
NOTE ON STABILITY OF AN SIRS EPIDEMIC MODEL

YUKIHIKO NAKATA

ABSTRACT. In this paper we derive a scalar delay differential equation from.an
epidemic model with waning immunity. The model is formulated as a system

of delay differential equations. The characteristic equation is computed. We
visualize the stability condition for an endemic equilibrium in a two-parametcr

plane.

1. INTRODUCTION

In [9] we consider periodic outbreak of mycoplasma pneumoniac in Japan. Minor
variation of the immunity period is shown to be essential in order to explain the
infectious disease dynamics. Our agenda includes mathematical studie$s^{}$

$\{\dot{o}r$ periodic
solutions of the mathematical model employed in [9]. This note is a prcliminary
study for the project. The model in $|9$] takes the form of SEIRS type epidemic model
with a gamma distribution which thc immunity period follows. In this papcr for
mathematical analysis we consider SIRS type epidemic model with fixed immunity
period (such that the variance of thc immunc period is zero). Let us consider thc
following SIRS epidcmic model

(l.la) $\frac{d}{dt}S(t)=-\beta S(t)I(t)+\gamma I(t-\tau)$ ,

(l.lb) $\frac{d}{dt}I(t)=\beta S(t)I(t)-\gamma I(t)$ ,

(l.lc) $\frac{d}{dt}R(t)=\gamma I(t)-\gamma I(t-\tau)$ ,

where the total population is fixed as

(1.2) $S(t)+I(t)+R(t)=1, t\geq-\tau$

and recovered population satisfies

(1.3) $R(t)= \gamma\int_{0}^{ア}I(t-s)ds, t\geq 0.$

Here $S(t)$ , $I(t)$ and $R(t)$ respectively denote the fraction of susceptible, infectivc
and recovered populations at time $t$ . The model has three parameters: transmission
coefficient $\beta>0$ , the recovery rate $\gamma>0$ and the imrnunc period $\tau>0$ . We also
refer the papers [6, 10, 4] for analyses of similar SIRS epidemic znodels. See also

{5] for detail of compartmental modcl in epidemiology. The model (1.1) appears in
the paper $|5$] and we here $revie\backslash v$ thc stability analysis.

From (1.2) and (1.3) we get

$S(t)=1-I(t)- \gamma\int_{0}^{ア}I(t-s)d_{\mathcal{S}}$
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then we obtain a scalar delay differential equation:

(1.4) $\frac{d}{dt}I(t)=I(t)\{\beta(1-I(t)-\gamma\prime_{0^{\gamma}}J(t-s)ds)-\gamma\}.$

The basic reproduction number is given as

$R_{4}:= \frac{\beta}{\gamma}.$

It is assumed that $R_{0}>1$ holds so that (1.4) has a positive equilibrium:

$I_{e}:= \frac{1-\frac{1}{R_{0}}}{1+\gamma\tau}.$

Remark 1. $\gamma\tau=-\frac{\tau r}{\gamma}$ denotes the fraction of the immunity period over the expected

infectious period, which may be a large parameter. Note that

$\gamma_{\mathcal{T}>}1rightarrow\tau>\frac{1}{\gamma}$

implies that the immunity period is longer than thc expected infectious period.

We normalize the equation (1.4) defining

$x(t):= \frac{I(t\rangle}{I_{e}}-1$

and $su\})$scqucntly consider the $nondimcnsiol\backslash al$ tinxe $u= \frac{t}{\tau}$ . Abusing notation we
finally obtain

$(1.5\rangle$ $\frac{d}{dt}x(t)=-p(x(t)+1)(x(\ell_{j})+\eta\int_{()}^{1}x(t-s)ds)$ ,

where

(1.6a) $p:= \frac{\gamma\tau}{1+\gamma\tau}(R_{\zeta)}-1)\}$

(1.6b) $\eta:=\gamma\tau.$

Initial condition for (1.5) is

$x(\theta)=\psi(\theta)\geq-1, \theta\in[-1, 0],$

excluding $tl\backslash c$ constant function $\psi(\theta)\equiv-1,$ $\theta\in[-1, 0].$

Remark 2. To apply the time transformation wc introduce a nondimensional timc
$u= \frac{t}{r}$ and define

$\tilde{x}(u):=\tilde{x}(\frac{t}{\tau})=x(t)$ .

Tlzen olae can see $\frac{d}{du}\tilde{x}(u)=\tau\frac{d}{dt}x(t)$ and

$\int_{0}^{\tau}x(t-S)ds=\int_{0^{\tilde{X}(u-\frac{s}{\tau})d=r}}^{\tau}s\prime f_{0}^{1}\tilde{x}(u-\theta)d\theta.$
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2. STABILITY ANALYSIS

Applying the fluctuation lemma we can obtain a global stability result. There
seems to be no other results for global stability. See also the global stability condi-
tion by the fluctuation lemma in $|7$].

Theorem 3. Let us assume that $\eta<1$ holds. Then the trivial equilibrium of (1.5)
is globally attractive.

Proof Lct us writc

$\overline{x}=\lim\sup x(t) , \underline{x}=\lim_{tarrow}\inf_{\infty}x(t)$ .
$tarrow\infty$

Consider a sequence such that $x(t_{n})arrow\overline{x}$ as $narrow\infty$ with $x’(t_{n})\geq 0$ . Then we get

$0 \geq x(t_{n})+\eta\int_{0}^{1}x(t_{n}-s)ds.$

Taking the limit and estimating the second term of the right hand side from below
by $\underline{x}$ , we get

$0\geq\overline{x}+\eta\underline{x}.$

Similarly, considering a sequence which tends to $\underline{x}$ , we get

$0 \leq x(u_{71})+\eta\int_{0}^{1}x(u_{n}-s)ds.$

Thus
$0\leq\underline{x}+\eta\overline{x}.$

Therefore it holds
$\overline{x}+\eta\underline{x}\leq 0\leq\underline{x}+\eta\overline{x},$

thus
$(\overline{x}-\underline{x})\leq\eta(\overline{x}-\underline{x})$ .

Since $\eta<1$ is assumed, we obtain $\underline{x}=\overline{x}$ . It is easy to see that $\underline{x}=\overline{x}=0$

follows. $\square$

If $\eta<1$ then $t$ he trivial equilibrium is shown to be asymptoticaJly stable in thc
following section.

2.1. Linearized stability analysis. To analyze asymptotic stability of thc triv-
ial equilibrium of (1.5) we derive the characteristic equation. The characteristic
equation is computed as

(2.1) $\lambda=-p(1+\eta\int_{0}^{1}e^{-\lambda s}ds) , \lambda\in \mathbb{C}.$

We $al)$alyzc the characteristic equation (2.1) following Chapter XI of $|2$]. See aJso
[3, 1, 8] for analysis of characteristic equations of dclay equations. One can $\sec$ that
$\lambda=0$ is a root of (2.1) if $p=0$ holds, where the transcritical bifurcation occurs (as
$p$ increases). Substituting $\lambda=i\omega,$ $\omega\in \mathbb{R}$ we gct

(2.2) $0=1+ \eta\int_{0}^{1}\cos(\omega s)ds,$

(2.3) $\omega=p\eta\int_{0}^{1}\sin(\omega s)ds.$
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$R\sim om(2.2)$ one has

$\eta=\frac{-1}{\int_{0}^{1}\cos(\omega s)ds}=-\frac{\omega}{\sin\omega}.$

Thcn $p$ is determined from (2.3) as

$p= \frac{\omega}{\eta\int_{0}^{1}\sin(\omega s)ds}=-\frac{\omega\sin\omega}{1-\cos\omega}.$

For $n\in N_{+}$ let
$I_{n} :=((2n+1)\pi, 2(n+1)\pi)$ .

Thc parametric curve

(2.4) $( \eta(\omega), p(\omega))=(-\frac{\omega}{si_{11}\omega}\prime-\frac{\omega si_{12}\omega}{1-\mathfrak{c}\cdot.os\omega}) \omega\epsilon I_{n}.$

depicts the condition whcre the characteristic equation (2.1) has a conjugated pair

of pul’cly imaginary roots $\lambda=\pm i\omega,$ $\omega\in I_{n}$ . One can easily see that

$(\eta(\omega)_{:}p(\omega)\rangle\in \mathbb{R}_{+}^{2}, \omega\in I_{7?}.$

The parametric curve (2.4) can be tra rslated in terms of $R_{0}$ and $\gamma\tau$ using the

relation (1.6). Wc get tluc following condition

$R_{0}-1=- \frac{\omega\sin\omega}{1-\cos\omega}(1-\frac{\sin\omega}{\zeta_{4}\}})$ ,

$\gamma\tau=-\frac{\omega}{si_{11}\omega},$

$\backslash \backslash$ here the charactcristic equation (2.1) has purely $i_{1}$naginary roots.

3. $DlSC($jSSION

We here sketch the stability allal $\backslash$/sisノ for the SIRS epidemic model with delay.

Although the $modc!1$ equation has a simple looking, it exhibits destabilization of
the cndemic equilibrium and has a periodic solutions via Hopf bifurcation. In the
paper $|9$] wc discuss a role of the minor variation of thc $i\iota$nxnunity period in thc

periodic cpidclnic cycle sccll in a childhood disease, in particular, for small $R_{0}$ . Sce
also $\zeta 8$]. The author study periodicity and uniqucllcss of a periodic solution $oi$

.
thc

equation (1.5) in the collaboration with G. Kiss, G. Vas and R. Omori.
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$\eta$

FIGURE 2.1. Stability boundary of the endemic equilibrium in
$(\eta,$ p) planc (above) and in $(\gamma\tau, R_{0}-1)$ plane (below). The number
depicts the number of roots of the characteristic equation in the
right half complex plane. Thc arrows in the curves indicate the
direction of increasing $\omega.$
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