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Factorial characters of some classical Lie groups
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Abstract

A definition is offered of the factorial characters of the general linear group, the
symplectic group and the orthogonal group in an odd dimensional space. It is shown
that these characters satisfy certain flagged Jacobi-Trudi identities. These identities
are then used to give combinatorial expressions for the factorial characters: first in
terms of a lattice path model and then in terms of the well known tableaux associated
with the classical groups. Factorial @-functions are then defined in terms of three
sets of primed shifted tableaux, and shown to satisfy Tokuyama type identities in
each case,

1 Definition of factorial characters

A class of symmetric polynomials ¢)(x) labelled by partitions A = (A, Ag, ..., A\s) Was in-
troduced by Biedenharn and Louck [1] as a new integral basis of the ring of all symmetric
polynomials in the parameters x = (21,3, ..., %,). These new symmetric but inhomoge-
neous polynomials were studied further and called factorial Schur functions by Chen and
Louck [3]. They were given a more general form by Goulden and Greene [8] and by Macdon-
ald [18] who introduced the notation sy(x|a), where a = (ay, ay, ...) is an infinite sequence
of factorial parameters. Macdonald gave a definition of factorial Schur functions s,(x|a)
as a ratio of determinants, exactly analagous to that applying to ordinary Schur functions
$x(x). Since Schur functions, through their determinantal definition, can be identified with
characters of GL(n,C), it is not unreasonable to refer to factorial Schur functions as fac-
torial characters of GL(n,C). What we then aim to offer here is a definition of factorial
characters of the classical groups Sp(2n,C) and SO(2n + 1, C). We defer the more difficult
case of SO(2n, C) for consideration.elsewhere.

For each of the three groups G = GL(n,C), Sp(2n,C) and SO(2n + 1,C) there ex-
ists a finite dimensional irreducible representation V2 of highest weight A, where A =
(A1, A2, ..., Ay) is & partition of length £(A\) < n. Its character may be denoted by ch V2(z)
where z = (23, 22,...,2n) is a suitable parametrisation of the N eigenvalues of the group
elements of G = GL(n,C), Sp(2n,C) and SO(2n + 1,C) with N = n, 2n and 2n + 1,
respectively. Setting x = (21,%2,...,%,) and X = (%),%2,...,%,) With T; = z;! for
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i = 1,2,...,n, for use throughout this paper, we adopt a notation akin to that used
for Schur functions, whereby sx(x) = ch V3, (%), spa(x,%) = ch V5, (%, %) and
80x(%,%, 1) = ch Vypn11 (%, %, 1)

In the case of GL(n,C) the transition from a Schur function, s)(x), to a factorial Schur
function s,(x | a) involves an infinite sequence of factorial parameters a = (ay, as,...). The
transition is effected by replacing each non-negative power zI* of z; by its factorial power
(z; ] a)™ defined by:

(x,-}é.)m _ (zi + a1)(zi + az) - - (xi + am) %fm >0 (1.1)
1 if m=0.

In the case of the other groups in order to accomodate negative powers z; ™ = 7" of x; it
is convenient to let

(%; | a)™ = {ffz + a1)(Fi + ag) -+ (Ti + am) i;”mn : g, (1.2)

We then propose the following definition of factorial characters of the classical Lie
groups:

Definition 1.1 For any partition X = (A, Xy, ..., \n) and any a = (a1, az,...) let

HCIChnd

abxla) = et t ()
N T L i I ki B
e D AP I -
!-’1%1/2(51%‘ |a)titn-d ”73/2(351' ‘a)Aﬁ"'jl
sox(x,%,1]a) = (1L8)

x; (2| a)ni — :’Ez}m(‘fé |a)—i

Setting a = 0 = (0,0, .. .) one recovers the classical non-factorial characters of GL(n, C),
Sp(2n,C) and SO(2n+1,C), as given for example in [5]. That these definitions are appro-
priate for non-zero a, in particular the separation out of the factors z;, Z;, x,l /% and z,°,
depends to what extent the properties of these factorial characters are truly analagous to
those of factorial Schur functions. We have in mind things like deriving for each of our
factorial characters some sort of factorial Jacobi-Trudi identity and a combinatorial inter-
pretation in terms of tableaux as established in the case of factorial Schur functions by
Macdonald [18], and perhaps more ambitiously, the derivation of Tokuyama type identi-
ties [27] as recently derived in the factorial Schur function case by Bump, McNamara and
Nakasuji [2], with an alternative derivation appearing in [10]. The key to accomplishing all
this is the identification of appropriate analogues of the complete homogeneous symmetric
functions h,,(x). This is done for each group in the case of both ordinary and factorial
characters in Section 2, in which merely by manipulating determinants, factorial flagged
Jacobi-Trudi identities are derived for each of our factorial characters.

This is followed in Section 3 by consideration of the special cases of one part partitions
A = (m). This enables us to build up in Section 4 a combinatorial realisation of factorial
characters, first in terms of non-intersecting lattice path models and then in terms of the
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tableaux traditionally used to specify classical, non-factorial characters. Encouraged by
this, we present in Section 5 definitions of factorial Q-functions in terms of appropriate
primed shifted tableaux in the general linear, symplectic and odd orthogonal cases. Re-
versing our previous trajectory, we proceed in Section 6 from these primed tableaux to
non-intersecting lattice path models and thence to determinantal expressions for each of
our factorial @-function. Finally, in Section 7 it is demonstrated that in the case {()\) = n
each of our factorial Q-functions factorises into a simple product multiplied by a factorial
character, thereby generalising Tokuyama’s classical identity [27] to this factorial context.

2 Factorial flagged Jacobi-Trui identities

In the study of symmetric functions a key role is played by the complete homogeneous
symmetric functions hy,,(x), with hy(X) = hy, (X)hy,(X) ... hy, (x) forming a multiplicative
basis of the ring of symmetric functions, in terms of which we have the Jacobi-Trudi identity
sx(x) = |hx;_;,,(3)]. In order to try to establish factorial Jacobi-Trudi identites we need
analogues hy,(x|a) of h,(x) that are appropriate not only to the case of the other group
characters in the case a = 0 but also to the case of our factorial characters for general a.
Just as is done classically for hp,(x) it is convenient to define all these analogues hn,(x |a)
by means of generating functions. Our notation is such that each generating function
F(z,a;t) may be expanded as a power series in ¢, and we denote the coefficient of t™ in
such an expansion by [t™] F(z,a;t) for all integers m. In our factorial situation we make
the following definitions in terms of generating functions F,,(z,a;t) that are truncated in
the sense that the power m of [t™] appears in an upper limit of the associated generating
function.

Definition 2.1 For any integer m >0 and a = (ay,az,...) let

b, (x|a) = [t™] H — il (2.1)

hP(x,%|a) = [t™] H [ )(1 5 H (1+ta;); (2.2)

h(x,X,1]a)=[t"] (1+¢) H iz tx«)l(l ey H—— (1+taj); (2.3)
i=1 * ¢ j=1 v

Then for m = 0 we have hy(x|a) = h¥ (x,X|a) = h3°(x,X,1|a) = 1, while for m < 0 we
set h,(x|a) = hiP(x,X|a) = h¥(x,X,1|a) = 0. :

The one variable case x = (z;) of these Definitions 2.1 allow us to rewrite our factorial
characters in the following manner:



Lemma 2.2 For any partition A = (A1, Ag,..., A\n) and a = (ay, a9, ...)

Payuny(@ila)|
sa(x|a) = T3] ; (2.4)
_ hip—i-n (7, T | a) } ‘
spA(X, X iva) =T mEa] (2.5)
hSO _ i “1
sox(x,%,1|a) = i la)l (2.6)
| B2 (2, %: | a) |
Proof: In the case of sa(x } a) it suffices to note that for m > 0
hom(z:|a) = a;) = [t"‘ ! +tam H(l + ta;)
mw(1 ?jw)ﬂuw% = (sl L0 4
= (@i + am) (7 + ama) -+ (20 + @) [ 7— e G L (2.7)

One then just uses this identity in (1.3) with m = A\;+n—j and m = n—j in the numerator
and denominator, respectively.
In the case spy(x,%|a) we have

hin (@i, Tela) = "] — txi)l(l ~17) [10+te)

1 T; T o
- m % . 1 1 t .
g ]xi~':1":,» (1—-tx¢ l—t':'b"i) H( ¥ tay)

J=1
1

— (@i(i | a)™ - (% |a)™) , (2.8)

Ty — I

where use has been made of (2.7). The required result follows by using these identities in
(1.4) as before, with the cancellation between numerator and denominator of the common
factors z; — F; for i = 1,2,...,n.

Similarly, in the sox(x,X, 1| a) case we have

1+t “
80 L. 1 — m t N
hm(thh ta) [t ](1 _ t.’L’i)(l __ tfi) H(l + a‘J)
. 1 x1/2 w1?1/2 m
[t ] 1/2 ..1/2 (1 _f tr; T 1- {Z; U(l + ta:,)
o (e - ). (29)
=S on z;" (x| a) A E: .

Then one again uses this identity in (1.5) as before, with the cancellation this time of the
common factors x?n - Ez/“) fori=1,2,...,n. O
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The next step is to transform each of the expressions in Lemma 2.2 into some sort of
flagged Jacobi-Trudi identity. This is accomplished by means of the following Lemma:

Lemma 2.3 For alli and j such that 1 <1 < 7 < n and all integers m:

hp(s, ... Tj—1| @) — B (Tiga, - .., 25 | Q)
= (z; — z;)hp_1(Tiy. .., x| Q); (2.10)
(i, Fs, - . . Tj-1, Fjo1 | @) — KR (g1, Figr, - - -, 25, T, | Q)
= (z; — z;)(1 — TZ;)h)Y_ (%4, %, . . ., x5, T4, | A); (2.11)
hon (i Ty« -+ Tjm1, Tjm1, 1] @) — R (i1, Tigas - - -, 75, T4, 1| @)
= (z; — z;)(1 - ZZ;)hy0_\ (%4, T, . . ., 25, F5, 1] A). (2.12)

Proof: First it should be noted that all these identities are trivially true for m < 0 and for
m = 0 since each h,, reduces to either 0 or 1, with each h,,_; reducing to 0. For m > 0, in
the simplest case

m+f—i—~1

1 .
T g (14+taz)

J
hm(x,-, e T {a)—hm(m,-H, ey Xy ' a) = [tm] ((1—t1‘j)-—(1—-t$i)) H
=i

j 1 (m—1)+j—i
= (z;—z;) [t™] H T H (1+tax) = (zi—z;)hp_y (24, .., zj | ).
=i k=1

(2.13)

The other two cases are essentially the same, and are illustrated by the symplectic case:

RP(%i, Ty ..., &jm1, Tj—1| B) — BE(Tig1, Tigr, - - -, 25, j, | Q)

j m+j—i—1
= ™) ((1—ta;)(1-17;)— (1—tz;) (1-75)) fl(l—t:cg)ll - kﬁl (1+ tax)
. (m—1)4j—i
= (@t Zi—2;=7;) [t H (1—tae)(1—tz2) H (1-+1a)
= (z;—2z;)(1-%;%;) hm_l(w,-,a:.', %5, T, |a). (2.14)
Exactly the same procedure applies to the odd orthogonal case. 0

Now we are a position to state and prove the following result:
Theorem 2.4 Letx = (x1,%3,...,%s) andX = (T}, Ty, . . ., Tn) Withx® = (x4, Ziy1, ..., Zs)

and X = (F;,Tiy1,...,%n) fori=1,2,...,n. Then for any partition X of length £(\) < n
and any a = (a3, ag, ...) we have '

sx(xla) = | by, x |a) |3 (2.15)
B s, ) (2.16)

spa(x,X|a) =

sox(x,X,1|a) =

Poni(x9, %9 11a) | 2.17)
—j+



Proof: In the classical non-factorial case, obtained by setting a = 0, these flagged Jacobi-
Trudi identities have all been obtained previously by Okada [21] by means of lattice path
methods. The symplectic case was also independently obtained by this means by Chen,
Li and Louck [4], while the Schur function case goes back at least to Littlewood [17] who
obtained it en route to his derivation of the classical Jacobi-Trudi identity by means of
simple row manipulations of determinants.

It is Littlewood’s method that we use here to establish all three identities. Subtracting
row (i + 1) from row ¢ for = 1,2,...,n — 1 in the numerator of (2.4) and applying (2.10),
then repeating the process for ¢ = 1,2,...,n — 2 and so on, yields

hajn-i(Zi | @) = Brjin—j (@41 | 2)
Pajtn—i(Zn | a)

| oyl | ) | = ’

= h (4, 2341 | Q)
Aj+n—j—1Tiy Tig1
== E: — Is 3
E( z M)‘ hajin—i(Za )
n-1 Pj+n—j—1(Ti; Tiv1 @) — haj+n—j-1(Tit1, Tirz | Q)
= H(ﬂ:, - .’L‘i+1) h,\j+n—j—~1(xn——ly Tn ! a)
z’»=1 h)\j+n~j(mn Ia)
n-1 n-2 h)\,-+n-—j»~2<xi; Zit1, Tiv2 | a)
= H(ibi ~ Tit1) H(wi ~ Zia) Pxj+n—j-1(Tn-1,Zn | 8)
i=1 i=1 By n-j{zn | )
o = H (-'171' - xj) l h)\j+n~j—(n—z‘)($i> Litly.- 1 Tn I a) '
1<i<j<n
= I @i—=) [hryojus(x@a)] . (2.18)
1<i<jign .

In the special case A = (0) this yields the denominator identity

(hnej(@ila)| =[] (@i-25) [hoyuix®a)| = [ (@i -2)) (2.19)

1<i<j<n 1<i<j<n

since the determinant [h_j+¢(x(i) [a)] is lower-triangular with all its diagonal elements
equal to ho(x'9 |a) = 1. Taking the ratio of these two formulae implies that sx(z|a) =
| hiaj—jai(x® | @) |, as required in (2.15).

The other two cases (2.16) and (2.17) are obtained in an identical manner. The only
difference is that instead of extracting factors (z; — z;) as dictated by (2.10), one extracts
factors (z; — z;)(1 — Z;Z;) as dictated by both (2.11) and (2.12). O

3 Explicit formulae in the case A = (m)

As a consequence of Theorem 2.4 it should be noted that in the case of a one-part partition
A= (m,0,...,0) = (m) we have

Corollary 3.1 For all non-negative integers m

smy(x|a) = h,,(x]a); spmy(x,X|a) = hE(x,X|a); soum(x,%,1]|a) = h2(x,%,1|a).
(3.1)
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Proof: On setting A = (m,0,...,0) the flagged factorial Jacobi-Trudi determinants in
(2.15)-(2.17) are reduced to lower-triangular form since each h_;,; = 0 for ¢ < j. Moreover
for i > 1 the diagonal entries are all of the form hy = 1, while the (1, 1) entry is just h,,
with x() = x and XV =x. 0O

Factorial characters in the one-part partition case may then be evaluated directly from
the generating function formulae of Definition 2.1. Before doing so it is convenient, following
Macdonald [18], to introduce the shift operator 7 defined by

1"a = (ar41,0r42,...) for any integer r and any a = (a1, as,...). (3.2)

In the Schur function case with x = (z1,2s,...,2,) and X' = (z1,29,...,Zs-1) the
generating function (2.4) yields

m+n—1

(x| 2) = [¢") II1
) m+n—2

_(4m +tam+n1
"{t]< . Hl_m H(1+m,c

i (1+ t(zn + Gnpm-1) H mﬁ’ (L1 + tay)
- 1—tz, 1- to, £)

= hp(x'|a) + (zn + am+nw1)hm..1(x| a). (3.3)

Iterating this recursion relation gives

hm(xla)= Y (@, +00) (@, + 0pe) @i F Giime1) . (34)

1<i; Sig < SimSn

This result can be exploited in the symplectic case, where it might be noted first that
if we introduce dummy parameters a; = 0 for £ = 0, —1, —2,... then it follows from (2.5)
that

n 1 m+n-—1
hP(x,X|a) = [t™ 1+t
m(xx! ) [ } E(l—-tmz)(l*tfv}) g ( ak)
n 1 m+2n—1-n
= [t™ 1 zhm ,—— - = Nm o .
[t™] [zll (ST k:IL (1+ tar) = hm(x,X | 77"a) = hm(z| 7" "a) (3.5)
where 77"a = (a-n41,---,0-1, 080,081,082 ...}, and it is convenient to order the indetermi-
nates in z so that z = (z,, %, 22, %2, . . . , Zn, Tp). It then follows that
REeElR) = D (ot G+ Gunst) (i Ginimet) . (36)

1<i1 iz Sim<2n

with

ntj—g if 25 =2k —1; . . ;
Z,'J. + az‘j—-n-i—j—l = -.’L‘—k + Gz +i-2 l Z'J k-1 with ag = oif £ < 0. (37)
Tk + Gok-nsj—1 if ;= 2k,



Turning to the odd orthogonal case and using (2.6) we have

m+n—1
heo(x,%,1]a) = [t™] (1 +¢) H a _tx)(l_m) E (1 + tay)
m-n
=t (1 + tamen) + t(1 — am+n))g i H(1 + tag)
= h?(x,%|7a) + (1 — amsn) by (x,% | Ta)
= hm(%, X[ 7172) + (1 = Gmin) (%, X |77 a), (3.8)

where dummy parameters a, = 0 for £ = 0, —1, 2, ... are once again involved.
It follows that

h;;’(x, ia 1 ;a) = Z (Zig +ai1+1—n)(zz'2 +ai2+2-—n) e (Zim +aim—n+m)
1S i< Sim <20
+ Z (zix +ai1+1—n)(zi2 +@iyr2-n) (Zim-1 +aim—1+m—1—-n)(1 —am~§—n) (3'9)
1< S S Sim-152n
with
T Aokonyj—1 I 1 = 2k —1; . )
I witha, =0if£<0.  (3.10)
T + A2k —n+j if t; = 21(1,

4 Combinatorial realisation of factorial characters

The significance of these results is that they offer an immediate lattice path model of each
of the relevant one-part partition factorial characters. Then by making use of n-tuples
of such lattice paths in the interpretation of the factorial flagged Jacobi-Trudi identities
of Theorem 2.4 one arrives at a non-intersecting lattice path model of factorial characters
specified by any partition A of length £()\) < n. This leads inexorably to a further realisation
of factorial characters in terms of certain appropriately weighted tableaux. The tableaux
themselves are none other than those already associated with Schur functions, symplectic
group characters and odd orthogonal group characters in the classical non-factorial case.
Restricting our attention to fixed n and partitions A = (A1, Az, ..., M) of length £(A) <
n, each such partition defines a Young diagram F* consisting of || = /\; +Az+- -+ A, boxes
axranged in £(\) rows of lengths X; for i = 1,2,...,£4()). We adopt the English convention
as used by Macdonald [19] whereby the rows are left-adjusted to a vertical line and are
weakly decreasing in length from top to bottom. For example in the case A = (4,3, 3), for
which £()A) = 3 and
|

) F433 —

More precisely we define F* = {(i,7)]|1 < i < £(A); 1 < j < \;} and refer to (4, 5) as being
the box in the ith row and jth column of F*. Assigning an entry T}; taken from some
alphabet to each box (z,7) of F* in accordance with various rules gives rise to tableaux
T of shape A that may be used, as we shall see, to express both ordinary and factorial
characters in a combinatorial manner.
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Definition 4.1 (Littlewood [16]) Let 7, be the set of all semistandard Young tableauz
T of shape X that are obtained by filling each box (i,j) of F* with an entry Ti; from the
alphabet

{1<2<---<n}

in such a way that: (T1) entries weakly increase across rows from left to right; (T2) entries
weakly increase down columns from top to bottom; (T3) no two identical non-zero entries
appear in the same column.

Definition 4.2 (King [14]) Let T, be the set of all symplectic tableauzr T of shape A
that are obtained by filling each boz (i, j) of F* with an entry T;; from the alphabet

{1<T<2<2<---<n<m}

in such a way that conditions (T1)-(T3) are satisfied, together with: (T4) neither k nor
k appear lower than the kth row.

Definition 4.3 (Sundaram [26]) Let T,° be the set of all odd orthogonal tableauz T of
shape X that are obtained by filling each boz (i, j) of F* with an entry T;; from the alphabet

{1<1<2<2<---<n<A<0}

in such a way that conditions (T1)-(T4) are satisfied, together with: (T5) in any row 0
appears at most once.

These definitions are exemplified for GL(4), Sp(8) and SO(9) in turn as shown below
from left to right:

1[1]2]4] 1]1]2[4] 1]1]2]7]
213(3 344 31410 (4.1)
41414 414114 413210

These definitions allow us to provide combinatorial expressions for factorial characters
as follows:

Theorem 4.4 For each g and z as tabulated below, and any a = (ay,az, . ..)

p@la)=>, [ wem,). (4.2)

TeTY (i,j)eF>

where
a(z]a) ;| wet(Ty;)
S,\(X I a) Tg + Qg j—i
spa(x,X | a) Tk + Gok—1-n+j—i | @m =0 for m <0
Tk + Ook—ntj—i (4.3)

Tk + Qok-ntj—i | @m =0 for m <0
Tk + Q2k+1-n+j—i
1—Qpyyqj-i

so\(x,X,1|a)

1 o e Iy e B

with X = (x4, T3, ...,Zn), X = (T1,Ta, ..., Zn) and A any partition of length £(A) < n.



Proof: In the Schur function case, as in [10], we adopt matrix coordinates (k, ) for lattice
points with & = 1,2, ..., n specifying row labels from top to bottom, and £ = 1,2,..., A +n
specifying column labels from left to right. Each lattice path that we are interested in is
a continuous path from some P, = (i,n — i + 1) to some @; = (n,n — j + 1+ X;) with
i, € {1,2,...,n}. Such a path consists of a sequence of horizontal or vertical edges and is
associated with a contribution to hy,_;4i(x*) |a) in the form of a summand of (2.1) with
m = \; — j + ¢ and x replaced by x{). Taking into account the restriction of the alphabet
from x to x*| the weight assigned to horizontal edge from (k,£—1) to (k, £) is Tx+ag1r—n-1.
Thanks to the Lindstrom-Gessel-Viennot theorem [15, 6, 7] the only surviving contributions
to the determinantal expression for sy(x|a) in the flagged factorial Jacobi-Trudi identity
(2.15) are those corresponding to an n-tuple of non-intersecting lattice paths from P; to Q;
fori=1,2,...,n. Such n-tuples are easily seen [23] to be in bijective correspondence with
semistandard Young tableaux T of shape A as in Definition 4.1, with the jth horizontal
edge at level k on the path from P, to Q; giving an entry T;; = kin T fori =1,2,...,n
and j =1,2,...,\;. To complete the proof of Theorem 4.4 in the factorial Schur function
case it only remains to note that the weight wgt(7;;) to be assigned to T; is that of the
edge from (k,£— 1) to (k,£) given by x + Ggts—n-1 = Tk + Qktj—i With j =€ — (n -1+ 1)
since this is the number of horizontal steps from P; to column £ on the lattice path from
P; to @;. This is exemplified in Figure 1 in the case n =4 and A = (4, 3, 3).

Qy Qy agz 04

LP(T) =

1]1]274] T1+01 | Z1+02 [ Zatas | 24+ar ]
T = 121313 wgt(T) = |xp+4ay | z3+as | z3+ay

41414 Ty+ag | Tata3 | T4t+aq

Figure 1: Contribution to ss33(x|a) from T and LP(T).

Thanks to (3.5), the lattice path proof in the factorial symplectic case proceeds exactly
as in the Schur function case with the alphabet extended to include both z, and Fj for
k = 1,2,...,n, and with a replaced by r~™a. The starting points are now P, = (21 —
1,m — %+ 1) thereby ensuring that condition (T4) is satisfied, and the end points are Q; =
(2n,n—j+1+ ;). Once again it is only the n-tuples of non-intersecting lattice paths from
P; to Q; that contribute to spx(x,X|a) and these are in bijective correspondence with the
symplectic tableaux of Definition 4.2 of shape A with entries from {1< 1< --- < n < 7}.
This is exemplified in Figure 2 for n =4 and A = (4,3, 3).

Finally, in the factorial odd orthogonal case the alphabet is extended to include not
only both z; and F for k = 1,2,...,n, but also 1, and a is replaced this time by 7' "a as
dictated by (3.8). The starting points are P, = (2i—1, n—i+1), ensuring as in the symplectic
case that the condition (T4) is satisfied, and the end points are Q; = 2n+1,n—j+1+X;)
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LP(T) =

1{7]2]4] z T; |Tot+ay|rztar]
T = 31414 Wgt(T) = |Tz+ai|rst+ag|Ts+ay

444 ZT4+a1|T7+as|Ty+ag

Figure 2: Contribution to spy(x,X|a) from T and LP(T), where dm =0form<0.

since the alphabet is now of length 2n + 1. To take into account the last factor (1 — am4n)
appearing in (3.9) the lattice paths may now include a final diagonal step. The fact that it
is diagonal ensures that there is at most one of these steps on each lattice path. Once again
it is only the n-tuples of non-intersecting lattice paths from P; to @; that contribute to
505(x,X,1|a) and these are in bijective correspondence with the odd orthogonal tableaux
of Definition 4.3 of shape A with entries from {1 < T < --- < n < @ < 0}. The fact
that on each lattice path the final step is either vertical or diagonal, with the latter to be
associated with entries O ensures that the condition (T5) is automatically satisfied. This
is exemplified in Figure 3 for n =4 and A = (4,3, 3). a

5 Primed shifted tableaux and factorial )-functions

The passage from Schur functions to Schur Q-functions can be effected by replacing tableaux
by primed shifted tableaux [28, 22]. We replicate this in the factorial setting by offering def-
initions of three types of factorial Q-functions expressed in terms of certain primed shifted
tableaux. To this end we first define shifted Young diagrams.

A partition is said to be strict if its non-zero parts are distinct. Each such strict partition
X of length £()\) < n specifies a shifted Young diagram SF* consisting of rows of boxes of
lengths A; for ¢ = 1,2,...,£()\) left adjusted to a diagonal line. This is exemplified in the
case A = (6,4,3) by ‘

|

SF6531 —




az 4z a7 apg a3

a2
az
P, as
/ i
LP(T) = e
ar
Py as
Xz
Q1
-1 —Qy —Q3 —04 —05 —Og A7 —Ag
117(2 Zl xy T1 |xg+as CC@“‘F(lg,
T = [3/4]0 wgt(T) = |z3+ai|zs+aql —ae
41410 Z4+aglrz+asll — as

Figure 3: Contribution to sox(x,X|a) from T and LP(T), where a,, = 0 for m < 0.

This allows us to define various primed shifted tableaux.

Definition 5.1 /28, 29] Let P, be the set of all primed shifted tableaux P of shape A that
are obtained by filling each boz of SF* with an entry P;; from the alphabet

{<1<2<2<---<n' <n}

with one eniry in each boz, in such a way that: (Q1) eniries weakly increase from left to
right across rows; (Q2) entries weakly increase from top to bottom down columns; (Q3) no
two identical unprimed entries appear in any column; (Q4) no two identical primed entries
appear in any Tow;

Definition 5.2 [9] Let P;¥ be the set of all primed shifted tableaux P of shape X that are
obtained by filling each bozx of SFA with an entry P,; from the alphabet

{'<1<T<T<2«2<?<3<---<n' <n<® <7}
with one entry in each box, in such a way that the conditions (Q1)-(Q4) are satisfied

‘together with: (Q5) at most one of {K',k,k,k} appears on the main diagonal for each
k=12,...,n.

Definition 5.3 Let P3° be the set of all primed shifted tableauz P of shape X that are
obtained by filling each boz of SF* with an entry P,; from the alphabet

{'<1<T<T<2<2<? <2< -<n'<n<@ <u<0}

with one entry in each boz, in such a way that the conditions (Q1)-(QS5) are satisfied.
together with: (Q8) the entry O’ does not appear on the main diagonal.
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In the case A = (6,5, 3) each of these types of shifted primed tableaux is illustrated by

(i]2]2]3]4] [1]T]2’]7']3']3] [1][1]2[3]3]e]
213[3]3 2{2]3]e 7334 (5.1)
4'14]4 7]4]4 4040

We then propose the following definitions of factorial Q-functions:

Definition 5.4 For a = (ay,a,,...), ap = 0, and any strict partition A of length £(A) < n,

let
Szwla)=Y_  [[ wet(Py) where (5.2)
PeP{ (i,j)eSF>
g |[Qzwla) Py | wet(Py) || Py | wet(Fy)
gl | Qx(xy|a) ko |zeta || K [y —a
»| QP(x %y, ¥|a) R R A - A B
s0 Qio(x)i;yry)lla) o’ 1—-0,]'_,'

It might be noted that for these factorial Q-functions the dependence on the factorial
parameters a is simpler than it is for factorial characters since the factors in (5.3) are all
of the form 2; + a;_; with the subscript on a completely independent of that on 2.

The definition given here of Q(x;y | a) has been introduced and studied elsewhere [10].
The special case Q,(x;x| — a) obtained by setting y = x and a = —a coincides with
the generalized Q-function @,(x|a) introduced by Ivanov [12, 13] and studied further by
Ikeda, Milhalcea and Naruse [11]. If one further sets a = 0 one recovers the combinatorial
primed shifted tableaux formula [28, 22, 24, 20] for the original Schur @-functions @,(x).

6 Determinantal expressions for factorial -functions

In order to establish algebraic expressions for our factorial Q-functions we follow the method
of Okada [20] to construct lattice path models, in which each row of a primed shifted
tableau, P, specifies a lattice path contributing to an £(\)-tuple, LP(P), of non-intersecting
lattice paths. In these models the ith paths extend from P, to Q; for i = 1,2,...,4(})) as
specified by

g Py P Q:
gl k¥ (k,0) (m, Ai)
sp| kK kk | (2k—10] (2n,)\)

so| kK kK | (2k—10)| (2n+1,))

(6.1)

It is convenient to set d; = k if P; € {k, &', %, 75’} and introduce d = (d,dy, ..., dgn)).

The entries F;; in the ith row of P determine \; edges of the corresponding lattice path
extending from P; to Q;. The nature of these edges and their corresponding weights, as
determined by Definition 5.4, are as prescribed below.



T

E gl Pii =k e Pu = k' Yk
| sp, s0 Pi=k Tk o Pi=k Yk
sp,so| Py=k Tk ~ Pi=F Ur
sp,so | Py=ki<jlar+a_;| o—e | Pi=ki<j|yr—aj (6.2)

— |
Pj=k,i<j|T— 0

[

8p, 80 P;j ﬁz}.,’i < J|Z +a;

S0 | Pij = 1-— Aj—i

AN\ 0N

Each edge has its rightmost vertex at (r,£) in the rectangular lattice, with £ = 0 for the
curved edges and £ = j — ¢ for all the others, while r = k for entnes k and k' in the case
g = gl, but r = 2k — 1 or r = 2k according as the entry k, k', k or % is unbarred or barred
in the cases g = sp and so, and r = 2n + 1 if the entry is 0’ as may only occur in the case
g = so. The path P,Q); is completed by the insertion of vertical edges of weight 1. All this
is illustrated in the case of our three running examples in Figures 4, 5, and 6, respectlvely,
in the case A = (6,4, 3), for which £()\) = 3.

Qp Q) QG2 4ag d4 as

x
Py L ¢ @

LP(P) = PoTaN ¢ =2

X3 | T3

Tgq | Zq T4

Peur—=3, 8, 74,

(]1]2]2]3]4] 1z Qfl“i’ﬁhtyr‘az ZTo+a3|Y3—04|{Ts+0as
P = 213133 wgt(P) = Ty |ys—ar|T3+ag|rs+ag
41414 Ya |T4+0;|T4+0ag

Figure 4: Contribution to Qx(x;y |a) from P and LP(P), where ao = 0.

The sets of all non-intersecting £(\)-tuples of lattice paths from fixed starting points
P; to fixed end points @; determined by d and A as tabulated in (6.1) are in bijective
correspondence with sets of all the primed shifted tableaux of Definitions 5.1-5.3 with
diagonal entries Py consistent with d; for all i = 1,2,...,dy»). The sets of £(X)-tuples of
lattice paths may be extended to include those from P; to Qg for i = 1,2,...,€()\) with
7 any permutation in Sy). Assigning weights in accordance with (6.2), the sum of the
contributions from all these £(X)-tuples multiplied by sgn(7) then constitutes a determinant.
As established by Okada [20] all contributions mutually cancel, other than those from the
non-intersecting £(A)-tuples for which 7 is the identity element. It then follows that our
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Figure 5: Contribution to Q¥ (x,X;y,¥ |a) from P and LP(P), where ao = 0.
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Figure 6: Contribution to Q°(x,X;y,¥,1|a) from P and LP(P), where ap = 0.
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@-functions may be expressed in the form

Qxyla) =) | (#4+ya) Gry-1(x @yt a) |; (6.3)
d

QV(xZy.F12) = > | (@a,+ya) Gr,—1(x@), T4, (D) §ld | a)
d
+ (T, +Tg,) g1 (&, ),y §ldtD) 10 | (6.4)

QrxZyFlla) =) |(@a+ya) By (x®, X,y 5@ 1]a)
d

+ (B, +Tg,) -1 (X G, KW 6D §@+) 1 [a) [ (6.5)

where for any m > 0, and all relevant u = (u1,uy,...,u,) and v = (vy, 03, ..., ;)

gm(u;v]a) = Z (wi, £ay ) (wy, ag) -+ (wi,, £am) , (6.6)

1<i1<iz < Lim<rts

with w = (wy, wa,. .., W) to be identified with an alternating ordered sequence of all the
elements of u and v. The notation < is intended to indicate that the summation allows
~factors (w; & ag) = (ux + ag) or (vx — ay) to appear according as w; = uy Or vk, with several
factors of the form (ug + a¢){ux + agy1) - -+ allowed, but at most one factor (vx — ay).

To present this result in a neater form it is convenient to make use of the following

Definition 6.1

Il ca (1+tyy) [Tl (1+-tax)
T (1—ta;) ’
& =(d). b 41 . 4m H?x +1((1+ty])(1+ty ))Hm (1+tak)_
gP (x(D F(D; y@+D) d+1) | g) = [gm] d — m)(al = 9:); : (6.8)
(1+0) Ty (L4 ty) (14 67,)) Ty (1 +2ai)
[T=a((1—t2:)(1-17y)) '

G (xD; 34D | ) = [t™]

(6.7)

g22(xD %D y @) F@D) 1| a) = [pm) |
(6.9)
In terms of these we have

Theorem 6.2 Let x = (21,Z2,...,2,) andy = (Y1,Y2, -+ -, Yn)- Then for any strict parti-
tion A of length £()) < n and any a = (a1, ay, .. .)

Axyla) =Y | (@a+va)a, - (x@;y4 D a) | ; (6.10)
d

QFXZyF|a) =D | (24, +Va,+Ta, +T, )57 (x4 X4, yldeit) §ldtD) | 5) ]; (6.11)
d

PEZy.ylla) =) (m+yd,-+'fd,;+§d¢)qi‘;-1(x<d‘>,‘>‘<““*>;y“’*’“’,’i“"*‘“’,lla)l, (6.12)
d

where each determinant is £(X) X £(\) and each sum is over all d = (di,dy, ..., dyy)) such
that 1 <dy <dy < -+ < dgpy < 1. ‘
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Proof: It should first be noted that in the a = O case it is known [20] that for all u =
(u1,us,...,u,) and v = (vy, vs,...,v,) that

T 8
~ m 1
In(wiv|0) = ("] [T 7= [T (1 +10y). (6.13)
i=1 b oj=1
More generally, consider
r 1 8 ) m+r—s—1
~ . — (4T ,
Gm(u; v |a) = [t™] gl_tm g(uwy) ,Q (1+tay). (6.14)

By writing (1 + tamer—s—1)/(1 — tu,) = 1+ t(u, + amir—s-1)/(1 — tu,) and (1 + tv,) =
(1 + tamer—s) + t(vs — Gm4r-s) it may be verified, very much as in (3.3) and (3.8), that

Gm(w;v|a) = Gn(W;v]a) + (U + amir—s-1)im-1(u; V] a) (6.15)

and
Qm(ui v T a) = qm(“? v/ ’ a) + (vs - am+r—s)qm-—1(u§ \4 | a) (6.16)
where ' = (uj,u,...,%,—1) and v/ = (v1,vs,...,vs-1). Applying the first of these in the

case u = x@ and v = y@*D, for which r = s + 1, leads to a factor (z, + a,,) in the right
hand term. Repeating this process for G,,—(11; v |a) but still with u = x(¥ and v = y{¢+1),
leads to a further factor (z, + an-1) and so. In this way any dependence on z, takes
the form (z, + ag41) - - (Zn + a@m-1)(Tn + am). Then applying (6.16) in the case m = ¢,
u = x? and v = y@, for which r = s, leads to a factor (y, + a;), with no further
factors involving y, allowed. Iterating these results it can be seen that g, (x@;y@+D | a),
as defined in (6.7), generates the expansion (6.6) of Gy, (u;v|a) in the case u = x(¥ and
v = y@*D thereby proving (6.10). Moreover, in the symplectic case it can be shown
directly from the generating functions appearing in (6.14) and (6.8) that

(&1 + ) Ga,-1 (20,500,709 @) + (@, +3,) Go,-a (2D, 703y, 764D | )
= (@ + 3+ 7+ 7) g7 (00, 200, 7)), | (6.17)

thereby proving (6.11), with a similar result applying to the odd orthogonal case. O

It might be noted that each of the expressions in Theorem 6.2 in the form of a sum over
determinants may be expressed directly as Pfaffian following, for example, the prescription
for dealing with non-intersecting lattice paths from a selection of fixed starting points
to fixed set of end points [25]. This has been done already in the case of the factorial
Q-functions [13, 11}, and will not be pursued here, but will be the subject of future work.

7 Tokuyama identities

Here we restrict ourselves to the case for which A = p + 6 where u is a partition of length
f(p) < nand § = (n,n—1,...,1) so that ) is a strict partition of length £(\) = n. In
such case the sums over d appearing in Theorem 6.2 reduce to a single term corresponding
to the only possible case d = (1,2,...,n). Moreover, each of the surviving determinants
factorises, to yield the following factorial Tokuyama type identities.



Theorem 7.1 Let A = p+d withd = (n,n—1,...,1) and p a partition of length £(p) < n.
Then for any x = (X1, T2, ..., Ty), ¥ = (Y1, Y2, -- -, Un) and a = (ay,az,...)

Qi(xyla) = H (@ +3;) su(x|a); (7.1)
1<igji<n

Qrx.%y.¥la)= [] (@+y+%+7) spu(x X|a); (7.2)
1<i<ji<n

R’xXy,y,1|a) = H (T +y; +Ti +7;) s0u(x,%X,1]a). (7.3)
1<i<ji<n

Before embarking on the proof it is helpful to make the following definition:
Definition 7.2 Forall1<p<g<nlet

m H?:q—’-l(l + tyj) HT_""’Q"?(I + ta;k)

frpan(xy|a) =[t7] -tz ; (7.4)
. 1+t 1-t HP(1 + ta
m n(x’ ,y,yl ) [tm] Hg-q+1(( y.?)( y])) Hk ( k) , (75)
pv‘?a H;—p((]‘ t; (1 - t.’Bz))
1+t (1+ty))(1 -ty TP(1+ ta
v Ty a) = [ AR Iy’)( Iy’ NI 4 o
Ht—p(( —tz;)(1 - 17))

In the special case p = ¢ = d these definitions are such tha,t
fmdan(Xy|a) = @ (x Yy @ | a); (7.7)
T (6% Y, ¥ |2) = gR(x@ XD,y FlHt ) [4); (7.8)
Fraan®%y,¥,1]a) = go(x@ XD,y §l#*D 1 |a); (7.9)

and in the case p = d, ¢ = n they reduce to

 Fmann(Xy|a) = b, (x| a); (7.10)
Fvann®%y,¥|a) = hZ(x, %9 |a); (7.11)
[ inn(®: %y, ¥,1|a) = 2 (x@, %@, 1]a); (7.12)

Finally, for I1<p<g¢g<n

fopa-1n(XY|8) = fry p+1,q.n(><‘ yla) = (%p + ¥g) fm-1pen (X ¥ |2); (7.13)
forpa-1aX Xy, ¥ |a) — ,p+1,q,n(x X;y,¥|a)
= (Tp + Yg + Tp + ?Jq) m-1,p.4, X%y, ¥ |a); (7.14)
mpa-1n(O XY, ¥, 1]a) = fopi10a(6 %Y, ¥, 1] a)
= (@ + Y4 + Tp + T o1 % ¥, ¥, 1] @) (7.15)

Proof of Theorem 7.1: If we now focus, for example, on the symplectic case (7.2) and
start by using (6.11) in the case £(\) = n then, as we have said, the sum over d is restricted
to a single term with d; =i for i = 1,2,...,n. It follows that

Ty, ¥a) = [[ @tu+mi+7) | . 0%y. 7 @) |, (7.16)

g1

61



62

where we have extracted a common factor (z; + y; + Z; + ¥;) from the ith row for i =
1,2,...,n, and used (7.8). Then, by the repeated subtraction of successive rows from one
another and using (7.14), precisely as in (2.18), we have

—1—-n+z i n,n(x= —x_; Y, 37 ‘a) I . (717)

fA,_l.,,,(x,i;y,S"{a)F H (zity; +Ti+7;

1<i<j<n

We are now in a position to use (7.11) which leads directly to

f)\,—-l n+mnn(x¢ i; y’y_ Ia) = ’ h’f\?—(n—-ﬁl)(x(i)’i(i) ‘a) l

= | P (x®, % | a) | = spu(x,%|a), (7.18)

as required to complete the proof of (7.2). The final steps exploit the fact that \; =
pi+n—j+1forj=12,...,n, as well as the symplectic factorial flagged Jacobi-Trudi
identity of Theorem 2.4. The other results (7.1) and (7.3) can be established in exactly the
same way. O
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