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1 Introduction

Let us consider the half-linear differential equation

$(r(t)\Phi(y’))’=p(t)\Phi(y)$ , (1)

where $r,p$ are positive continuous functions on $[a, \infty$ ) and $\Phi(u\rangle=|u|^{\alpha-1}$ sgn $u$

with $\alpha>1$ . We survey here recent results on asymptotic theory of equation
(1) in the framework of the Karamata theory of regular variation and the de
Haan theory, taken in particular from $[29,\backslash 34, 38, 37]$ . We concentrate on
establishing asymptotic formulae for all eventually positive solutions of (1)
(which are necessarily eventually monotone).

Our results can be understood in several ways. We solve open problems
posed in the literature ([31, 34, 37 We generalize results for linear differ-
ential equations ([6, $10_{\grave{\fbox{Error::0x0000}}}23,24,25,31$ many of our observations are new
even in the linear case. We provide a refinement on information about be-
havior of solutions of (1) in standard asymptotic classes ([2, 3 We describe
behavior of regularly and rapidly varying solutions which are known to ex-
ist ([3, 12, 13, 31, 34 We prove regular or rapid variation of all positive
solutions.

That the theory of regularly varying functions can be very useful in the
study of asymptotic properties of differential equations has been shown in
many works, see the important monograph [18] (which summarizes the re-
search up to 2000) and the recent survey text [31]. Half-linear differential
equations were studied in this framework in [3, $12_{\hat{\ell}}13$ , 15, $16_{\}}17$ , 26, 29, 31,
34, 35, 37].
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The paper is organized as follows. In the next section we recall a several
basic information about nonoscillatory solutions of (1). Some concepts from
the Karamata theory of regularly varying fimctions and the de Haan theory

are presented in Section 3. Solutions in the de Haan classes $\Gamma$ and $\Gamma^{-}$ are
studied in Section 4. In Section 5 we deal with solutions in the de Haan
class $\Pi$ (which are in fact slowly varying) and derive asymptotic formulae
for $tl_{1}eIr1$ . Under the same setting, in particular when $t^{\alpha}p(t)/r(t)arrow 0$ as
$tarrow\infty$ , in Section 6 we study non-slowly varying solutions. The case when
$t^{\alpha}p(t)/r(t)arrow C>0$ as $tarrow\infty$ is considered in Section 7; regular variation of
positive solutions is shown and asymptotic formulae are obtained. The results
of the previous sections are used in Section 8, which presents a classification
of nonoscillatory solutions in the framework of regular variation. A certain
generalization and a border-line case are discussed in Section 9, The paper
is concluded with indicating some of the possible directions for the future
research.

As usual, the relation $f(t)\sim g(t)$ $(as tarrow\infty)$ means $\lim_{tarrow\infty}f(t)/9(t)=1$

and $f(t)=o(g(t))$ $(as tarrow\infty)$ means $\lim_{tarrow\infty}f(t)/g(t)=0.$

2 Nonoscillatory solutions

It is known (see [3, Chapter 4]) that (1) with positive $r,p$ is nonoscillatory, i.e.,

all its solutions are eventually of constant sign. Without loss of generality,

we work just with positive solutions, i,e., with the class

$S=$ {$y:y(t)$ is a positive solution of (1) for large $t$ }.

We wish to include our results into the framework of a standard classification
of nonoscillatory solutions, which is recalled in what follows. Because of the
sign conditions on the coefficients, all positive solutions of (1) are eventu-
ally monotone, therefore any such a solution belongs to one of the following
disjoint classes:

$\mathcal{I}S=\{y\in S:y’(t)>0$ for large $t\},$ $\mathcal{D}S=\{y\in S:y’(t)<0$ for large $t\}.$

It can be shown that both these classes are nonempty (see ([3, Lemma 4.1.2]).

The classes $\mathcal{I}\mathcal{S},$
$\mathcal{D}S$ can be divided into four mutually disjoint subclasses:

$\mathcal{I}S_{\infty}=\{y\in \mathcal{I}S$ : $\lim_{tarrow\infty}y(t)=\infty\},$ $\mathcal{I}S_{B}=\{y\in \mathcal{I}S$ : $\lim_{tarrow\infty}y(t)=b\in \mathbb{R}\},$

$\mathcal{D}\mathcal{S}_{B}=\{y\in \mathcal{D}S:\lim_{tarrow\infty}y(t)=b>0\},$ $\mathcal{D}\mathcal{S}_{0}=\{y\in \mathcal{D}\mathcal{S}:\lim_{tarrow\infty}y(t)=0\}.$
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Define the so called quasiderivative $y^{[1]}$ of $y\in \mathcal{S}$ by $y^{[1]}=r\Phi(y’)$ . We
introduce the following convention

$\mathcal{I}S_{u,v}=\{y\in \mathcal{I}S$ : $\lim_{tarrow\infty}y(t)=u,$ $\lim_{tarrow\infty}y^{[1]}(t)=v\}$

$\mathcal{D}S_{u,v}=\{y\in \mathcal{D}S$ : $\lim_{tarrow\infty}y(t)=u,$ $\lim_{tarrow\infty}y^{[1]}(t)=v\}.$

For the subscripts of $\mathcal{I}S$ and $\mathcal{D}S$ , by $u=B$ resp. $v=B$ we mean that
the value of $u$ resp. $v$ is a real nonzero number. Using this convention we
further distinguish the following types of solutions which form subclasses
in $\mathcal{D}\mathcal{S}_{\{i)},$ $\mathcal{D}S_{B},$ $\mathcal{I}S_{B}$ , and $\mathcal{I}S_{\infty}$ (we list only those ones that are not $a$-priori
excluded):

$\prime DS_{0,0}, DS_{0,B}, \mathcal{D}\mathcal{S}_{B,0}, \mathcal{D}\mathcal{S}_{B,B}, \mathcal{I}S_{B,l3},\mathcal{I}\mathcal{S}_{B,\infty\rangle}\mathcal{I}S_{\infty,B)}\mathcal{I}S_{oo,\infty}$ . (2)

More information about (non)existence of solutions in these subclasses can
be found in [2] and [3, Chapter 4].

No matter whether $p$ is positive, if (1) is nonoscillatory, then there exists
a nontrivial solution $y$ of (1) such that for every nontrivial solution $u$ of
(1) with $u\neq\lambda y,$ $\lambda\in \mathbb{R}$ , we have $y’(t)/y(t)<x’(t)/x(t)$ for large $t$ , see [3,
Section 4.2], [22]. Such a solution is said to be a principal solution. Solutions
of nonoscillatory equation (1) which are not principal, are called nonprincipal
solutions. Principal solutions are unique up to a constant multiple. Denote
$\mathfrak{P}=$ { $y\in \mathcal{S}$ : $y$ is principal}.

The so-called Riccati technique for (1) (in combination with other tools)
plays an important role in some of the proofs. Its basic idea is as follows, see
[3, Chapter 1]. Let $y\in S$ . Denoted $w=r\Phi(y’/y)$ , it satisfies the generalized
Riccati equation

$w’-p(t)+(\alpha-1)r^{1-\beta}(t)|w|^{\beta}=0$ , (3)

where $\beta$ denotes the conjugate number of $a$ , i.e., $1/\alpha+1/\beta=1$ . Another
substitution (introduced in [4]) $v=h^{(X}w-rh\Phi(h’),$ $h\in C^{1},$ $h(t)\neq 0$ leads to
a modified Riccati equation, and is very useful in the proof of Theorem 6 and
Theorem 7. This substitution supplies –to some extent – the $(1inear^{\}\prime})$

transformation of dependent variable $y=hu$ in equation (1), which does
not work in the half-linear case because of lack of additivity. Recall that
another serious limitation in the theory of half-linear differential equations
is the absence of a reduction of order formula; the reason is that there is no
reasonable Wronskian identity for half-linear equations.

By $\Phi^{-1}$ we mean the inverse of $\Phi_{\}}$ i.e., $\Phi^{-1}(u)=|u|^{\beta-1}$ sgn $u$ . If $\alpha=2,$

then $\Phi=\Phi^{-1}=id$ and (1) reduces to the linear equation $(r(t)y’)’=p\langle t$ ) $y.$
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3 The Karamata theory of regular variation
and the de Haan theory

In this section we recall some of the basic concepts of the Karamata theory
of regularly varying functions and the de Haan theory, which are useful in
studying differential equations. For more information on regular variation
see the monographs $[1, 7_{\}}9].$

A measurable function $f$ : $[a, \infty$ ) $arrow(0, \infty)$ is called regularly varying (at

infinity) of index $\theta$ if

$\lim_{tarrow\infty}\frac{f(\lambda t)}{f(t)}=\lambda^{\theta}$ for every $\lambda>0$ ; (4)

we write $f\in \mathcal{R}\mathcal{V}(\theta)$ . If $\theta=0$ , then we speak about slowly varying $f_{\mathfrak{U}}nctions$ ;
we write $f\in S\mathcal{V}$ , thus $S\mathcal{V}=\mathcal{R}\mathcal{V}(O)$ .

The so-called Uniform Convergence Theorem (see e.g. [1]) says that if
$f\in \mathcal{R}\mathcal{V}(\theta)$ , then relation (4) holds uniformly on each compact $\lambda$-set in
$(0, \infty)$ .

It follows that $f\in \mathcal{R}\mathcal{V}(\theta)$ if and only if there exists a function $L\in S\mathcal{V}$

such that $f(t)=t^{\theta}L(t)$ for every $t$ . The slowly varying component of $f\in$

$\mathcal{R}\mathcal{V}(\theta)$ will be denoted by $L_{f}$ , i.e.,

$L_{f}(t):= \frac{f(t)}{t^{\theta}}.$

The Representation Theorem (see e.g. [1]) says the following: $f\in \mathcal{R}\mathcal{V}(\theta)$

if and only if

$f(t)= \varphi(t)t^{\theta}\exp\{\int_{a}^{t}\frac{\psi(s)}{s}d_{\mathcal{S}}\}$ , (5)

$t\geq a$ , for some $a>0$ , where $\varphi,$
$\psi$ are measurable with $\lim_{tarrow\infty}\varphi(t)=C\in$

$(0, \infty)$ and $\lim_{tarrow\infty}\psi(t)=0.$

A function $f\in \mathcal{R}\nu(\theta)$ can alternatively be represented as

$f(t)= \varphi(t)\exp\{\int_{a}^{t}\frac{\omega(s)}{s}ds\}$ , (6)

$t\geq a$ , for some $a>0$ , where $\varphi,$
$\omega$ are measurable with $\lim_{tarrow\infty}\varphi(t)=C\in$

$(0, \infty)$ and $\lim_{tarrow\infty}\omega(t)=\theta.$

From many interesting properties of $\mathcal{R}\nu$ functions, which are useful in
our theory, let us mention here only the following Karamata Integration
Theorem $(see e.g. [1, 7 Let L\in \mathcal{S}\mathcal{V}.$ (i) If $\theta<-1$ , then $\int_{t}^{\infty}s^{\theta}L(s)ds\sim$

$\frac{1}{-\theta-1}t^{\theta+1}L(t)$ as $tarrow\infty$ . (ii) If $\theta>-1$ , then $\int_{a}^{t}s^{\theta}L(s)d_{\mathcal{S}}\sim\frac{1}{\theta+1}t^{\theta+1}L(t)$ as
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$tarrow\infty$ . (iii) If $\int_{a}^{\infty}L(s)/sds$ converges, then $\tilde{L}(t)=\int_{t}^{\infty}L(\mathcal{S})/sds$ is a $S\mathcal{V}$

function; if $\int_{a}^{\infty}L(s)/sds$ diverges, then $\tilde{L}(t)=\int_{a}^{t}L(s)/sds$ is a $\mathcal{S}\mathcal{V}$ function;

in both cases, $L(t)/\overline{L}(t)arrow 0$ as $tarrow\infty.$

A regularly varying function $f$ is said to be normalized regularly vary\’ing,
we write $f\in \mathcal{N}\mathcal{R}\mathcal{V}(\theta)$ , if $\varphi(t)\equiv C$ in (5) or in (6). If (5) holds with $\theta=0$

and $\varphi(t)\equiv C$ , we say that $f$ is normalized slowly varying, we write $f\in \mathcal{N}S\mathcal{V}.$

The following type of extension of $\mathcal{R}\mathcal{V}$ functions was introduced in [11].
Motivation was primarily for purposes of studying differential equations.
Consider a continuously differentiable function a) which is positive and sat-
isfies $w’(t)>0$ for $t\in[b_{\}}\infty$ ) and $\lim_{tarrow\infty}\omega(t)=\infty$ . A measurable function
$f$ : $[a, \infty)arrow(0, \infty)$ is called regularly varying of index $\theta$ with respect to $\omega$

if $fo\omega^{-1}\in \mathcal{R}\mathcal{V}(\theta)$ , we write $f\in \mathcal{R}\mathcal{V}_{\omega}(\theta)$ . If $\theta=0$ , then $f$ is called slowly
varying with respect to $\omega$ ; we write $f\in \mathcal{S}\mathcal{V}_{\omega}.$

A function is called rapidiy varying, we write $f\in \mathcal{R}\mathcal{P}\nu(\infty)$ resp. $f\in$

$\mathcal{R}\mathcal{P}\mathcal{V}(-\infty)$ , if relation (4) holds with $\theta=\infty$ resp. $\theta=-\infty$ ; by $\lambda^{\infty}$ we mean
$\infty$ when $\lambda>1$ , and $0$ when $\lambda\in(O, 1)$ , similarly for $\lambda^{-\infty}$ . While $\mathcal{R}\mathcal{V}$ functions
of non-zero indices behave like power functions (up to a factor which varies
“more slowly $\mathcal{R}\mathcal{P}\mathcal{V}$ functions have a behavior close to that of exponential
functions.

We now recall useful subclasses of $\mathcal{S}\mathcal{V}$ and $\mathcal{R}\mathcal{P}\mathcal{V}$ functions, namely the
classes Pi and Gamma, which were studied by de Haan and others.

A measurable function $f$ : $[a, \omega$ ) $arrow \mathbb{R}$ is said to belong to the class $\Pi$ if
there exists a function $w:(0, \infty)arrow(O, \infty)$ such that for $\lambda>0$

$\lim_{tarrow\infty}\frac{f(\lambda t)-f(t)}{w(t)}=\ln\lambda$ ; (7)

we write $f\in\Pi$ or $f\in\Pi(w)$ . The function $w$ is called an auxiliary function
for $f$ . The class $\Pi$ , after taking absolute values, forms a proper subclass of
$S\mathcal{V}.$

We write $f\in\Omega \mathcal{R}\mathcal{V}(\theta;w)$ if $t^{-\theta}f\in\Pi(w)$ . Then we speak about $fI$-regular
variation; this concept was introduced in [5].

A nondecreasing function $f$ : $\mathbb{R}arrow(0, \infty)$ is said to belong to the class $\Gamma$

if there exists a function $v$ : $\mathbb{R}arrow(0, \infty)$ such that

$\lim_{\mathfrak{z}\prec\infty}\frac{f(t+\lambda v(t))}{f(t)}=e^{\lambda}$ for all $\lambda\in \mathbb{R},$

we write $f\in\Gamma$ or $f\in\Gamma(v)$ . The function $v$ is called an auxiliary function
for $f$ . Further, $f\in\Gamma_{-}(v)$ if $1/f\in\Gamma(v)$ . We have $r(v)\subset \mathcal{R}\mathcal{P}\mathcal{V}(\infty)$ and
$\Gamma_{-}(v)\subset \mathcal{R}\mathcal{P}\mathcal{V}(-\infty)$ .
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A measurable function $\int:\mathbb{R}arrow(0, \infty)$ is called Beurling slowly varying
if

$\lim_{tarrow\infty}\frac{f(t+\lambda f(t))}{f(t)}=1$ for all $\lambda\in \mathbb{R}$ ;

we write $f\in \mathcal{B}\mathcal{S}\nu$ . If the relation holds uniformly on compact $\lambda$-sets, then
$f$ is called self-neglecting; we write $f\in S\mathcal{N}.$

4 Solutions in the classes $\Gamma$ and $\Gamma_{-}$

We start with increasing solutions. The proof of the next statement can be
found in [37]; the important tools are the Riccati technique (which involves
suitable weight functions), the theorem on differential inequalities, and the
properties of Beurling slowly varying functions and self-neglecting functions.
Note that this result was obtained in [29] in the special case when $r(t)\equiv 1$

and then extended in the same paper to the case $\int_{a}^{\infty}r^{1-\beta}(s)ds=\infty$ via a
suitable transformation of dependent variable. Using different techniques, in
[37] we extended the theorem to the case when the integral can also con-
verge. Moreover, in [37], we do not need to distinguish whether the integral
$\int_{a}^{\infty}r^{1-\beta}(s)ds$ converges or diverges. Note that, in contrast to the linear case,
the transformation of dependent variable (which can transform $a^{(}convergent$

’

case into $a^{(}$divergent) one) is not at disposal for equation (1).

Theorem 1. Suppose that $J_{1}= \lim_{Tarrow\infty}\int_{a}^{T}r^{1-\beta}(t)(\int_{a}^{t}p(s)ds)^{\beta-1}dt=\infty$

and $( \frac{r}{p})^{\frac{1}{\alpha}}\in \mathcal{B}S\nu$ . If there exists a function $\tilde{f}\in C^{1}$ satisfying

$\tilde{f}(t)\sim f(t)$ $:=( \frac{p(t)}{r(t)})^{-\frac{1}{\beta}}\frac{1}{r(t)}$ and $\lim_{tarrow\infty}\frac{\tilde{f}’(t)}{\tilde{f}^{2}(t)p(t)}=0$ , (8)

then $\mathcal{I}S=\mathcal{I}\mathcal{S}_{\infty}\subset\Gamma([\frac{(\alpha-1)r}{p}]^{\frac{1}{\alpha}})$

The statement of Theorem 1 can be reformulated in terms of generalized
$\mathcal{R}\mathcal{V}$ functions. Assume for simplicity that $r=1$ . Then $\mathcal{I}\mathcal{S}\subset \mathcal{N}\mathcal{R}\mathcal{V}_{\omega}((\alpha-$

$1)^{-\frac{1}{\alpha}})$ , where $\omega(t)=\exp\{\int_{a}^{t}p^{\frac{1}{a}}(s)d_{\mathcal{S}}\}$ , see [29].

A result in the spirit of Theorem 1 for the equation $y”=p(t)y$ (i.e., for
(1) with $\alpha=2$ and $r(t)=1$ ) can be found in [7, 23, 24, 25]. Note that the
Wronskian identity which is used in the proof of the linear case is not at our
disposal for equation (1).
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Next we deal with decreasing solutions. Some of the steps in the proof
are similar to those of the previous theorem, but some of them require a
quite different approach, see [37]. Besides, the concept of principal solution
plays an important role. As far as we know, the only result that deals with
a solution in the class $\Gamma_{-}$ was obtained in [24] for the linear equation, i.e.
when $\alpha=2$ , in the special case when $r(t)\equiv 1$ . Using a different method
we extend the statement to a quite wider class of equations and, moreover,
we deal with an entire subclass of decreasing solutions. In some aspects, the
following result is new even in the linear case, see also the remarks presented
after Corollary 1.

Theorem 2. Suppose that $J_{2}= \lim_{Tarrow\infty}\int_{a}^{T}r^{1-\beta}(t)(\int_{t}^{T}\gamma$) $(s)ds)^{\beta-1}dt=\infty$

or $1<1_{J}$ and $( \frac{r}{p})^{\frac{1}{\alpha}}\in \mathcal{B}S\mathcal{V}$ . If there exist functions $\tilde{p},$
$\tilde{r}\in C^{1}$ such that

$\tilde{f}:=(\frac{\tilde{p}}{\tilde{r}})^{-\frac{1}{\beta}}\frac{1}{\tilde{r}}$ satisfies (8), then $\mathcal{D}S_{0}\subset\Gamma_{-}([\frac{(\alpha-\lambda)r}{p}]^{\frac{1}{\alpha}})$

The following corollary gives a precise classification of all solutions of (1)
in terms of de Haan classes $\Gamma$ and $\Gamma_{-}.$

Corollary 1. $As\mathcal{S}ume$ that $J_{1}=J_{2}=\infty$ and that $( \frac{r}{p})^{\frac{1}{\alpha}}\in \mathcal{B}\mathcal{S}\mathcal{V}$ . If there

exist functions $\tilde{p},$
$\tilde{r}$ such that $\tilde{p}\sim p,$ $\tilde{r}\sim r$ and $\tilde{f}:=(_{\tilde{r}}^{\tilde{\epsilon}})^{-\frac{1}{\beta}}\frac{1}{\tilde{r}}$ satisfies (8),

then

$\mathcal{I}\mathcal{S}\subset\Gamma([\frac{(\alpha-1)r}{p}]^{\frac{1}{\alpha}})$ and $\mathcal{D}S\subset\Gamma_{-}([\frac{(\alpha-1)r}{p}]^{\frac{1}{a}})$

As a by-product of Corollary 1, we get conditions guaranteeing that

$\mathcal{I}\mathcal{S}=\mathcal{I}\mathcal{S}_{\infty}\subseteq \mathcal{R}7^{2}\mathcal{V}(\infty)$ and $\mathcal{D}\mathcal{S}=\mathcal{D}S_{0}\subseteq \mathcal{R}\mathcal{P}\mathcal{V}(-\infty)$ .

A closer examination of the proofs of Theorem 1 and Theorem 2 shows
that under the conditions of Corollary 1 we have guaranteed the existence of
solutions $y_{i}$ of (1) such that

$y_{i}’(t) \sim\pm(\frac{p(t)}{r(t)(\alpha-1)})^{\frac{1}{\alpha}}y_{i}(t)$ (9)

as $tarrow\infty,$ $i=1,\cdot 2$ . If $\alpha=2$ and $r(t)=1$ , then (9) reduces to $y_{i}’(t)\sim$

$\pm\sqrt{p(t)}y_{i}(t)$ , $y_{i}$ being solutions of $y”=p(i)y$ . The same formulas in the linear
case were obtained in [10] by tIartman and Wintner under the assumptions
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$\int_{a}^{\infty}\sqrt{p(\mathcal{S})}ds=\infty$ and $p’(t)/p^{\frac{3}{2}}(t)arrow 0$ as $tarrow\infty$ . Omey in [23] rediscovered
this statement for an increasing solution $y_{1}$ and showed that $y_{1}\in\Gamma(p^{-\frac{J}{2}})$

under the assumption $p^{-\frac{1}{2}}\in \mathcal{B}S\mathcal{V}$ , see also [7, 24, 25]. A decreasing solution
of $y”=p(t)y$ which is in $\Gamma$-was found by Omey in [24] via the reduction
of order formula, with having at disposal an increasing solution in $\Gamma$ . Note
that this tool cannot be used in the half-linear case. We emphasize that
in Corollary 1 we work with all (possible) decreasing solutions and with a
general $r$ , which makes this statement new also in the linear case.

The ideas of the proofs of Theorem 1 and Theorem 2 can be used to
establish conditions–presented in the following theorem – which guarantee
regular variation of solutions to (1), see [37].

Theorem 3. Assume that there exist $\tilde{p},$
$\tilde{r}\in C^{1}$ such that

$\lim_{tarrow\infty}\frac{\tilde{f}’(t)}{\tilde{f}^{2}(t)\tilde{p}(t)}=D\in \mathbb{R}$ and $\lim_{tarrow\infty}((\frac{\tilde{p}(t)}{\tilde{r}(t)})^{-\frac{1}{\alpha}})’=C\in(O, \infty)$ ,

where $\tilde{f}=(_{\tilde{r}}^{\tilde{\epsilon}})^{-\frac{1}{\beta}}\frac{1}{\tilde{r}}$ , and $\tilde{p}(t)\sim p(t)$ , $\tilde{r}(t)\sim r(t)$ as $tarrow\infty$ . Let $\rho_{1}>0>\rho_{2}$

denote the roots of the equation

$| \rho|^{\beta}-\frac{D}{\alpha-1}\rho-\frac{1}{\alpha-1}=0.$

(i) If $J_{1}=\infty$ , then $\mathcal{I}S\subset \mathcal{N}\mathcal{R}\nu(\Phi^{-1}(\rho_{1})/C)$ .

(ii) If $J_{1}<\infty$ or $J_{2}=\infty$ , then $\mathcal{D}S_{0}\subset \mathcal{N}\mathcal{R}\nu(\Phi^{-1}(\rho_{2})/C)$ .

In fact, regular variation of all solutions was obtained by a different way
in the proof of the below presented Theorem 7, under the conditions $r\in$

$\mathcal{N}\mathcal{R}\mathcal{V}(\gamma)\cap C^{1}$ and (25). If the coefficients $r,p$ satisfy the conditions from
both Theorems 3 and 7, then – as expected – the corresponding indices
from both approaches coincide. There is also a relation with the results from
[12, 13], see the last paragraph of Section 7 for more details.

5 Solutions in the class $\Pi$

In this section we deal with solutions in the class $\Pi$ which are in fact slowly
varying. $Non-s\nu$ solutions under the same setting will be studied in the next
section.

To simplify writing asymptotic formulae for solutions, we denote

$\mathfrak{E}(\sigma, \tau, C, f)=\exp\{\int_{\sigma}^{\tau}(1+o(1))Cf(\mathcal{S})d_{\mathcal{S}}\},$
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where $o(1)$ is meant either as $\tauarrow\infty$ when $\tau<\infty$ or as $\sigmaarrow\infty$ when
$\tau=\infty.$

The following conditions play an important role:

$p\in \mathcal{R}\mathcal{V}(\delta) , r\in \mathcal{R}\mathcal{V}(\delta+\alpha)$ , (10)

$\delta\in \mathbb{R}$ , and

$\frac{L_{\gamma r}(t)}{L_{r}(t)}arrow 0$ as $tarrow\infty$ . (11)

Observe that (11) can be understood as $\lim_{iarrow\infty}t^{\alpha}r(t)/p(t)=$ O. As shown
in [37, Remark 11], the relation between the indices of regular variation of
the coefficients $r$ and $p$ is quite natural when dealing with slowly varying
solutions provided $\delta\neq-1$ ; a deeper discussion on this topic can be found in
[34, 35]. Denote

$G(t)=( \frac{tp(t)}{r(t)})^{\beta-?}$

If (10) holds, then $G(t)= \frac{1}{t}(\frac{L_{p}(t)}{L_{r}(t)})^{\beta-1}\in \mathcal{R}\mathcal{V}(-1)$ .

The proof of the fo owing statement can be extracted from [34, 37]. In

fact, there exist at least two approaches to the part in which we establish
asymptotic formulae. One is based on properties of the class $\Pi$ , the other one
utilizes the Karamata theorem. Besides, we use properties of $\mathcal{R}\mathcal{V}$ functions
and various estimates.

Theorem 4. Assume that (10) and (11) hold. If $\delta<-1$ , then $\mathcal{D}S\subset \mathcal{N}S\mathcal{V}$

$and-y(t)\in fI(-ty’(t))$ for any $y\in \mathcal{D}S$ . If $\delta>-1_{Z}$ then $\mathcal{I}S\subseteq \mathcal{N}S\mathcal{V}$ and
$y(t)\in\Pi(ty’(t))$ for any $y\in \mathcal{I}S.$ $Moreover_{t}$ for any $y\in \mathcal{D}S$ when $\delta<-1$

and any $y\in \mathcal{I}\mathcal{S}$ when $\delta>-1$ the following hold:
(i) If $\int_{a}^{\infty}G(\mathcal{S})ds=\infty$ , then

$y(t)=\mathfrak{E}(a, t, 1/\Phi^{-1}(\delta+1), G)$ (12)

as $tarrow\infty$ , where $y\in \mathcal{D}\mathcal{S}_{0,0}$ provided $y\in \mathcal{D}S$ and $\delta<-1$ , while $y\in \mathcal{I}S_{\infty,\infty}$

provided $y\in \mathcal{I}\mathcal{S}$ and $\delta>-1.$

(ii) If $f_{c\iota}^{\infty}G(s)ds<\infty$ , then

$y(t)=N\mathfrak{E}(t, \infty, -1/\Phi^{-1}(\delta+1), G)$ (13)

as $tarrow\infty_{J}$ where $N$ $:= \lim_{tarrow\infty}y(t)\in(0, \infty)_{f}$ where $y\in \mathcal{D}\mathcal{S}_{B,0}$ provided
$y\in \mathcal{D}S$ and $\delta<-1$ , white $y\in \mathcal{I}\mathcal{S}_{B,\infty}$ provided $y\in \mathcal{I}S$ and $\delta>-1.$

Moreover, in any case, $|N-y|\in \mathcal{S}\mathcal{V}$ and

$\frac{L_{p}^{\beta-1}(t)}{L_{r}^{\beta-1}(t)(N-y(t))}=o(1)$ (14)

as $tarrow\infty.$
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As a special ca.se of Theorem 4 $($when $\alpha=2, r(t)=1$ , and considering
decreasing solutions) we get [6, Theorem 0.1-A]. Other statements (including
one of the approaches in the proof) are new also in the linear case.

Under condition (10), $S\mathcal{V}$ solutions of (1) necessarily decrease provided
$\delta<-1$ while $S\mathcal{V}$ solutions of (1) necessarily increase provided $\delta>-1$ , see
[37, Remark 8, Remark 11].

6 $Non-s\nu$ solutions when $t^{\alpha}p(t)/r(t)arrow 0$

This section discusses a complementary case with respect to Theorem 4,
namely we study increasing solutions when $\delta<-1$ and decreasing solutions
when $\delta>-1$ . Under the same setting (i.e., (10) and (11)) we can prove
regular variation of these solutions where the index is equal to

$\rho:=\frac{-1-\delta}{\alpha-1},$

and derive asymptotic formulas. Many of our considerations are new also
in the linear case. Note that if $\delta=-\alpha$ (which happens, for instance, when
$r(t)\equiv 1$ under condition (10)), then $\rho=1.$

Denote

$H(t)= \frac{t^{\alpha-1}p(t)}{r(t)}.$

If (10) holds, then $H(t)= \frac{1}{t}\cdot\frac{L_{p}(t)}{L_{r}(t)}\in \mathcal{R}\mathcal{V}(-1)$ . Since the convergence/diver-

gence of the integrals $\int^{\infty}G$ and $\int^{\infty}H$ plays an important role, the following
example is of interest.

Example 1. Taking $r,p$ which satisfy (10) and such that $L_{p}(t)/L_{r}(t)=\ln^{\gamma}t,$

$\gamma\in(-\infty, 0)$ , we see that (11) is fulfilled. Moreover, if $\alpha<2$ and $-1<\gamma<$

$1-\alpha$ then $\int^{\infty}G<\infty$ while $\int^{\infty}H=\infty$ , and if $\alpha>2$ and $1-\alpha<\gamma<-1$

then $\int^{\infty}G=\infty$ while $\int^{\infty}H<\infty$ . Note that in the linear case $(i.e., \alpha=2)$ ,
$G$ and $H$ are always the same.

There are more ways how to attack the above problem. The next theorem
can actually be proved in two completely different ways, see [34]. The first one
is based on the so-called reciprocity principle, with using Theorem 4. The
second one is based on the Riccati technique in combination with various
properties of regularly varying functions and functions in the class $\Pi$ . Later
we present a variant of that theorem, which is proved by a third way. Note
that the reduction of order formula and fundamental set of solutions are
another concepts which could be used to deal with the above problem for
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linear equations. However, these tools are not at disposal in the half-linear
case.

Theorem 5. Assume that (10) and (11) hold. If $\delta<-1$ , then $\mathcal{I}S\subseteq$

$\mathcal{N}\mathcal{R}\mathcal{V}(\rho)$ . If $\delta>-1$ , then $\mathcal{D}S\subseteq N\mathcal{R}\mathcal{V}(\rho)$ . Moreover, one has $y^{[1]}(t)\in$

$\Pi(tp(t)\Phi(y(t)))$ for any $y\in S\cap \mathcal{N}\mathcal{R}\mathcal{V}(\rho)$ . For any $y\in \mathcal{I}S$ when $\delta<-1$ and
any $y\in \mathcal{D}\mathcal{S}$ when $\delta>-1$ the following hold:

(i) If $\int_{a}^{\infty}H(s)ds=\infty$ , then

$y(t)=A+\prime_{a}^{t}r^{1-\beta}(s)\mathfrak{E}(a, s, (\beta-1)/\rho^{\alpha-1}, H)ds$ (15)

as $tarrow oo$ , for some $\mathcal{A}\in \mathbb{R}$ , with $y\in ZS_{\infty,\infty}$ provided $y\in \mathcal{I}S$ and $\delta<-1_{f}$

while
$y(t)= \int_{t}^{\infty}r^{1-\beta}(s)e(a, s, -(\beta-1)/|\rho|^{\alpha-1}, H)d_{\mathcal{S}}$ (16)

as $tarrow\infty$ , with $y\in \mathcal{D}\mathcal{S}_{0,0}$ provided $y\in \mathcal{D}S$ and $\delta>-1.$

(ii) If $\int_{a}^{\infty}H(s)ds<\infty_{z}$ then

$y(t)=A+ \int_{a}^{t}M^{\beta-1}r^{1-\beta}(s)\mathfrak{E}(s, \infty, -(\beta-1)/\rho^{\alpha-1}, H)d_{\mathcal{S}}$ (17)

as $tarrow\infty$ , for some $A\in \mathbb{R}_{f}$ with $y\in \mathcal{I}\mathcal{S}_{\infty,B}$ provided $y\in \mathcal{I}S$ and $\delta<-1,$

while
$y(t)=\prime_{t}^{\infty}|M|^{\beta-1}r^{1-\beta}(s)\mathfrak{E}(s, \infty, (\beta-1)/|\rho|^{\alpha-1}, H)d_{\mathcal{S}}$ (18)

as $tarrow\infty$ , with $y\in \mathcal{D}S_{0,B}$ provided $y\in \mathcal{D}S$ and $\delta>-1$ , where $M=$

$\lim_{tarrow\infty}y^{[1]}(t)\in \mathbb{R}\backslash \{0\}$ . Moreover, in any case, $M-y^{[1]}\in \mathcal{S}\mathcal{V}$ and

$\frac{L_{p}(t)}{L_{r}(t)(M-y^{[1]}(t))}=o(1)$ (19)

as $tarrow\infty.$

Exaxnple 2. Let $p(t)=t^{\delta}L_{p}(t)$ , $\delta\neq-1$ , with $L_{p}(i)=$ $($ In $t)^{v1}+g_{1}(t)$ , and
$r(t)=t^{\delta+\alpha}L_{r}(t)$ with $L_{r}(t)=(\ln t)^{\nu 2}+g_{2}(t)$ , where $|g_{i}(t)|=o((\ln t)^{\nu_{i}})$ as
$iarrow\infty,$ $i=1$ , 2, and $\nu_{1}<\nu_{2}$ . Then $L_{p},$ $L_{r}\in S\mathcal{V}$ and $\lim_{tarrow\infty}L_{p}(t)/L_{r}(t)=0.$

For example, one can take $g_{i}(t)=\sin t$ or $g_{i}(t)=\ln(\ln t)$ provided $\nu_{i}>$ O.
We have

$G(t) \sim\frac{1}{t}(\ln t)\mapsto^{\nu-v\alpha-\lambda}$ and $H(t) \sim\frac{1}{t}(\ln t)^{v_{1^{-\nu}2}}$

as $tarrow\infty$ . Having these relations, it is now easy to obtain formulae from
Theorem 4 and Theorem 5 for solutions of the equation with the above
defined coefficients,

11



Formulae (15) and (16) can be both written as

$y(t)=tr^{1-\beta}(t)\mathfrak{E}(a, t, (\beta-1)/\Phi(\rho), H)$ (20)

as $tarrow\infty$ , see [34].
If we assume – under the conditions of Theorem 7 – that $y$ is a solution

such that $\lim_{tarrow\infty}y^{[1]}(t)=M\in \mathbb{R}\backslash \{0\}$ , then the simple (and less precise)
formula

$y(t)=(1+o(1)) \frac{\Phi^{-1}(M)}{\rho}tr^{1-\beta}(t)$ (21)

as $tarrow\infty$ can easily be obtained.
Assume that (10) holds. Condition (11) is necessary for the existence of

$y\in S\cap \mathcal{N}s\nu$ or $y\in \mathcal{S}_{\cap}\mathcal{N}\mathcal{R}\mathcal{V}(\rho)$ provided $\delta\neq-1_{\rangle}$ see [34, Remark 4] and
[37, Remark 7, Remark 10].

In fact, to prove regular variation of our monotone solutions, the condi-
tions (10) and (11), as well as the below discussed condition (25), can be
somehow weakened into an integral form. Assuming regular variation of the
coefficients of (1), conditions (11) and (25) are necessary for the existence of
regularly varying solutions. See [34. 35, 37] for details.

The modified Riccati technique, which plays an important role in proving
the results in the next section, in combination with Theorem 4 and Theo-
rem 5, leads to the following variant of Theorem 5, see [35].

Theorem 6. Let $p\in \mathcal{R}\mathcal{V}(\delta)$ , $r\in \mathcal{N}\mathcal{R}\mathcal{V}(\delta+\alpha)\cap C^{1},$ $\delta\neq-1$ , and (11) hold.
Assume that $L\in S\mathcal{V}$ , where

$L(t)=L_{p}(t)/L_{r}(t)+\Phi(\rho)(\delta+\alpha-tr’(t)/r(t))$ . (22)

If $\delta<-1$ , then $\mathcal{I}\mathcal{S}\subset \mathcal{N}\mathcal{R}\mathcal{V}(\rho)$ . If $\delta>-1$ , then $\mathcal{D}\mathcal{S}\subset \mathcal{N}\mathcal{R}\mathcal{V}(\rho)$ . Moreover,

for any $y\in \mathcal{I}S$ when $\delta<-1$ and any $y\in \mathcal{D}\mathcal{S}$ when $\delta>-1$ , the following
hold:

(i) If $\int_{a}^{\infty}L(s)/sds=\infty$ , then

$y(t)=t^{\rho}\mathfrak{E}(a, t, 1/((\alpha-1)(\Phi(\rho))), L(s)/s)$ (23)

as $tarrow\infty$ , where $y(t)/t^{\rho}\nearrow\infty$ as $tarrow\infty$ provided $y\in \mathcal{I}\mathcal{S}$ and $\delta<-1$ , and
$y(t)/t^{\rho}\searrow 0$ as $tarrow\infty$ provided $y\in \mathcal{D}\mathcal{S}$ and $\delta>-1.$

(ii) If $\int_{a}^{\infty}L(s)/sds<\infty$ , then

$y(t)=Dt^{\rho}\mathfrak{E}(t, \infty, -1/((\alpha-1)(\Phi(\rho))), L(s)/s)$ (24)

as $tarrow\infty$ , where $y(t)/t^{\rho}\nearrow D=D(y)\in(0, \infty)$ as $tarrow\infty$ provided $y\in \mathcal{I}S$

and $\delta<-1$ , while $y(t)/t^{\rho}\searrow D=D(y)\in(0, \infty)$ as $tarrow\infty$ provided $y\in \mathcal{D}S$

and $\delta>-1$ . Moreover, $|y(t)/t^{\rho}-D|\in \mathcal{S}\mathcal{V}$ and $L(t)/(D-y(t)/t^{\rho})=o(1)$

as $tarrow\infty.$

If $r(t)=t^{\delta+\alpha}$ and $p(t)=t^{\delta}L_{p}(t)$ , then $L$ from Theorem 6 reduces to $L_{p}.$
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7 $\mathcal{R}\mathcal{V}$ solutions when $t^{\alpha}p(t)/r(t)arrow C>0$

As we have already noticed, (11) can be viewed as $\lim_{tarrow\infty}t^{\alpha}p(t)/r(t)=$ O.
A logical step is to assume that this limit is nonzero, i.e,,

$\lim_{tarrow\infty}t^{\alpha}p(t)/r(t)=C>0$ . (25)

Let $\lambda_{1_{\rangle}}\lambda_{2},$ $\lambda_{1}>\lambda_{2}$ , denote the (real) roots of the equation

$| \lambda|^{\beta}+\frac{\gamma+\lambda-\alpha}{\alpha-1}\lambda-\frac{C}{\alpha-1}=0$ , (26)

where $C>0,$ $\gamma\in \mathbb{R}$ . We have $\lambda_{2}<0<\lambda_{1}$ . Denote $\theta_{i}=\Phi^{-1}(\lambda_{i})$ , $i=1$ , 2.
The following theorem was proved in [35]. Our method is new even in the

linear case. By means of the Riccati technique - the approach is however
different from the one used in Theorem 3 – we first show regular variation
of all positive solutions. In the further step, an important role is played by
the transformation into the modified Riccati equation. We can then apply
Theorem 4. In fact, the latter transformation means – to some extent – $a$

linearization of the problem.

Theorem 7. Assume that $r\in \mathcal{N}\mathcal{R}\mathcal{V}(\gamma)\cap C_{J}^{1}$ condition (25) holds, and

$L_{i}(t)$ $:=t^{\alpha}p(t)/r(t)-C-\Phi(\theta_{i})(\gamma-tr’(i)/r(t))\in S\mathcal{V}$ , (27)

$i=1$ , 2. Then $\mathcal{I}S\subseteq \mathcal{N}\mathcal{R}\mathcal{V}(\theta_{1})$ and $\mathcal{D}S\subseteq \mathcal{N}\mathcal{R}\mathcal{V}(\theta_{2})$ . Moreover, for every
$y_{1}\in \mathcal{I}\mathcal{S}$ and every $y_{2}\in \mathcal{D}S,$ $y_{i}(t)\in\Pi \mathcal{R}\mathcal{V}(\theta_{f};t^{1-\theta_{i}}y_{?}’\cdot(t)-\theta_{i}t^{-\theta_{t}}y_{i}(t))$ , $i=1$ , 2,
and the following hold:

(i) If, for $i=1$ or $i=2_{f} \int_{a}^{\infty}L_{i}(s)/sds=\infty$ , then

$y_{i}(t)=\iota^{\theta_{i}}e(a, t, 1/((\alpha-1\rangle(\Phi(\theta_{i})+C/\theta_{i})), L_{i}(s)/s)$ (28)

with $y_{i}(t)/b^{\theta_{1}}\nearrow\infty$ and $y_{2}(t)/t^{\theta_{2}}\searrow 0$ as $tarrow\infty.$

(ii) $If_{f}$ for $i=1$ or $i=2,$ $\int_{a}^{\infty}L_{i}(s)/sds<\infty$ , then

$y_{i}(t)=D_{i}t^{\theta_{i}}\mathfrak{E}(t, \infty, -1/((\alpha-1)(\Phi(\theta_{i})+C/\theta_{i})), L_{i}(s)/s)$ (29)

with $y_{z’}(t)/t^{\theta_{1}}\nearrow D_{1}=D_{1}(y_{1})\in(0, \infty)$ and $y_{2}(t)/t^{\theta_{2}}\searrow D_{2}=D_{2}(y_{2})\in$

$(0, \infty)$ as $tarrow\infty$ . Moreover, $|y_{i}(t)/t^{\theta_{i}}-D_{i}|\epsilon \mathcal{S}\mathcal{V}$ and

$L_{i}(t)/(D_{i}-y_{i}(t)/t^{\theta_{i}})=o(1)$ (30)

as $tarrow\omega_{f}i=1$ , 2.
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Next we give examples that present various types of situations as for
behavior of $L_{1},$ $L_{2}.$

Example 3. (i) Let $r(t)=t^{\gamma},$ $\gamma\in \mathbb{R}$ . Then $L_{1}(t)=t^{\alpha}p(t)/r(t)-C=L_{2}(t)$ ,
and so the functions $L_{1},$ $L_{2}$ coincide.

(ii) Let $r\in \mathcal{N}\mathcal{R}\mathcal{V}(\gamma)\cap C^{1},$ $\gamma\in \mathbb{R}$ , and $p(t)=CL_{r}(t)t^{\gamma-\alpha},$ $C\in(0, \infty)$ .
Then $t^{\alpha}p(t)/r(t)=C$ and so

$L_{i}(t)=- \Phi(\theta_{i})\frac{tL_{r}’(t)}{L_{r}(t)}.$

If, in addition, $L_{r}’(t)>0$ , then $L_{1}(t)<0$ and $L_{2}(t)>0$ . Moreover, $L_{r}$ can
be found such that $L_{2}\in s\nu$ . Indeed, if, for instance, $L_{r}(t)=$ In $t$ , then
$tL_{r}’(t)/L_{r}(t)=1/\ln t\in S\mathcal{V}$ . Thus the situation where (25) is fulfilled and
(27) holds for only one index can occur.

(iii) Let $r(t)=t^{\gamma}\ln t,$ $\gamma\in \mathbb{R}$ , and

$p(t)=(C \ln t+\Phi(\theta_{1})+\frac{C}{\ln t})$ ,

$C\in(0, \infty)$ . Then $t^{\alpha}p(t)/r(t)=C+\Phi(\theta_{1})/\ln t+C/\ln^{2}tarrow C$ as $tarrow\infty,$

and $tr’(t)/r(t)=\gamma+1/\ln t$ . Further we have, $L_{1}(t)=C/\ln^{2}t\in s\nu$ and
$L_{2}(t)=(\Phi(\theta_{1})-\Phi(\theta_{2}))/\ln t+C/\ln^{2}t\in SV$ . Since $(-1/\ln t)’=L_{1}(t)/C$ , we
get $\int_{2}^{\infty}L_{1}(s)/sds<\infty$ . Moreover, $\int_{2}^{\infty}L_{2}(s)/sds=\infty$ because of $[\Phi(\theta_{1})-$

$\Phi(\theta_{2})](\ln(\ln t$ $=[\Phi(\theta_{1})-\Phi(\theta_{2})]/(t\ln t)<L_{2}(t)/t$ . Thus we see that the
case where $\int_{a}^{\infty}L_{i}(\mathcal{S})/sds=\infty$ while $\int_{a}^{\infty}L_{3-i}(\mathcal{S})/sds<\infty$ for one of $i\in$

$\{1$ , 2 $\}$ can generally occur in Theorem 7.

If $\alpha=2,$ $r(t)=1$ , and $i=2$ , then (28) reduces to the first formula in [6,
Theorem 0.2]. The idea of the proof is different.

A fixed point approach was used in [12, 13] to derive conditions which
guarantee the existence of a couple of $\mathcal{R}\mathcal{V}$ solutions to equation (1) (with
the indices which exactly correspond to the indices from Theorem 7). For
$r(t)\not\equiv 1$ , the concept of generalized regular variation was used. The con-
ditions in [12, 13] are in a more general (integral) form than the ones in-
volving $\lim_{tarrow\infty}t^{\alpha}p(t)/r(t)$ (namely, for instance, that there exists the proper
limit $\lim_{tarrow\infty}t^{\alpha}\int_{t}^{\infty}p(\mathcal{S})ds$ provided $r(t)\equiv 1$ ) and are shown to be necessary.
On the other hand, here we guarantee regular variation of every eventually
positive solution and establish asymptotic formulae for all of them. For the
classical results on regular variation of solutions in the linear case see [18, 19].
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8 Classification of nonoscillatory solutions in
the framework of regular variation

Denote
$S_{\mathcal{S}\mathcal{V}}=S\cap S\mathcal{V}, \mathcal{S}_{\mathcal{R}\mathcal{V}}(\theta)=S\cap \mathcal{R}\mathcal{V}(\theta)$ ,
$\mathcal{S}_{NS\mathcal{V}}=S\cap \mathcal{N}S\mathcal{V}, \mathcal{S}_{\mathcal{N}\mathcal{R}v}(\theta)=S\cap \mathcal{N}\mathcal{R}\mathcal{V}(\theta)$ .

If (10) holds, we set

$J= \prime_{a}^{\infty}\frac{1}{i}(\frac{L_{p}(t)}{L_{r}(t)})^{\mathcal{B}-1}dt$ and $R= \int_{a}^{\infty}\frac{1}{t}\cdot\frac{L_{p}(t)}{L_{r}(t)}dt$

We actually have

$J= \int_{a}^{\infty}G(t)dt$ and $R= \int_{a}^{\infty}H(t)dt$

under condition (10). Further denote

$\mathfrak{P}=$ {$y\in S,$ $y$ is principal}.

The results from Section 5 and Section 6 play an important role in proving
the following corollary, see [34].

Corollary 2. Let (10) and (11) hold.
(i) Assume that $\delta<-1.$

$(iarrow a)$ If $J=\infty$ , then $S_{Nsv}=\mathcal{S}_{\mathcal{S}\mathcal{V}}=\prime DS=\mathcal{D}S_{0,0}=\mathfrak{P}$ . For any $y\in \mathcal{D}S$

formula (12) holds.

(i-b) If $J<\infty_{f}$ then $\mathcal{S}_{NSV}=S_{S\mathcal{V}}=\prime D\mathcal{S}=DS_{B,0}=\mathfrak{P}$ . For any $y\in\prime D\mathcal{S}$

formula (13) holds.

(i-c) If $R=\infty$ , then $\mathcal{S}_{\Lambda^{r}\mathcal{R}\mathcal{V}}(\rho)=S_{\mathcal{R}\mathcal{V}}(\rho)=\mathcal{I}S=\mathcal{I}\mathcal{S}_{\infty_{i}\infty}$ . For any $y\in \mathcal{I}\mathcal{S}$

formulae (15) and (20) hold.

(i-d) If $R<\infty$ , then $S_{N\mathcal{R}\mathcal{V}}(\rho)=\mathcal{S}_{\mathcal{R}\mathcal{V}}(\rho)=\mathcal{I}S=\mathcal{I}S_{\infty,B}$ . For any $y\in \mathcal{I}S$

formulae (17) and (21) hold.

(ii) Assume that $\delta>-1.$

(ii-a) If $J=\infty$ , then $\mathcal{S}_{NS\mathcal{V}}=S_{\mathcal{S}\mathcal{V}}=\mathcal{I}S=\mathcal{I}\mathcal{S}_{\infty_{\backslash }\infty}$ . For any $y\in \mathcal{I}\mathcal{S}$ formula
(12) holds.

(ii-b) If $J<\infty_{J}$ then $\mathcal{S}_{NS\mathcal{V}}=S_{S\mathcal{V}}=\mathcal{I}S=\mathcal{I}\mathcal{S}_{B,\infty}$ , For any $y\in \mathcal{I}S$ formula
(13) holds.
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(ii-c) If $R=\infty$ , then $S_{N\mathcal{R}\mathcal{V}}(\rho)=S_{\mathcal{R}\mathcal{V}}(\rho)=\mathcal{D}S=\mathcal{D}S_{0,0}=\mathfrak{P}$ . For any
$y\in \mathcal{D}S$ formulae (16) and (20) hold.

(ii-d) If $R<\infty$ , then $S_{\mathcal{N}\mathcal{R}\nu}(\rho)=S_{\mathcal{R}v}(\rho)=\mathcal{D}S=\mathcal{D}\mathcal{S}_{0,B}=\mathfrak{P}$ . For any
$y\in \mathcal{D}\mathcal{S}$ formulae (18) and (21) hold.

Related to the setting of Section 7 is the following corollary, see [35].

Corollary 3. Let $r\in \mathcal{N}\mathcal{R}\mathcal{V}(\gamma)\cap C^{1}$ , (25), and (27) $hold_{f}$ where $\lambda_{1}=$

$\Phi(\theta_{1})>\lambda_{2}=\Phi(\theta_{2})$ are the roots of (26). Then

$S_{\mathcal{N}\mathcal{R}\mathcal{V}}(\theta_{1})=\mathcal{S}_{\mathcal{R}\mathcal{V}}(\theta_{1})=\mathcal{I}S=\mathcal{I}S_{\infty,\infty}$

and
$\mathcal{S}_{\mathcal{N}\mathcal{R}\mathcal{V}}(\theta_{2})=\mathcal{S}_{\mathcal{R}\mathcal{V}}(\theta_{2})=\mathcal{D}S=\mathcal{D}S_{0,0}=\mathfrak{P}.$

$Moreover_{J}$ for any $y_{1}\in \mathcal{I}S$ and $y_{2}\in \mathcal{D}S$ respective formulae from Theorem 7
hold.

As expected, the conditions from the previous corollaries naturally match
the general existence conditions for (non-)emptiness of the standard asymp-
totic classes (established e.g. in [2, 3]) – this was revealed in [34]. Besides,
we show a connection with regular variation and provide asymptotic formu-
lae.

9 Generalization and the case $\delta=-1$

We now establish a generalization of the results from the previous Sections
5, 6, and 7, We distinguish the two cases, namely

$\int_{a}^{\infty}r^{1-\beta}(s)ds=\infty$ and $\int_{a}^{\infty}r^{1-\beta}(s)ds<\infty$ . (31)

In the former case we denote $R(t)= \int_{a}^{t}r^{1-\beta}(\mathcal{S})ds$ while in the latter one we
denote $\overline{R}(t)=\int_{t}^{\infty}r^{1-\beta}(\mathcal{S})ds$ . Further, $R^{-1}$ stands for the inverse of $R$ and
$Q^{-1}$ is the inverse of $Q$ , where $Q=1/\overline{R}.$

An important role in the proofs is played by certain transformations of
independent variable, in combination with the results of Sections 5, 6, and
7, and various properties of $\mathcal{R}\mathcal{V}$ functions.

Recall that if $\int_{a}^{\infty}r^{1-\beta}(s)ds=\infty$ , then a suitable choice in the trans-
formation of dependent variable can transform (1) into $\frac{d}{ds}(r_{T}(s)\Phi (\frac{dx}{ds}))=$

$p_{T}(\mathcal{S})\Phi(x)$ , with $r_{T}=1$ , with preserving the type of the interval on which the
equation is defined. This however is not the case when $\int_{a}^{\infty}r^{1-\beta}(s)ds<\infty.$ $A$
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suitable transformation of dependent variable caIl transform the linear equa-
tion $(r(t)y’)’=p(t)y$ with $\int_{a}^{\infty}1/r(s)ds<\infty$ into the equation $(\hat{r}(t)x’)’=$

$\hat{p}(t)y$ with $\int_{a}^{\infty}1/\hat{r}(s)d_{\mathcal{S}}=\infty$ . However, such a transformation is not at dis-
posal for half-linear equation (1). That is why we examine separately the
cases distinguished in (31).

As we will see, as a by-product, we solve the natural problem arising from
Theorems 4 and 5, namely the missing case $\delta=-1,$

We start with a generalization of Theorem 4 (where $\delta<-1$ ) and Theo-
rem 5 (where $\delta<-1$ ), see [35].

Theorem 8. Assume that $\int_{a}^{\infty}r^{1-\beta}(s)ds=\infty,$ $\tilde{p}\in \mathcal{R}\mathcal{V}(-\alpha)$ , where $\tilde{p}=$

$(pr^{\beta-1})oR^{-1}$ , and $\lim_{tarrow\infty}L_{\overline{p}}(t)=0$ . Then for any $y\in \mathcal{D}S$ , one has $yoR^{-1}\in$

$\mathcal{N}S\mathcal{V}$ and the following hold:
(i-a) If $\int_{a}^{\infty}(R(s)p(s)r^{\beta-2}(s))^{\beta-1}ds=\infty$ , then

$y(t)=\mathfrak{E}(a, t, -(1/(\alpha-1))^{\beta-1}, (Rpr^{\beta-2})^{\beta-1})$ (32)

as $larrow\infty_{f}$ and $y\in \mathcal{D}\mathcal{S}_{0,0}.$

(i-b) If $\int_{a}^{\infty}(R(s)p(s)r^{\beta-2}(s))^{\beta-1}ds<\infty$ , then

$y(t)=N\mathfrak{E}(t, \infty, (1/(\alpha-1))^{\beta-1}, (Rpr^{\beta-2})^{\beta-1})$ (33)

as $tarrow\infty$ , with $\lim_{tarrow\infty}y(t)=N\in(0_{\}}\infty)$ , $y\in \mathcal{D}S_{B,0_{f}}yoR^{-1}-N\in \mathcal{S}\mathcal{V},$

and
$R^{\alpha}(t)p(t)r^{\beta-1}(t)/[\Phi(y(t)-N)]=o(1)$ (34)

as $tarrow\infty.$

For any $y\in \mathcal{I}\mathcal{S}$ , one has $yoR^{-1}\in \mathcal{N}\mathcal{R}\mathcal{V}(1)$ and the following hold:
(ii-a) If $\int_{a}^{\infty}R^{\alpha-1}(s)p(s)ds=\infty$ , then

$y(t)=R(t)\mathfrak{E}(a, t,\beta-1, R^{\alpha-1}p)$ (35)

as $tarrow\infty$ , and $y\in X\mathcal{S}_{\infty,\infty}.$

(ii-b) If $\int_{a}^{\infty}R^{\alpha-1}(\mathcal{S}\rangle p(s)ds<\infty$ , then

$y(t)=A+\prime_{a}^{t}M^{\beta-1}r^{1-\beta}(s)\mathfrak{E}(s, \infty, 1-\beta, R^{\alpha-1}p)ds$ (36)

as $tarrow\infty$ , for some $A\in \mathbb{R}$ , with $\lim_{tarrow\infty}r(t)\Phi(y’(t))=M\in(0, \infty)_{Z}y\in$

$\mathcal{I}S_{\infty,B},$ $M-y^{[1]}oR^{-1}\in S\mathcal{V}$ , and $R^{\alpha}(t)p(t)r^{\beta-1}(t)/(y^{[1]}(t)-M)=o(1)$ as
$tarrow\infty.$

The next result generalizes Theorem 4 (where $\delta>-1$ ) and Theorem 5
(where $\delta>-1$ ), see [35].
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Theorem 9. Assume that $\int_{a}^{\infty}r^{1-\beta}(s)ds<\infty,$ $\overline{p}\in \mathcal{R}\nu(\alpha-2)$ , where $\overline{p}=$

$(\overline{R}^{2}pr^{\beta-1})oQ^{-1}$ , and $\lim_{tarrow\infty}L_{\overline{p}}(t)=0$ . Then for any $y\in \mathcal{I}S$ , one has
$yoQ^{-1}\in \mathcal{N}S\mathcal{V}$ and the following hold:

(i-a) If $\int_{a}^{\infty}(\overline{R}(s)p(s)r^{\beta-2}(s))^{\beta-1}d_{\mathcal{S}}=\infty$ , then

$y(t)=\mathfrak{E}(a, t, (1/(\alpha-1))^{\beta-1}, (\overline{R}pr^{\beta-2})^{\beta-1})$ (37)

as $tarrow\infty$ , and $y\in \mathcal{I}S_{\infty,\infty}.$

(i-b) If $\int_{a}^{\infty}(\overline{R}(s)p(s)r^{\beta-2}(\mathcal{S}))^{\beta-1}ds<\infty$ , then

$y(t)=N\mathfrak{E}(t, \infty, -(1/(\alpha-1))^{\beta-1}, (\overline{R}pr^{\beta-2})^{\beta-1})$ (38)

as $tarrow\infty$ , with $\lim_{tarrow\infty}y(t)=N\in(0, \infty)$ , $y\in \mathcal{I}S_{B,\infty},$ $y\circ Q^{-1}-N\in S\mathcal{V},$

and $\overline{R}^{\alpha}(t)p(t)r^{\beta-1}(t)(\Phi(y(t)-N))=o(1)$ as $tarrow\infty.$

For any $y\in \mathcal{D}\mathcal{S}$ , one has $yoQ^{-1}\in \mathcal{N}\mathcal{R}V(-1)$ and the following hold:

(ii-a) If $\int_{a}^{\infty}\overline{R}^{\alpha-1}(s)p(s)ds=\infty$ , then

$y(t)=\overline{R}(t)\mathfrak{E}(a, t, \beta-1,\overline{R}^{\alpha-1}p)$ (39)

as $tarrow\infty$ , and $y\in \mathcal{D}\mathcal{S}_{0,0}.$

$(iiarrow b)$ If $\int_{a}^{\infty}\overline{R}^{\alpha-1}(s)p(s)ds<\infty$ , then

$y(t)= \int_{t}^{\infty}|M|^{\beta-1}r^{1-\beta}(s)\mathfrak{E}(s, \infty, 1-\beta,\overline{R}^{\alpha-1}p)d_{\mathcal{S}}$ (40)

as $tarrow\infty$ , with $\lim_{tarrow\infty}r(t)\Phi(y’(t))=M\in(-\infty, 0)$ , $y\in \mathcal{D}\mathcal{S}_{0,B},$ $M-y^{[1]}o$

$Q^{-1}\in s\nu$ , and $R^{\alpha}(t)p(t)r^{\beta-1}(t)/(y^{[1]}(t)-M)=o(1)$ as $tarrow\infty.$

Many expressions in Theorem 8 and Theorem 9 can be represented in

terms of generalized regular variation. Indeed, in Theorem 8, instead of
$\tilde{p}\in \mathcal{R}\mathcal{V}(-\alpha)$ , we can write $pr^{\beta-1}\in \mathcal{R}\mathcal{V}_{R}(-\alpha)$ . Fhrther, $y\in \mathcal{D}S\Rightarrow yo$

$R^{-1}\in \mathcal{N}S\mathcal{V}$ is in fact $\mathcal{D}\mathcal{S}\subset \mathcal{N}\mathcal{S}\mathcal{V}_{R}$ , and $y\in \mathcal{I}S\Rightarrow y\circ R^{-1}\in \mathcal{N}\mathcal{R}\mathcal{V}(1)$

is $\mathcal{I}\mathcal{S}\subset \mathcal{N}\mathcal{R}V_{R}(1)$ . We also have $y-N\in s\nu_{R}$ resp $M-y^{[1]}\in S\mathcal{V}_{R}$ . In

Theorem 9, instead of $\overline{p}\in \mathcal{R}\nu(\alpha-2)$ , we can write $\overline{R}^{2}pr^{\beta-1}\in \mathcal{R}\nu_{Q}(\alpha-2)$ .

Moreover, $\mathcal{D}S\subset \mathcal{N}\mathcal{R}\mathcal{V}_{Q}(-1)$ and $\mathcal{I}\mathcal{S}\subset \mathcal{N}S\nu_{Q}$ . We also have $y-N\in S\mathcal{V}_{Q}$

resp. $M-y^{[1]}\in S\mathcal{V}_{Q}.$

A similar generalization as for Theorems 4 and 5 can be made for Theo-
rem 6, see [35].

A suitable transformation can give also a generalization of Theorem 7
which is presented next. For the proof see [35]. Let $\eta_{1}>0>\eta_{2}$ denote the

roots of $|\eta|^{\beta}-\eta-C/(\alpha-1)=0$ and $\mu_{i}=\Phi^{-1}(\eta_{i})$ , $i=1$ , 2.
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Theorem 10. (i) Let $\int_{a}^{\infty}r^{:-\beta}(s)ds=\infty,$ $\lim_{tarrow\infty}R^{\alpha}(t)p(t)r^{\beta-1}(t)=C\in$

$(O, \infty)$ , and $s^{\alpha}(pr^{\beta-1})oR^{-1}(s)-C\in \mathcal{S}\mathcal{V}$ . Then $\mathcal{I}S\subseteq\Lambda^{r}\mathcal{R}\mathcal{V}_{R}(\mu_{1})$ and
$\prime D\mathcal{S}\subseteq \mathcal{N}\mathcal{R}\mathcal{V}_{R}(\mu_{2})$ . $\lambda/$Ioreover, for every $y_{1}\in \mathcal{I}S$ and every $y_{2}\in \mathcal{D}S$ , the
following hold:

(i-a) If $\int_{a}^{\infty}Z(u)du=\infty$ , where $Z(u)=R^{\alpha-1}(u)p(u)-Cr^{1-\beta}(u)/R(u)$ ,
then

$y_{i}(t)=\mathfrak{E}((x, t, 1/[(\alpha-1)(\Phi(\mu_{i})-C/\mu_{i})], Z)$ (41)

as $tarrow\infty,$ $i=1$ , 2.
(i-b) If $\int_{a}^{\infty}Z(u)du<\infty$ , then

$y_{i}(t)=D_{i}R^{\mu_{l}} \infty, -1/[(\alpha-1)(\Phi(\mu_{i})-C/\mu_{i})], Z)$ (42)

$a\mathcal{S}tarrow\infty$ , where $\lim_{tarrow\infty}y_{i}(t)/R^{\mu_{i}}(t)=D_{i}=D_{i}(y_{i})\in(0, \infty)$ , $i=1$ , 2. Mo-
reover, $|y_{i}/R^{\mu_{i}}-D_{i}|\in S\mathcal{V}_{R}$ and $[R^{\alpha}(t)p(t)r^{\beta-1}(t)-C]/[D_{i}-y_{i}(t)/R^{\mu_{i}}(t)]=$

$o(1)$ as $tarrow\infty,$ $i=1$ , 2.
(ii) Assume that $\int_{a}^{\infty}r^{1-\beta}(s)ds<\infty,$ $\lim_{tarrow\infty}\overline{R}^{\alpha}(i)p(t)r^{\beta-1}(t)=C\in$

$(0, oo)$ , and $s^{-\alpha}(pr^{\beta-1})oQ^{-1}(s)-C\in S\mathcal{V}$ . Then $\mathcal{I}S\subseteq \mathcal{N}\mathcal{R}\mathcal{V}_{Q}(-\mu_{2})$ and
$DS\subset \mathcal{N}\mathcal{R}\mathcal{V}_{Q}(-\mu_{1})$ . Moreover, for every $y_{1}\in \mathcal{I}S$ and every $y_{2}\in \mathcal{D}\mathcal{S}$ , the
following hold:

(ii-a) If $\int_{a}^{\infty}\overline{Z}(u)du=\infty$ , where $\overline{Z}(u)=\overline{R}^{\alpha-1}(u)p(u)-Cr^{1-\beta}(u)/\overline{R}(u)$ ,
then

$y_{\iota’}(t)=\overline{R}^{\mu_{3-i}}(t)\mathfrak{E}(a_{\rangle}t, 1/[(\alpha-1)(-\Phi(\mu_{3-i})+C/\mu_{3-i})], \overline{Z})$

as $tarrow\infty,$ $i=12.$
(ii-b) If $\int_{a}^{\infty}\overline{Z}(u)du<\infty$ , then

$y_{i}(t)=D_{i}\overline{R}^{\mu_{3-i}}(t)\mathfrak{E}(t, \infty, -1/[(\alpha-1)(-\Phi(\mu_{3-i})+C/\mu_{3-i})],\overline{Z}\rangle$

as $tarrow\infty_{f}$ where $\lim_{tarrow\infty}y_{i}(t)/R^{\mu_{3-\hat{l}}}(t)=D_{i}=D_{i}(y_{i})\in(O, \infty)$ , $i=1$ , 2.
$Moreover_{f}[R^{\alpha}(t)p(t)r^{\beta-1}(t)-C]/[D_{i}-y_{i}(t)/R^{\mu_{3-\tau}}(t)]=o(1)$ as $tarrow\infty,$

and $|y_{i}/R^{\mu_{3-i}}-D_{i}|\in S\mathcal{V}_{Q},$ $i=1$ , 2.

Next we show that the theorems in this section are indeed generalizations
of theorems from the previous sections. For the proof of the lemma see [35].

Lemma 1. Let $r\in \mathcal{R}\mathcal{V}(\delta+\alpha)_{J}p\in \mathcal{R}\mathcal{V}(\delta)$ , $\delta\neq-1$ , and $L_{p}(t)/L_{r}(t)arrow 0$

as $tarrow\infty$ . Then $\overline{p}\in \mathcal{R}\mathcal{V}(-\alpha)$ and $L_{\tilde{p}}(s)arrow 0(xssarrow\infty$ provided $\delta<-1$

resp. $\overline{p}\in \mathcal{R}\mathcal{V}(\alpha-2)$ and $L_{\overline{p}}(s)arrow 0$ as $sarrow\infty$ provided $\delta>-1_{f}$ where $\tilde{p}i_{\mathcal{S}}$

defined in Theorem 8 and $\overline{p}$ is defined in Theorem 9.

Thanks to the above lemma we see that if the assumptions of Theorems
4 and 5 with $\delta<-1$ resp. $\delta>-1$ are satisfied, then the assumptions of
Theorem 8, resp. Theorem 9 are satisfied as well. As for the conclusions
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of these theorems, note that since – in the case $\delta<-1$ – one has $R^{-1}\in$

$\mathcal{R}\nu(1/\rho)$ , we get that $y\in s\nu$ provided $yoR^{-1}\in \mathcal{S}\nu$ and that $y\in \mathcal{R}\mathcal{V}(\rho)$

provided $yoR^{-1}\in \mathcal{R}\mathcal{V}(1)$ . Similarly we treat the case $\delta>-1$ . Asymptotic
formulae in Theorems 4 and 5 can be obtained from the general ones by
applying the Karamata theorem to the expressions $R(t)$ and $\overline{R}(t)$ .

Theorem 8 and Theorem 9 allow us to consider also the coefficients which
are not regularly varying (for a slightly different approach to the $non-\mathcal{R}\nu$

coefficients case see [35]). Indeed, take, for example, $p(t)=e^{\gamma t}t^{\omega}$ and $r(t)=$

$t^{\gamma}$ with $\gamma<0,$ $\omega<0$ . Then $\tilde{p}(\mathcal{S})=(\ln[(\mathcal{S}+K)\gamma(1-\beta)]^{\frac{1}{\gamma(1-\beta)}})^{\omega}[(s+K)\gamma(1-$

$\beta)]^{-\alpha}$ for some $K\in(0, \infty)$ , and $\int_{a}^{\infty}r^{1-\beta}(s)ds=\infty$ . Therefore, $\tilde{p}\in \mathcal{R}\mathcal{V}(-\alpha)$

and $L_{\overline{p}}(s)arrow 0$ as $sarrow\infty.$

Similarly we could examine the generalization of Theorem 7.
The generalization in the sense of Theorems 8 and 9 lies not only in

allowing us to consider $non-\mathcal{R}\mathcal{V}$ coefficients. In fact, they enable us to cover
the missing case in Theorems 4 and 5, namely $\delta=-1$ . For simplicity,
take $r(t)=t^{\alpha-1}$ Then trivially $r\in \mathcal{R}\mathcal{V}(\delta+\alpha)$ , where $\delta=-1$ . The
condition for $p$ which corresponds with this setting is $p\in \mathcal{R}\nu(-1)$ . Clearly,
$\int_{1}^{\infty}r^{1-\beta}(s)ds=\infty$ , thus we are in the situation of Theorem 8. Since $R(t)=$

$\int_{1}^{t}r^{1-\beta}(s)ds=\ln t$ and so $R^{-1}(\mathcal{S})=\exp \mathcal{S}$ , we have $\tilde{p}(s)=e^{s}p(e^{s})=L_{p}(e^{S})$ .
Further, in view of $L_{p}(e^{s})=\mathcal{S}^{-\alpha}L_{\tilde{p}}(\mathcal{S})$ , we get $L_{\tilde{p}}(\ln t)=\ln^{\alpha}tL_{p}(t)$ . Now it
is easy to see that the assumptions of Theorem 8 are fulfilled when

$L_{p}o\exp\in \mathcal{R}\mathcal{V}(-\alpha)$ (43)

and
$L_{p}(t)\ln^{\alpha}tarrow 0$ as $tarrow\infty$ . (44)

Under these conditions, $\mathcal{D}S\subset \mathcal{N}s\nu_{\ln}$ and $\mathcal{I}\mathcal{S}\subset \mathcal{R}\mathcal{V}_{\ln}(1)$ . Moreover, if
$y\in \mathcal{D}S$ and $\int_{a}^{\infty}(s^{2-\alpha}p(s)\ln s)^{\beta-1}ds=\infty$ , then

$y(t)=\mathfrak{E}(a, t, -(1/(\alpha-1))^{\beta-1},p(s)s^{2-\alpha}\ln s)$ (45)

as $tarrow\infty$ . Deriving the particular formulae for the other cases via Theorem $8i$

$s$ left to the reader.
Similar observations can be made also in the case $\int_{a}^{\infty}r^{1-\beta}(s)ds<\infty.$

This condition is fulfilled, for example, when $r(t)=t^{\alpha-1}In^{\gamma}t$ , where $\gamma>$

$\alpha-1$ . Then $\overline{R}(t)=\frac{(\ln t)^{1-\gamma(\beta-1)}}{\gamma(\beta-1)-1}$ and $Q^{-1}(s)= \exp\{(\frac{s}{\gamma(\beta-1)-1})^{\frac{1}{\gamma(\beta-1)-1}}\}.$

Example 4. Let $r(t)=t^{\alpha-1},$ $p(t)=L_{p}(t)/t$ with $L_{p}(t)= \frac{1}{\ln^{\alpha}t}$ $\frac{1}{(\ln_{k}t)^{\gamma}},$ $k\geq$

$2,$ $\gamma>0$ , where $\ln_{k}t=\ln\ln_{k-1}t$ . Since $(L_{p} o\exp)(t)=\frac{1}{t^{\alpha}}\cdot\frac{1}{(\ln_{k-1}t)^{\gamma}}\in \mathcal{R}\nu(-\alpha)$

and $L_{r}(t) \ln^{\alpha}t=\frac{1}{(\ln_{k}t)^{\gamma}}arrow 0$ as $tarrow\infty$ , conditions (43) and (44) are fulfilled.
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As for the integral in (45), if, for instance, $k=2$ , then we have (with $a=2$)

$\int_{2}^{\infty}(s^{2-\alpha}p(s) in s)^{\beta-1}ds=\int_{2}^{\infty}\frac{l}{s\ln s(\ln 2s)^{\gamma}}ds’\{$

$<\infty$ for $\gamma>1$

$=\infty$ for $\gamma\in(0,1$ ].

10 Further research

We have presented several methods for the study of asymptotic properties
of linear and half-linear diffel’ential equations in the framework of regular
variation. We believe that these ideas and their modifications will be useful
also in other settings, for example:

$0$ (Half-)linear equations of the form (1) with $p(t)<0$ or with $p(t)$ which may
change its sign. The first computations reveal, that for the case $p(t)<0,$

some of the steps work similarly as for $p(t_{i})>0-in$ particular, as for de-
riving asymptotic formulae. On the other hand, the structure of a solution
space is completely different. Especially, the so-called intermediate solu-
tions may cause difficulties when showing regular variation of all positive
solutions.

$0$ Nearly (half-linear differential equations (i.e., the equations of the form
(1) where $\Phi$ in both terms is replaced by a regularly varying function at
infinity or at zero of index $\alpha$). This is a quite delicate setting, and can be
understood as an analysis of the borderline case (between sub-linearity and
super-linearity) for a certain generalization of Emden-Fowler type equation.
Some aspects of qualitative theory of the nearly-linear differential equation
$(r(t)G(y’))’=p(t)F(y)$ , where $F(|.$ $G(|\cdot|)$ are regularly varying at zero
of index 1, are treated in [30]. It turns out that a modification of some
methods known from the linear theory is a useful tool. However, as it was
shown [30], some phenomena may occur which cannot happen in the hnear
case.

$0$ (Half-linear differential equations with deviated arguments; we expect that
the theory of first order functional differential equations could be helpful
when showing regular variation of all solutions and deriving asymptotic
formulae. Existence of regularly varying solutions of linear and half-linear
second order functional differential equations is studied e.g. in [14, 15].

$0$ First order (half-linear systems or higher order equations. Regular vari-
ations of solutions of $n$-the order linear differeYltial equation is treated in
[32]. It is of interest to obtain asymptotic $formu\ddagger ae.$

$0$ (Half-linear difference equations. Some results in this direction have al-
ready been obtained for linear equations, see [33]. For sufficient and nec-
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essary conditions which guarantee regular or rapid variation of solutions of
half-linear difference equations see [20, 21].

$0$ (Half-linear dynamic equations on time scales. It was shown in [38] that
it is advantageous to distinguish two cases when studying regular variation
on time scales, namely the graininess $\mu$ satisfies $\mu(t)=o(t)$ as $tarrow\infty$

or $\mu(t)=(q-1)t$ with $q>1$ . The former case yields the theory similar
to that of the classical continuous or discrete regular variation. The lat-
ter case leads to regular variation in $q$-calculus, which exhibits substantial
differences from the classical continuous or discrete regular variation, see
[27, 28]. Asymptotic formulae for solutions of linear $q$-difference equation
(some of them being in the spirit of Sections 5, 6, 7, and 9) are established
in [36].

Even though some results for linear or half-linear differential equations
can be established via more approaches, not all these methods can be ap-
plicable in other settings. For instance, the reciprocity principle cannot be
used in dynamic equations on time scales unless the graininess is somehow
reasonable. Further, the facts like the absence of a chain rule (and, conse-
quently, a substitution in the integral) in a discrete case or a time scale case
might substantially affect availableness of some approaches.

Of course, there is also some space for improving the presented results.
For instance: To examine whether some “purely linear”’ techniques (e.g. the
use of the Wronskian identity or the transformation of dependent variable)

can directly be applied to half-linear equation at least in an ”asymptotic
sense”’ To obtain asymptotic formulae under relaxation of some conditions,
like $\lim_{tarrow\infty}t^{\alpha}p(t)/r(t)=C$ , into an integral form. See [8] for the linear case.
Use the theory of regular variation and the de Haan theory to find more
precise asymptotic formulas for solutions of (1) or estimations of remainders,

see e.g. [6, Theorem 0. $1-B$] or [23, 25], respectively, for the linear case.
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