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Abstract

It is shown by Kobayashi-Oshima([3]) that the multiplicities of irreducible represen-
tations occurring in the space of functions on a homogeneous space X = G/H are finite
if and only if H has an open orbit on the flag manifold G/P; where Pg is a minimal
parabolic subgroup P; of G. A homogeneous space Gy satisfying such conditions is
named a real spherical variety by Kobayashi. Furthermore, Brion, Vinberg, Kimelfeld,
Bien, Matsuki, and Kobayashi proved that the existence of open H-orbits on G/Pg is
equivalent to the finiteness of H-orbits on G/Pg until 90’s.

On the other hand, it may happen that H has some open orbits and infinitely many
orbits on G/P simultaneously if P is a (non minimal) general parabolic subgroup. To
research on this phenomenon, we want to observe the simplest case of these. In this
note, we give a description of infinitely many orbits on 4-tuple flag varieties of special
linear groups under the diagonal action. The key idea is considering a new decomposition
defined combinatorially which is slightly rougher than orbit decomposition. We also give
sufficient and necessary conditions of the closure relations among the orbits.

0 Introduction

There have been many researches on the relations between orbit decompositions on flag man-
ifolds and representation theory. For example for a real reductive algebraic group G, its
minimal parabolic subgroup Pg(resp. a Borel subgroup Bg of the complexification G, of G,
and its algebraically defined closed subgroup H, Kobayashi-Oshima[3] proved the following
theorem on the relationship between the H-orbits (resp. H.-orbits) on the real flag variety
G/Pg (resp. complex flag variety G./Bg) and the analysis on the homogeneous space G/H:

Theorem 0.1. For an irreducible admissible representation m of G and a finite dimensional
irreducible representation T of H, set an integer cg,K(vr,Indg'r) to be the multiplicity of the
underlying (g, K)-module mg in the space of section on the vector bundle on G/H associated
with 7. Then the followings are equivalent;

(1) H (resp. H.) has an open orbit on G’/P(;v (resp. G¢/Bg);

(2) for all irreducible admissible representations m of G and finite dimensional irreducible
representations T of H, cg, K(W,Indgf) < 00. (resp. bounded proportionally to dim ).



A homogeneous space G/H satisfying the first condition in the theorem is called a real
spherical variety (resp. spherical variety). Furthermore, Brion, Vinberg, Kimelfeld, Bien,
Matsuki, and Kobayashi proved that G/H is real spherical (resp. spherical) if and only if
the number of H-orbits (resp H-orbits) on the flag variety G/Pg (resp. G¢/Bg) is finite [1].
Remark that for a non-minimal parabolic subgroup P of G, it may occur that H has infinitely
many orbits and some open orbits on G/P simultaneously.

In this note, we focus on the orbit decomposition of a 4-tuple flag manifold of G = SL(3, C)
under the diagonal action of G and observe behaviors of orbits, since this is the simplest
case among the cases where H has some open orbits and uncountably infinitely many orbits
simultaneously on a flag manifold G/P in some sense. More precisely, we will introduce a
notion of new decomposition of multiple flag manifold which is slightly rougher than the orbit
decomposition, and deal with the infinitely many orbits which lie in a piece with respect to
the new decomposition together as a clump of infinitely many similar orbits.

1 Some basic properties

Let Gy, be the special linear group S§L{n,C), and P, be its parabolic (not minimal in general)
subgroup defined as

then the flag variety G, /P, is isomorphic to PP~1C with the standard action of G,, = SL(n,C)
on P*~IC = (C"\0)/C*. Hence the m-tuple flag Gn/P, X -+ X Gn/Pn =~ G/P" is

'

m
isomorphic to (P*"C)™ =: Xn,m. From now on, we deal with Xn,m = (P*1C)™ under
SL(n,C) = G, ~ diag(G,) C GT* = SL(n,C)™-action.
‘ First of all, we see the relatxons among double coset spaces diag(G,) \ GI'/P™ ~ G, \
(P-IC)™ = Gy \ Xom =: n,m under the changing of (n,m). We can define the following
~ inclusion map

inm i Xnm = (P*IC)™ — (P"C)™ = Xpi1m
just by taking the m times direct product of the map defined as
P-iC - P"C

where z € C™ \ {0}. Clearly, this inclusion map intertwines the G, = SL(n,C)-action and

Gpy1.= SL(n+1 C)-action under the identification of G,, with the subgroup {( g (1) ) lg€ Gn}

of G411, hence we can introduce a map

tnn : Xnm = SL(n,C)\ (P*!C)™ - SL(n+1,C) \ (P"C)™ = Xpnt1,m-
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We can see by an easy computation that ¢, is still an inclusion map. Actually,we can
arbitrarily choose a coordinate for attaching a new zero to define I, (in the definition
above, we attach a new zero to the last coordinate of C**1). However ¢ m does not depend
on this choice by thinking of permutation matrices in Gn4; = SL(n + 1,C) (if the signature
of the permutation is ~1, then we have just to switch the 1 in the first column to —1). Hence
tn,m can be said to be the canonical inclusion map from X, m to Xny1,m-

Since we have seen that ¢, m, is an inclusion map, we now have to observe the image of
tn,m to understand tn,, completely. We now introduce some subsets of Xn,m = (Pr1C)™
defined by

Xom(r) = {([xj});-"zl € Xnm | zj € C*\ 0, dimSpang {z; | 1 < j <m}= r} .

Clearly we have a decomposition of f(mm as:

min{n,m}

Xn,m = I_I Xn,m(r)y
r=1

by definition. It is also obvious that }.(n,m(r) are Gyp-stable subsets, since the diagonal action
of G, = GL(n,C) on (C™)™ preserves the dimensions of subspaces spanned by some vectors
of m-entries. Hence, we can define subsets X, m(7) = Gp \X’n,m(r) of Xnm =Gn \Xn,m and
obtain a stratification of X, ,, as:

Proposition 1.1.

min{n,m}

Xn,m = H Xn,m(r)'
r=1

Furthemore, we can sec the following property of the image of tn m and Xn m(r)’s:
Lemma 1.2. Forr €1, tnm(Xnm(r)) = Xny1,m(r).

Remark that X, n(r)=0ifandonlyif r>n+1lorr>m+1.
This lemma immediatly implies the following stratification of X, n,(r):

Theorem 1.3.

min{n,m}

Xn,m = H p—1;m Q" Olrm (Xr,m(r))-

r=1
Combining these results, we get:
Corollary 1.4. iy y is a bijection if n > m.

Hence all Xn,m have the same orbit decomposition as that of X’m,m if n>m.
Furthermore, X, () has a quite simple structure for some certain (n,m), and 7. More
precisely, the structures of Xy, ;m(m), Xm—1,m(m —1), and X, (1) are described as follows:



Proposition 1.5.

Xinm(m) = {Gm : ({ej]);'nﬂ}
Xmoimm=1= ] {Gmor- (D}

Ic{1,2,-- ;m}
and #I1>2

Kpm(l) = {Gn : ([51]);'7—‘_—1}

where {6j}§=1 denotes the standard basis of C* for arbitarary k and {f; =1 C C™ 1 is defined

as
e; 1<j<max]

=3 Yiengmaxsy & J=maxl
€j-1 maxl <j<m

Remark that for {fJI =1 C cm1,

dim Span{f/ | j € J}‘“-‘{ §§_1 ﬁgj

Conversely, each orbit mentioned in the proposition above is explicitly expressed as follows:

Proposition 1.6.

G- (les)7, = { (i), | dimSpanz; | j € J} = #7 }
Gmes (U = { () | dimSpantey ey = { BT, 177}
G- (lea]) 2y = { (l2s]) -, | dim Span{z; | j & J} = 1}

This dimension condition plays a role in the following sections.
By these propositions and the stratification

min{n,m}

X'n,m = H lp—-1,m O Olym (Xr,m("'))

ra=]

proved in Proposition 1.3, it can be said that non-clementary parts of the Gp-orbit decompo-
sition of X, ,,, live in
min{n,m-2}
lpn—1,m O Olrm (Xr,m(r))'
) r=2
Since we focus on the case where (n,m) = (3,4), the non-elementary part of the structure of
X3,4 lives only in :
63’4(2) =124 (X2,4(2)) ~ X2,4(2).
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2 Existence of open orbits and finiteness of orbits

It is well known that X’n,m has only finitely many orbits if and only if m < 3, since this
corresponds to the quivers of Dynkin type (classification of multiple flag varieties of general
linear groups which is of finite type is given in [4]).

Also, we can casily see that

Theorem 2.1. if n > 2, then f(n,m has an open orbit if and only if n >m — 1.

Proof. If n > m, then X, », inculudes tp—1m, 0+ 0 tmm (Xm,m(m)) >~ Xmm(m). It is easily
computed that

tnt1m, 0 0 tmm (Gm - ([e1],+++ , [em])) = Gn - (lea],++ - , [em])

is an open orbit by computing the dimension. Similarly for n = m—1, X1 m(m) is included
in Xp,-1,». Similar computation of dimension of

Gt - ([fl{l,...,m}] . [f-r{nlm}]) =Gm-1-([e1], s [em], [e1 4+ - + €m))

implies that it is an open orbit. O

3 Main results

3.1 Explicit orbit decomposition

The first main result of this note is the description of orbit decomposition of X3 4 = (P?C)*
under the G3 = SL((,C)3,C) action, which is equivalent to the problem giving explicit
representatives of the double coset diag(SL(3,C)) \ SL(3,C)*/P*.

Theorem 3.1. G3-orbit decomposition of X3,4 is described as follows:

X34 =0(2)
HO4;1)10O4;2) 1 0(4;3) 1 O(4;4)
IO4;1,2)I10(4;1,3) 1 O4;1,4)
HO(5;1,2) 1 O(5;1,3) L OG; 1,4) L1 O(5;2,3) 11 O(5; 2, 4) I O(5; 3, 4)

H( I 0(5;17))
pe(PrC)

1O(6;1,2) 1 O(6;1,3) L O(6;1,4) L O(6;2,3) 1 O(6;2,4) L1 O(6; 3, 4)
DO 1) 0 O(7;2) 0 O(7;3) LO(T;,4)
o O(8)

The definition of each orbit is given in the next section. For each orbit, the number before

the semicolon means the dimension of the orbit, and following numbers are combinatorial
indices. The parameter p in the 5th ray runs on an open dense subset (P'C)’ of P*C.



The next second main result is the closure relations among orblts on X3 4. We introduce
a subset P(6) of X3 4 85
IT oG:»

pe(®PICY
; the whole union of orbits contained in a series which is parametrised by (P'C)’. Considering

all orbits and P(6), we obtain the following result on closure relations:

Theorem 3.2. The closure relations among all orbits and P(6) are as follows:
O(8)

s

/ ‘

o(T; 1) O(7:2)

O(6;3,4) 0(6;'5,4) (’)(6 7,4) 0(623) 6(6;'1,3) 0(6 1, 5) ;"'3‘%6)

M
‘\\\\\\//

- \
- kT s
R
>{/~<~-~~7 ——

LO1,2) L 6’(4 LA
o1 N 042)

4 Preliminaries

For the description of SL(3,C)-orbits on Xd 4, We 1ntroduce a new rough decomposition of
X3 4 into some finite G3-stable subsets. A subset P(¢) of X34 = (P2C)* is defined as follows:

Definition 4.1. Let ¢ be a map from 21234} to N, then we define a subset P(y) of 5(3,4 by

{ (1], [=2], [23], [ }) € X34 }
- Ple) = x1, T2, 73,24 € C3, .
dimSpanc{z; | ¢ E I} =) ("Ic{1,2, 3 4})

In this definition, we regard P2C as an orbit space (C* \ {0})/C*, and [z] denotes the
C*-orbit through z € C3 \ {0}. ;

The definition is well-defined because the dimensions of linear subspaces spanned by some
vectors are NOT influenced by scalar multiplications: i.e. the action of C*. We also see that
P(p) are Gz = SL(3,C)-stable, since the projection (C?\ {0})* = (P2C)* = X3 4 intertwines
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the lincar diagonal action of SL(3,C) on (C3\ {0})* and the SL(3, C)-diagonal action on X3 4
which we are dealing with.

Hence, the first main result: giving the explicit orbit decomposition of X under the G-
action: is reduced to the probem to classify the maps ¢ : 2{1.234} _, N whether each 17
satisfies

o P(y) is an empty set;

e P(yp) is a single G3-orbit;

o P(p) is decomposed into plural Gs-orbits.

To classify these ¢'s, we now introduce some specific ¢’s for simplicity of notations.
Definition 4.2.

(1) In the case where dim Span{z1,22,23,24} = 1, ie. ([z1], [22], [z3], [z4]) € X3,4(1), the
map ¢(2) : 2{1:234} _, N is defined as follows:

0
{1} {2}, (3}, {4}
©(2): ¢ {1,2},{1,3},{1,4},{2,3},{2,4}, (3,4}
{1,2,3},{1,2,4},{1,3,4}, {2, 3,4}
{172>374} '

11111
e Tl = =)

(2) In the case where dim Span{z1,z2, 23,24} = 2, i.e. ([z1],[22], [x3], [z4]) € X3,4(2),

ii) for if #{[z1], [z2], [z3], [z4]} = %
the map p(4;1) : 2{1234} N is defined as follows:

&)
{1}, {2}, {3}, {4}
{2,3},{2,4}, {3,4}

90(431): ﬁ %;’§}i§1,3},{1’4}
{1,2,3},{1,2,4}, {1,3,4}

| {(1,2,3,4)

1111111
I e R =)

Respectively, we can define ¢(4;2), ¢(4;3), ¢(4;4) by permutating {1,2, 3,4};
the map ¢(4;1,2) : 211234} N is defined as follows: ‘

0
() 2). 2} 4

PULD N (13} (14}, {2,3), (2.4}
{1,2,3},{1,2,4},{1,3,4},{2,3,4}
{1,2,3,4}

11111711
NN O

Respectively, we can define ©(4;1,3), ©(4;1,4).



iii) for if #{[z1], [x2], [3], [xa]} = 3,
the map ¢(5;1,2) is defined as

(@ > 0
(1, 03,61, S
-
BN (3 1,0, (0,3), 241 3.4 - 2
{1,2,3},{1,2,4},{1,3,4},{2,3,4} — 2
| {1,2,3,4} 2.

Respectively, we can define ¢(5;1,3), ¢(5;1,4), ¢(5;2,3), ¢(5;2,4), ¢(5;3,4).

’ iV) for if #{[‘Tl} y [1'2} ) [323] ’ {2:4]} =4,
- (6) is defined as

0
{1}, {2}, {3}, {4}

w(6): ¢ {1,2},{1,3},{1,4},{2,3},{2,4},{3,4}
{1,2,3},{1,2,4},{1,3,4},{2,3,4}
{1,2,3,4}

11111
[N SR S

(3) In the case where dim Span{z,, &a, z3, 24} = 3, i.e. ([z1],[z2], [z3], [z4]) € X3.4(3),

i) for i ([ [z, o), o} = 3,
: ‘0

{1}, {2}, {3}, {4}
{1,2}
(p(ﬁ; 1’2) : ﬁ {173}){134}7 {2’ 3}5 {27 4}’ {37 4}
' {17 27 3}7 {17 27 4}
{1,3,4),{2,3,4)
L {1,2,3,4} .

Respectively, we can define ¢(6; 1, 3), ¢(6;1,4), ©(6;2, 3), ©(6;2,4), ©(6;3,4).
iv) for if #{[z1], [z2], [z3], [.’,64]} =4,
(0
{1}, {2}, {3}, {4}
o(7i1) : 4 g 2}4%1 ,3},{1,4},{2,3}, {2 4},{3,4}
{17 27 3}1 {1’ 2’ 4}7 {17 3’ 4}
L {1,2,3,4}

 Respectively, we can define ¢(7;2), o(7;3), ¢(7;4).
Finally, we can define the map ¢(8) as

]
| (11,42}, {3}, {4}
(P(S) : {112}7{1?3}7{114}7{27 3}7 {274}7 {334}
. {1,2,3},{1,2, 4}, {1,3,4},,{2, 3,4}
{1,2,3,4}

1111111
o R

111111
LW O

117117
W W N O
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Combining with these definitions we introduce the following notations:

Definition 4.3.
(1) for each (-) listed in Definitiond.2, O(-) denotes P(y(-)) unless () is (6).
(2) P(6) denotes P(p(6)).

o eor=rer{[(5)](D](2)]}

[z1] # [22]
O(5;p) := { ([z1], [z2], [z3] , [24]) € X | @3 =71 + 22

24 = pWzy + p@ay
(1)
where p = [( i(z) )} € (P'cy

With these definitions, we have introduced all notations which take a role in the main
results. The following lemma holds immedietly by definition:

ii)

Lemma 4.4.

I oGo»).

pe(PICY
Now we only have to prove the following lemma to prove the first main result:
Lemma 4.5.
(1) For each ¢ which is NOT listed in the Definitions.2, P(yp) is an empty set.
(2) Each O(-) which is listed in the Deﬁniiz’on.{.é’( 1) is a single G-orbit.
(8) P(6) is decomposed into G-orbits as follows:
Pe)= ] o).

pe(PICY

The proof of this lemma will be the key point of the proof of the main result of this section.

5 Proof of the description of the orbit decomposition

To begin the proof of the description of the orbit decomposition introduced in the previous
subsection, we see the following statements at first.



Definition 5.1. An [-division of {1,2, -+ ,m} is a family {J;}\_, of subsets of {1,2,--- ,m}
which satisfies :

1
{1727"' 7m}=HJi

i=1
Ji#£0 1<Vil).

Furthermore, let J = {J;}}_, and J’ = {J/}\_, are two l-divisions of {1,2,--,m}, then we
say J =J' if there exists an clement o of the symmetric group &; such that

Ji=Jy 1< Vi <)
However from now on, we fix an order of J;’s for each J = {J;}_,
Lemma 5.2. For an l-division J = {Ji}¥ o, of {1,2,--- ,m};
(1) there exists a canonical bijection

f7:{(12) -y € Rnalr) | 24 # 2n] if i # 1)

Viked, 1<vi<l)
S (G TNt P SN

defined by
()i = (o if 5 € J)Rns
(2) and for a map ¢ : 2102 5 N, let cp be a map from 2{12 “m} to N defined by
J > 9(17) where Iy = {1 <igl]JInJd; # 0},
then the bijection f7 satisfies

F7(Pni(¥))) = ’Pn,m((pi)'

Remark that Ppm(p) for ¢ : 2{lm} 5 N is a G,-stable subset of )?n,m defined ana.logouély

to P(y) in X3 4:

_ m z; € C*\ {0},
Prum{i2) = {([wj Dizs € X | GimmSpanciz; | j € 1} = (1) (T € 2(0m)) }

Clearly P(yp) we defined in the previous subsection is equal to P34(p).

By the map f7 we have introduced in the previous lemma, we get the following proposition.
Remark that the two sets mentioned in the first statement of the previous lemma are G-
stable. Hence, we can think of the G,-orbit decompositions of them.

Proposition 5.3. Under the notation in the previous lemma,
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(1) if the decomposition of{([:c,-])i:1 € f(n,z(r) | [zi] # [zn) if § # h} into nonempty Pp () ’s
is given as

N
H ’Pn,l("/)zf)1
v=1

then the decomposition of

: m S [xl]::[x](v',keJi,ISV'sl)
{ (l2s1) s € o) | (7] 2 (4] i£ 5 € ik Jp and i # & }

into nonempty Prm(p)’s is given as

N
H Pr,m (‘P;Z,, )

=1

(2) If the decomposition of { ([x;] l‘: € Xna(r) | [zs] # [zn] if 4 7é ht into nonempty Pp () 's
=1

is given as

N
H Pn,l('(/)u)»
v=1
then the decomposition of { ([z,]);r;l € Xnm(r) | #{[T1], -, [zm]} = l} into nonempty

Prm(p)’s is given as

N
[I [Pumed,).

J:l—~division v=1
of {1,,m}

We saw some properties of P(-) in changing of m in the previous proposition. Next, we
observe some properties of P(-) in changing of n in the following proposition.

Proposition 5.4.

(1) Forp:21v"m} 4N andn' >n>r,

G - (Zn’-l,m 0+ Olnm (pn,m(‘P))) = Pr/m(p).

(2) If the decomposition of X, m(r) into nonempty Prm () ’s is given as

N
H Pr,m(‘#u)y

v=1

then for any n > r, the decomposition of Xn,,,;(r) into nonempty Ppm(¢)’s is given as

N
H Prm(pw)-
=1
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This proposition is proved by a similar argument to that of Proposition 1.1.
Finally, we think of some properties of the orbit decompositions of P(-)’s in changing of
n and m:

Proposition 5.5.

(1) for an l-diision of {1,--- ,m} and ¥ : 2{b0 5 N, if Py (¥) is a single Gp-orbit,
then Pnim(gog) is;

(2) for ¢ : 28bmb 5 N such that ({1, -- ,m}) :;7‘, if Prom(y) is a single G.-orbit, then
Prmlp) is a single Gp-orbit.

Proof. (1) By Lemma 5.2, ’Pn,m(ga;z )= f7 (Pni(¥)) and f7 is Gp-intertwining. Hence the
first statement holds.

(2) It is straightforward from the first statement of Proposition 5.4.
. O

Preparing these propositions, we are ready to prove the first half of the main results: the
description of the orbit decomposition of X’M under the diagonal action of G5 stated in the
previous subsection. Recall that we only have to prove Lemma 4.5 to prove the description
of the orbit decomposition of X'u.

Lemma 4.5.
(1) For each ¢ which is NOT listed in the Definition4.2, P(p) is an empty set.
(2) Each O(-) which is listed in the Definitiond.3(1) is a single G-orbit.
(83) P(6) is decomposed into G-orbits as follows:

PE) = [[ OGsp).

pe(PITY
Proof.
(1) By Propositions 1.5 and 1.6, we already know that

X34(1) = Gs- ([e1], e1] , [ea], [ea]) = Ple(2)).

(2) i) At first, 2-divisions of {1,2, 3,4} are completely listed as follows: 7(1) = {{1},{2,3,4}},
‘ ‘7(2) = {{2}3 {1>3,4}}; j(3) = {{3}3{1?2)4}}, -.7(4) = {{4}7 {1>2>3}}= -7(1’2) =
{{112}7 {3>4}}a 3(1,3) - {{1v3}7 {23 4}}v j(1a4) - {{174}1 {273}}'
From Propositions 1.5 and 1.6,

{([wﬂ [22]) € X22(2) | [1] # [-’02]}
= X22(2) = G2 - ([e1] , [e2]) = P22(¥)

where
w202 SN T #1
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Then by Proposition 5.4,
{(1], l22]) € Xs2(2) | (1] # [22] } = Pia(w).

Hence by Proposition 5.3,
{2 € Zoa® | #(im1], - o)} = 2}
= JI Psale))

J:2—division
of {1,2,3,4}

Now, by easy computations we can see that wi(i) = (4;1), and go;Z(i’j )= w(4;1, 7).

Also since Py 2(%) is a single Ga-orbit, Ps32(¢) is a single Gz-orbit by Proposition

5.5. Furthermore for each 2-division J, since Ps3 2(¢) is a single G3-orbit, P3,4(<pi )

is.

At first, 3-divisions of {1, 2, 3,4} are completely listed as follows: J(1,2) = {{1,2}, {3}, {4}},
J(1,3) = §{1,3},{2},{4}}, J(1,4) = {{1,4},{2}, {3}§, J(2,3) = {{2,3}, {1}, {4}},
J(2,4) = {{2,4},{1}, (3}}, 73,4) = {{3,4}, {1}, {2}

From Propositions 1.5 and 1.6,

Xa@= 1 G- (£, 141 [#))

Ic{lr"'ym}y
s.t. #I>2
= JI Pasten)
Ic{1,,m},
s.t. #I1>2
where
e; 1<j<maxI
fi =1 ien{maxry€ J=max]
ej-—l maxI < ] S 3
and ¢
. 0{1,2,3} , #J- I1¢J
PYr:2 —)N.JH{#J_I IcJ
Hence,

{ (1], o2l [es]) € R2a(2) | 1) # [ma] # [2a) # [21]}
=G, ([f1{1,2,3}] , [f2{1,2,3}] , [},;1,2,3}])
= G2 - ([e1], [e2], [er + 2¢]) = Pos(v1,2,3))-

Since [ fj{j’k}} = [ f,gj’k}], only the summand which corresponds to I = {1,2,3} is
contained in the most left hand side. Hence the first equality holds.
Then by Proposition 5.4,

{([171] [22], [m3]) € X33(2) | 1] # [z2] # [ws] # [1‘1]} = P3,3(¥(1,2,3})-
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Hence by Proposition 5.3,
{1y € Ko@) | #lo], - [oa]} = 3)

— VA
= H P3,4(<P¢{1‘2’3} ).

J:3—division
of {1,2,3,4}

T3y _ i
1/;{112’3} - 90(5:2:.7)'

Also since P2 3(1(12,3}) is a single Go-orbit, P33(1b(123)) is a single G3-orbit by
Proposition 5.5. Furthermore for each 3-division J, since 7’3,2(211{1,2,3}) is a single
G's-orbit, ’P3’4("0;Z(1,z,3}) is.

Let ([xj])jzl be in {([xj})jzl € X34(2) | #{[z1],- -, [zd]} = 4}, then for J C
{1,2,3,4}

Now, by easy computations we can see that ¢

A dimSpan{z; | j € J} =2
if #J > 2. Hence

#T 0<HT <2

dimSpan{xj}jeJ}z{g J<H#I<4

and

{(3])}oy € Kaa@) | o]+ [z} = 4} = Paa((6)

(3) By Proposition 1.5, we have

X34(3) = H Gs- ([fJ!]);;l
. IC{15273’4}: )
and #1>2

‘where fjl are defined as above.

Furthermore by Proposition 1.6, we have

where

Gs - ([£1])5=1 = Paaler)

. o{1 4} ) o #J I¢J
©r:2 —)N.JH{#J_I IcJ -

An casy computation immediatly leads to the fact that;

ek = (6;5,k) for1 <j<k<4
Pk = e(T;1) if {1,2,3,4} = {i,5,k,1};
Pr,234) = ¢(8)-

From these argurhents, we have proved that;

e P(yp) is nonempty if and only if ¢ is either one of the list in Definition 4.1;
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® P(p) is a single Gs-orbit for cach ¢ listed in Definition 4.1 unless ¢ = ¢(6).

Hence, the remaining part of our proof is the description of the orbit decomposition of P(6).
Since we already know that

P6)= [ OGip)

pe(PICY

by Lemma 4.4, we only have to show that each O(5;p) is a Gs-orbit.
(1)
For ([z1], [z2], [z1 + z2], [pPWz1 + pPz5]) € O(5; [( g(” )}) and g € G,

g ([z1], [x2], [z1 + z2], [pmﬂ?l +P(2)1‘2])

= (lg=], loza] lo(z1 + 22)], [9(pVas + pP22)))
W) (2) p
= (lgz1], lgza] , [921 + gm2] , [p (gz1) +p (gxz)]) € O(5; [( e )})

Hence O(5; p) is Gs-stable.
1 2 \ P(l)
Converscly for ([xl] y[z2), [z + z2], [p( )y + p )xg]) € O(5; el ), set an element
g € G5 by putting z; and z» into the first two columns. Then clearly
([e], [z2], [ + 2], [mel + P(Z)IZ]) =g- (lea],[e2], [e1 + 2], [P(l)el + P(z)@})-

Hence O(5;p) is a single G3-orbit. a

6 Proof of closure relations among orbits on X3,4

The second main result in this section is to determine the closure relations among orbits and
P3.4(p)’s stated in Theorem 3.2. To prove this theorem, we introduce the following criterion:

Proposition 6.1. For maps ¢,¢' : 24™m 5 N such that Prm(p) # 0, the following
conditions are equivalent;

(1) Prm(¢') C Pam(p);
(2) &' (I) < (I) for all T C {1,--- ,;m}.
Proof. Since |
P(p) = { ()], | dimSpan{a; | j € J} = ¢(J) (J < {1, ,m})},
P(¢p) is the set of m-tuples ([;z:,]);n:1 satisfying ¥J C {1,--- ,m},
e therc exists an (J)-minor matrix of (z;);es whose determinant is non-zero;

e determinants of all (p(J) + 1)-minor matrices are zero.



Hence P(yp) is the set of m-tuples ([xJ]);n:] satisfying ¥J C {1,--- ,m},
¢ determinants of all ((go(.] ) + 1)-minor matrices are zero.
Now for an m-tuple ({:cJ]);’;1 € P(y'), since determinants of all (¢/(J)+ 1)-minor matrices

of (z;)jes are zero and ¢'(J) < ¢(J), determinants of all (¢(J)+ 1)-minor matrices of (z;);cs

are zero. Hence, P(¢’) C P(p). :
Conversely for an m-tuple ([:1;,]);”:l satisfying that determinants of all (¢(J) -+ 1)-minor

matrices of (z;);es are zero,
dim Span{z; | j € J} < p(J).
Hence ({:1:3]);":1 € P(¢') for a ¢’ which satisfies ¢’ < . _ .

Using this proposition, the Hasse diagram of all P(¢p) is simply computed. Hence, we only
have to compute the closure of O(5;p) to prove Theorem 3.2.

Proof. Since O(5;p) C P(6), we have

O(5;p) C P(6)

=P®H( I M&MJ

1<i<j<4

uf JI Pwisn|ul 11 P(4;i)) 1P(2)
{i,j}:{l,?} 1<i<d
{1,3},{1,4}

c P@) 1 {(z5]),_, | # {las]}y <3}

We can assume [z1] = [z5] for ([zj])jzl € O(5;p) \ O(5;p) without loss of gencrality, hence
(1] = [z2] = [z3] = [z4] from by the definition of O(5; p). Hence O(5;p) = O(5;p)LIP(2). O
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