathbb{R}/\mathbb{Z}$ and let $(x, y, z)$ be the coordinate of $M=\mathbb{R}^{3}/\mathbb{Z}^{3}$ . Then we have $a$ (global)
coordinate $(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2})$ of $M\cross M.$

Let

$N(\triangle)=\{(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2})||x_{1}-x_{2}|<\epsilon_{1}, |y_{1}-y_{2}|<\epsilon_{1}, |z_{1}-z_{2}|<\epsilon_{1}\}$

be a tubular neighborhood of $\Delta$ in $M^{2}$ for an enough small positive number $\epsilon_{1}>0$ . We
identify $C_{2}(M)$ with $M^{2}\backslash N(\Delta)$ .
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The normal bundle of $\Delta$ is canonically isomorphic to the tangent bundle $TM$. Then
$\partial C_{2}(M)=\partial N(\Delta)$ is identified with $\Delta\cross S^{2}$ via the standard trivialization of $TM=$

$T\mathcal{S}^{1}\cross TS^{1}\cross TS^{1}$ . Let $\iota$ : $\mathbb{C}arrow E_{i}\otimes\overline{E_{i}}|_{\Delta}=\mathbb{C}$ be the identity chain map.
Take a smooth function $\varphi:\mathbb{R}arrow[0$ , 1$]$ satisfying the following conditions:

$\bullet$ There is an enough small real number $\epsilon_{1}>>\epsilon_{2}>0,$ $supp(\varphi)\subseteq(-\epsilon_{2},\epsilon_{2})$ ,
$\bullet\varphi(O)=1.$

For $i=1$ , 2, 3 we set

$\omega_{i}^{\partial}=(1-\alpha_{i})(\iota_{*}(\varphi(y_{2}-y_{1})\varphi(z_{2}-z_{1})(dy_{2}-dy_{1})\Lambda(dz_{2}-dz_{1}$

Proposition 4.1. $\omega_{i}^{\partial}$ is in the image of the restriction map $r^{*}:H^{2}(C_{2}(M);q^{*}(p_{1}^{*}E_{i}\otimes$

$p_{2}^{*}\overline{E_{i}}))arrow H^{2}(\partial C_{2}(M);q^{*}(p_{1}^{*}E_{i}\otimes p_{2}^{*}\overline{E_{i}}))$ and $\omega_{i}^{\partial}\wedge\omega_{j}^{\partial}=0$ for any $i=1$ , 2, 3 and $j=1$ , 2, 3.
Furthermore

$1(M, (E_{i}\rangle_{i=1,2},{}_{3}Tr, (\omega_{i}^{\partial})_{i=1,2,3})=0.$

Proof. We give an extended 2-form $\omega_{i}\in A^{2}(C_{2}(M)_{\}}q^{*}(p_{1}^{*}E_{i}\otimes p_{2}^{*}\overline{E_{i}}))$ of $\omega_{i}^{\partial}$ for $i=1,$ $2_{\}}3$

explicitly. Let

$\omega_{\mathbb{R}}=\varphi(y_{2}-y_{1})\varphi(Z-\gamma.$

Obviously, we can extend $\omega_{\Re}$ to $C_{2}(M)$ .
Let $s$ : $\Deltaarrow\partial C_{2}(M^{2})$ be the section defined by

$s(x, y, z,x, y, z)=(x, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},x, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$ .

Since the image $s(\Delta)$ of the section $s$ is a deformation retract of the support of $\omega_{\mathbb{R}}$ , we can
extend the chain map $\iota$ (See Example 2. $5.\rangle$ to $supp(\omega_{;\S})$ . We denote by $\iota_{i}$ such an extended
chain map. Therefore we have the closed 2-form $\omega_{i}=(\iota_{i})_{*}\omega_{R}\in A^{2}(C_{2}(M);q^{*}(p_{1}^{*}E_{i}\otimes$

$p_{2}^{*}\overline{E_{i}}))$ tor $i=1$ , 2, 3. By the construction, $w_{i}|_{\partial C_{2}(M\rangle}=\omega_{i}^{\partial}$ and $\omega_{1}\wedge\omega_{2}$ A $\omega_{3}=0.$ $\square$
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