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ABSTRACT. This report is a survey of our result in $|Kanl5b|$ . We introduce systematic methods
to construct Grothendieck categories from colored quivers and develop a theory of the special-

ization orders on the atom spectra of Grothendieck categories. We showed that every partially

ordered set is realized as the atom spectrum of some Grothendieck category, which is an analog

of Hochster’s result in commutative ring theory. In this report, we explain techniques in the
proof by using examples.

1. INTRODUCTION

This report is a survey of our result in $[Kanl5b].$

There are important Grothendieck categories appearing in representation theory of rings and
algebraic geometry: the category Mod $\Lambda$ of (right) modules over a ring $\Lambda$ , the category QCoh $X$

of quasi-coherent sheaves on a scheme $X$ ([Con00, Lem 2.1.7]), and the category of quasi-coherent

sheaves on a noncommutative projective space introduced by Verevkin [Ver92] and Artin and
Zhang [AZ94]. Furthermore, by using the Gabriel-Popescu embedding ([PG64, Proposition$|$), it is
shown that every Grothendieck category can be obtained as the quotient category of the category
of modules over some ring by some localizing subcategory.

In commutative ring theory, Hochster characterized the topological spaces appearing as the
prime spectra of commutative rings with Zariski topologies ([Hoc69, Theorem 6 and Proposition

10 Speed [Spe72] pointed out that Hochster’s result gives the following character\’ization of the
partially ordered sets appearing as the prime spectra of commutative rings.

Theorem 1.1 (Hochster [Hoc69, Proposition 10] and Speed [Spe72, Corollary 1 Let $P$ be a
partially ordered set. Then $P$ is isomorphic to the prime spectrum of some commutative ring with
the inclusion relation if and only if $P\dot{u}$ an inverse limit of finite partially ordered sets in the
category of partially ordered sets.

We showed a theorem of the same type for Grothendieck categories. In [Kan12] and $[Kanl5a],$

we investigated Grothendieck categories by using the atom spectrum ASpec $\mathcal{A}$ of a Grothendieck
category $A$ . It is the set of equivalence classes of monoform objects, which generalizes the prime

spectrum of a commutative ring.
In fact, our main result claims that every partially ordered set $is$ realized as the atom spectrum

of some Grothendieck categories.

Theorem 1.2. Every partially ordered set is isomorphic to the atom spectrum of some Grothendieck
category.

In this report, we explain key ideas to show this theorem by using examples. For more details,

we refer the reader to $[Kanl5b].$
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2. ATOM SPECTRUM

In this section, we recall the definition of atom spectrum and fundamental properties. Through-
out this report, let $\mathcal{A}$ be a Grothendieck category. It is defined as follows.

Definition 2.1. An abeiian category $\mathcal{A}$ \’is called a Grothendieck category if it satisfies the following
conditions.

$く 1\rangle \mathcal{A}$ admits arbitrary direct surns (and hence arbitrary direct limits), and for every direct
system of short exact sequences in $A$ , its direct limit is also a short exact sequence.

(2) $A$ has a generator $G$ , that is, every object in $\mathcal{A}$ is isomorphic to a quotient $0$})ject of the
direct sum of some (possibly infinite) copies of $G.$

Definition 2.2. A nonzero object $H$ in $\mathcal{A}$ is called monoform if for every nonzero subobject $L$ of
$H$ , there does not exist a nonzero subobject of $H$ which is isomorphic to a subobject of $H/L.$

Monoform objects have the following properties.

Proposition 2.3. Let $H$ be a monofoma object in A. Then the following assertions hold.
(1) Every nonzero subobject of $H$ is also monoform.
$\langle 2\rangle H$ is uniform, that is, for every nonzero subobjects $L_{1}$ and $L_{2}$ of $H$ , we have $L_{1}\cap L_{2}\neq 0.$

Definition 2.4. For monoform objects $H$ and $H’$ in $\mathcal{A}$ , we say that $H$ is atom-equivalent to $H^{1}$ if
there exists a nonzero subobject of $H$ which is isomorphic to a subobject of $H$‘.

Remark 2.5. The atom equivalence is an equuvalence relation between monoform objects in $A$

since every monoform object is uniform.

Now $W^{r}e$ define the notion of atoms, which was originally introduced by Storrer $|Sto72$] in the
case of module categories.

Definition 2.6. Denote by ASpec $A$ the quotient set of the set of monoform objects in $\mathcal{A}$ by the
atom equivalence. We call it the atom spectrum of $\mathcal{A}$ . Elements of ASpec $\mathcal{A}$ are called atoms in $\mathcal{A}.$

The equivalence class of a monoform object $H$ in $\mathcal{A}$ is denoted by H.

Remark $2\cdot 7$ . Every simple object is monoform. Two simple objects are atom-equivalent to each
other if and only if they are isomorphic. Therefere we have an embedding

$\frac{\{simpleobjectsin\mathcal{A}\}}{\cong}c_{\ovalbox{\tt\small REJECT}-*ASpecA}.$

If $A=Mod$ $A$ for a right artinian ring $A$ , then these two things are the same.

The following proposition shows that the atom spectrum of a Grothendieck category $is$ a gen-
eralization of the prime spectrum of a commutative ring.

Proposition 2.8 ([Sto72, p. 631 Let $R$ be a commutative ring. Then the map Spec R $arrow$

ASpec(Mod $R$) given by $\mathfrak{p}\mapsto\overline{(R/t))}$ is a bijection.

The notions of support is also generalized as follows.

Definition 2.9. Let $M$ be $an$ object in $\mathcal{A}$ . Define the atom support of $M$ by

ASupp $M=$ { $\overline{H}\in ASpec\mathcal{A}|H$ is a subquotient of $M$ }.

The following proposition is a generalization of well known results in commutative ring theory.

Proposition 2.10.
(1) Let $0arrow Larrow Marrow Narrow 0$ be an exact sequence in $\mathcal{A}$ . Then

ASupp $M=$ ASupp L $U$ ASupp $N.$

(2) Let $\{M_{\lambda}\}_{\lambda\in\Lambda}$ be a famdy of objects in $\mathcal{A}$ . Then

$ASupp\bigoplus_{\lambda\in A}M_{\lambda}=\bigcup_{\lambda\in\Lambda}$
ASupp $M_{\lambda}.$
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A partial order on the atom spectrum is defined by using atom support.

Definition 2.11. Let $\alpha$ and $\beta$ be atoms in $A$ . We write $\alpha\leq\beta$ if every object $M$ in $A$ satisfying
$\alpha\in$ ASupp $M$ also satisfies $\beta\in$ ASupp $M.$

Proposition 2.12. The relation $\leq on$ ASpec $A$ is a partial order.

In the case where $A$ is the category of modules over a commutative ring $R$ , the notion of
atom support and the partial order on the atom spectrum coincide with support and the inclusion
relation between prime ideals, respectively, through the bijection in Proposition 2.8.

3. CONSTRUCTION OF GROTHENDIECK CATEGORIES

In order to construct Grothendieck categories, we use colored quivers.

Definition 3.1. A colored quiver is a sextuple $\Gamma=(Q_{0},Q_{1}, C, s, t, u)$ satisfying the following
conditions.

(1) $Q_{0},$ $Q_{1}$ , and $C$ are sets, and $s:Q_{1}arrow Q_{0},$ $t:Q_{1}arrow Q_{0}$ , md $u:Q_{1}arrow C$ are maps.
(2) For each $v\in Q_{0}$ and $c\in C$ , the number of arrows $r$ satisfying $s(r)=v$ and $u(r)=c$ is

finite.

We regard the colored quiver $\Gamma$ as the quiver $(Q_{\mathfrak{o}}, Q_{1}, s, t)$ with the color $u(r)$ on each arrow
$r\in Q_{1}.$

From now on, we fix a field $K$ . From a colored quiver, we construct a Grothendieck category as
follows.

Definition 3.2. Let $\Gamma=(Q_{0},Q_{1}, C,s, t,u)$ be a colored quiver. Denote a free $K$-algebra on $C$

by $F_{C}=K\langle f_{c}|c\in C\rangle$ . Define a $K$-vector space $M_{\Gamma}$ by $M_{\Gamma}=\oplus_{v\epsilon Q_{0}}x_{v}K$ , where $x_{v}K$ is a
one-dimensional $K$-vector space generated by an element $x_{v}$ . Regard $M_{\Gamma}$ as a right $F_{C}-$mo\’aute by
defining the action of $f_{c}\in F_{C}$ as follows: for each vertex $v$ in $Q,$

$x_{v} \cdot f_{c}=\sum_{r}x_{t(r)},$

where $r$ runs over all the arrows $r\in Q_{1}$ with $s(r)=v$ and $u(r\rangle=c$ . Denote by $Ar$ the smallest
full subcategory of Mod $F_{C}$ which contains $M_{\Gamma}$ and is closed under submodules, quotient modules,
and direct sums.

The category $\mathcal{A}_{\Gamma}$ defined above is a Grothendieck category. The following proposition is useful
to describe the atom spectrum of $A_{\Gamma}.$

Proposition 3.3. Let $\Gamma=(Q_{0}, Q_{1}, C, s, t, u)$ be a colored quiver. Then ASpec $A_{\Gamma}$ is isomorphic
$lo$ the subset ASupp $M_{\Gamma}$ of ASpec$(ModF_{C})$ as a partially ordered set.

Example 3.4. Define a colored quiver $\Gamma=(Q_{0}, Q_{1}, C, s, t, u)$ by $Q_{0}=\{v, w\},$ $Q_{1}=\{r\},$ $C=\{c\},$

$s(r)=v,$ $t(r)=w$ , and $u(r)=c$. This is illustrated as

$v.$

$c\}$

$w$

Then we have $F_{C}=K\langle f_{c}\rangle=K[f_{c}],$ $M_{\Gamma}=x_{v}K\oplus x_{w}K$ as a $K$-vector space, and $x_{v}f_{c}=x_{w},$

$x_{w}f_{c}=0$ . The subspace $L=x_{w}K$ of $M_{\Gamma}$ is a simple $F_{C}$-submodule, and $L$ is isomorphic to $M_{\Gamma}/L$

as an $F_{C}$-module. Hence we have

ASpec $A_{\Gamma}=$ ASuppM $=$ ASupp L $\cup$ ASupp $\frac{M_{\Gamma}}{L}=\{\overline{L}\}.$

The next example explains the way to distinguish simple modules corresponding different ver-
tices.
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Example 3.5. Let $\Gamma=(Q_{0}, Q_{1}, C,s, t,u)$ be the colored quiver

$c\}_{\mathfrak{D}c_{u}}^{0c_{v}}wv$

and let $N=x_{v}K$ and $L=x_{w}K$ . Then we have an exact sequence

$0arrow Larrow Mrarrow Narrow 0$

of $K$-vector spaces $aRd$ this can be regarded as an exact sequence in $ModF_{C}$ . Hence we have

ASpec $A_{\Gamma}=$ ASuppM$r=$ ASupp L $\cup$ ASupp $N=\{\overline{L},\overline{N}\},$

where $\overline{L}\neq\overline{N}.$

In order to realize a partially ordered set with nontrivial partial order, we use an infinite colored
quiver.

$\mathfrak{B}xampl\otimes 3.\theta$ . Let $\Gamma=(Q_{0}, Q_{1}, C, s, t, u)$ be the colored quiver

$v_{0}v_{1}\underline{co}\underline{\circ)}\ldots.$

Let $L$ be the simple $F_{C^{\sim}}$module defined by $L=K$ as a $K\alpha$vector space and $Lf_{c_{1}}=fJ$ for each
$i\in \mathbb{Z}_{\geq 0}$ . Then we have ASpec $\mathcal{A}_{\Gamma}=\{\overline{M_{\Gamma}},\overline{L}\}$ , where $\overline{M_{I^{\gamma}}}<$ L.

Definition 3.7. For a colored quiver $\Gamma=(Q_{0},Q_{1}, C,s,t, u)$ , define the colored quiver $\tilde{\Gamma}=$

$(\tilde{Q}_{0},\tilde{Q}_{I},\tilde{C},\tilde{s},\tilde{t,}\tilde{u})$ as follows.

(1) $\overline{Q}_{0}=\mathbb{Z}_{\geq 0}\cross Q_{0}.$

(2) $\tilde{Q}_{1}=(\mathbb{Z}_{\geq 0}\cross Q_{1})\coprod\{r_{v,v}^{i}, |i\in \mathbb{Z}\geq 0, v, v’\in Q_{0}\}.$

(3) $\tilde{C}=C$ II $\{c_{v,v}^{i}, |i\epsilon \mathbb{Z}_{\geq 0}, v, v’\in Q_{0}\}.$

(4) (a) For each $\tilde{r}=(i,r\rangle\in \mathbb{Z}_{\geq 0}\cross Q_{1}\subseteq\tilde{Q}_{1},let \tilde{s}(\gamma r=(i, s(r)),$ $\tilde{\ell}(\gamma r=(i, t(r))$ , and
$\tilde{u}(\tilde{r})=u(r\rangle.$

(b) For each $\tilde{r}=r_{v,v}^{i},$
$\in\tilde{Q}_{1}$ , let $\tilde{s}\langle r\gamma=(i, v)$ , $\tilde{t}(\tilde{r})=(i+1, v and \tilde{u}(\tilde{r})=c_{v,v}^{i},.$

The colored quiver $\tilde{I’}$ is represented by the diagram

$\Gamma=\Gamma\Leftrightarrow\cdots$

Lemma 3.8. Let $\Gamma$ be a colored quiver. Let $\tilde{\Gamma}=(\tilde{Q}_{0},\tilde{Q}_{1},\tilde{C},\tilde{s},\tilde{t,}u\gamma$ be the colored quiver

$\Gamma$ vaw $\Gamma\infty\cdots.$

Then we have
ASpec $\mathcal{A}_{\tilde{\Gamma}}=\{\overline{M_{\tilde{I^{\tau}}}}\}ll$ ASpec $\mathcal{A}r$

as a subset of ASpec(Mod $F_{\tilde{C}}$), where $\overline{M_{\tilde{\Gamma}}}$ is the smallest element of ASpec $\mathcal{A}_{\tilde{\Gamma}}.$

Example 3.9. Define a sequence $\{\Gamma_{i}\}_{e=0}^{\infty}$ of colored quivers as follows.
(1) $\Gamma_{0}$ is the colored quiver

$v3c.$
(2) For each $i\in \mathbb{Z}_{\geq 0}$ , let $\Gamma_{i+1}$ be the colored quiver

$\Gamma_{i}\approx\Gamma_{i}\approx\cdots.$

Let $\Gamma$ be the disjoint union of $\{\Gamma_{i}\}_{i\simeq()}^{\infty}$ , that is, $\Gamma$ is the colored quiver defined by the diagram

$\Gamma_{0} \Gamma_{1}$

Then we have
ASpec $Ar=\{\overline{M_{\Gamma 0}}>\overline{M_{\Gamma_{1}}}>\cdot\cdot$

Since the partially ordered set ASpec $A_{\Gamma}$ has no minimal element, it does not appear as the prime
spectrum of a commutative ring.
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We refer the reader to $[Kanl5b]$ for more constructions of Grothendieck categories to show
Theorem 1.2.

4. CONSEQUENCES

It is known that every Grothendieck category $A$ can be obtained as the quotient category of
the category of modules over some ring $\Lambda$ by some localizing subcategory. Since we have a fully
faithful functor $\mathcal{A}arrow Mod\Lambda$ , this result is called the Gabriel Popescu embedding.

Theorem 4.1 (Gabriel and Popescu [PG64, Proposition Let $A$ be a Crothendieck category, $G$

a generator of $A$, and $A=End_{A}(G)$ . Then there exists a localizing subcategory $\mathcal{X}$ of $Mod\Lambda$ such
that $\mathcal{A}$ is equivalent to (Mod $\Lambda$ ) $/\mathcal{X}.$

We can deduce the following result on the atom spectra of module categories.

Corollary 4.2. For every Grothendieck category $A$ , there exists a ring $\Lambda$ such that ASpec $\mathcal{A}$ is
isomorphic to some downward-closed subset of ASpec(Mod A).

In particular, the open interval $(0,1)$ in $\mathbb{R}$ can be embedded as a downward-closed subset into
the atom spectrum of some module category of a ring. This does not happen if we restrict rings
to be commutative.
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