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1. Introduction

In recent decades, mathematical analysis of taxis mechanisms has been received con-
siderable interest. Keller and Sege} firstly introduced the svstem

(1.1) $\{\begin{array}{l}u_{f}=\triangle u-\nabla\cdot(u\nabla_{\sim}\vee)_{i}z_{t}=\Delta\sim\sim-z+u,\end{array}$

describing a biological phenomenon chemotaxis whieh means the oriented movement of

cells as a response to a chemical substance ([10]). From their study, a large variety

of mathematical analysis has been devoted, especially global existence and blow up of
solutions in variants of (1.1) are well studied (see [1, 7, 8 In particular, it is known that a
blow-up phenomenon may occur in (1.2) $w$}$xen$ the spacial dimension $n\geq 2([6,23$ Some
nzathematical models describing tumor invasion phenomenon also have been proposed as
a tctxis model ([2]) $an’\iota$ analytical results about global existence and boundedness of

solutions are established $([13]_{/}.[14], [15], [18], [19]_{\backslash }[21])$ . On the other hand, asymptotic

behavior of solutions is precisely analysed only in certain special cases ([3], [9]).

In this paper we consider global asymptotic stability of the following taxis model:

(1.2) $\{\begin{array}{l}u_{t}=\triangle u-\nabla\cdot(u\nabla v)+f(u) ,v_{t}=\triangle v+wz,w_{t}=-u)z_{J}\backslash z_{t}=\Delta z-z+u’\end{array}$

which describes tumor invasion pheno1nenon in accounting for the role of an active extra-

cellular matrix. $ECM*$ , which is produced by a biological reaction between an extraeel}ular

matrix, ECM, and a matrix degrading enzyme, MDE ([4]).

Fron2 a mathenlatical point of view, since one can collect three diffusion steps in the

system (1.2): a strongly stabilizing effect is expected. As compared with Keller-Segel

system (i.1), the destabilizing effect of the cross-diffusive term is overbalanced by the

diffusion terms in (1.2). Actually, in [5] it has been shown that in the lower dimensional

case $n\leq 3$ the system (1.2) with $f\equiv$ possesses a unique global and bounded solution
$(u, v, w,\cdot z)$ . Moreover, it has been established that if $u_{0}\not\equiv O$ then the solution approaches

a certain spatially homogeneous steady state in the sense that as $tarrow oo,$

$u(x, t)arrow\overline{u_{0\backslash }}$ $v(x, t)arrow\overline{v_{0}}+\overline{w_{0}},$ $w(x, t)arrow 0$ and $z(x, t)arrow\overline{u_{0}},$

uniformly with respect to $x\in$ where $\overline{u_{0}}$ $:= \frac{1}{|\Omega|}\int_{\Omega}u_{0},$
$\overline{v_{0}}$ $:= \frac{1}{|1l|}\int_{\Omega}1J_{0}$ and $\overline{cv_{0}}$ $:= \frac{1}{|\Omega|}\int_{\Omega}w_{0}.$
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Dampening effect of logistic source. We recall some results which describes a damp-

ening effect of the logistic sourc$(^{\backslash }f(u)=ru-\mu u^{\alpha}(r>0, \mu>0, (y>1)$ in (1.1). When

the dimension $n$ is lower $(n\leq 2)$ and $\alpha=2$ , global existence and boundedness of (1.1)

is established in [16, 17]. As to the higher dimensional case $(n\geq 3)$ and $\alpha=2$ , global

existence and boundedness of a smooth solution is established when $\mu>0$ is sufficiently

large in [20, 22]. Global existence of certain weak solutions is derived for arbitrary small
$\mu>0$ in [12] (see [20] for a simplified model) \‘and moreover some eventual smoothness of
the weak solution has been established in [12]. At all, global existence and boundedne.ss
of a classical solution in higher space dimensions for arbitrary small $\mu>0$ has been left
as a challenging open problem. In [24], asymptotic stability of constant equilibria is also
established, that is. if $r=1$ and $\mu>0$ is sufficiently large then

$u(x, t) arrow\frac{1}{\mu}$ and $z(x.t) arrow\frac{1}{\mu}ノ$

as $tarrow\infty.$

Main results. We consider the initial-boundary value problem

(1.3) $\{\begin{array}{l}u_{t}=\Delta u-\nabla\cdot(u\nabla v)+f(u) , x\in\Omega, t>0,v_{t}=\triangle v+wz. x\in\Omega, t>0,w_{t}=-wz, x\in\Omega, t>0,z_{t}=\triangle z-z+u, x\in fl, t>0,\cdot\frac{\partial u}{\partial ノ}=\frac{\partial v}{\partial\nu}=\frac{\partial z}{\partial\nu}=0, x\in\partial\Omega, t>0,u(x, O)=u_{0}(x) , v(x, O)=v_{0}(x) ,w(x, O)=w_{0}(x) , z(x, 0)=z_{0}(x) , x\in\Omega,\end{array}$

in a bounded domain $\Omega\subset \mathbb{R}^{n}(n\leq 3)$ with smooth boundary. As to the initial data we
assume that

(1.4) $0\leq u_{0}\in C^{0}(\overline{\Omega})$ , $0\leq v_{0}\in W^{1.\infty}(\Omega)$ , $0\leq w_{0}\in C^{2}(\overline{\Omega})$ and $0\leq z_{0}\in C^{0}(\overline{\Omega})$ ,

and moreover we suppose that $f(u)$ is the logistic source such as

(1.5) $f(u)=ru-\mu u^{a}$ with $r>0,$ $\mu>0,$ $\alpha>1.$

The main results read as follows.

Theorem 1.1. Assume that $u_{0},$ $v_{0}.w_{0}$ and $z_{0}$ comply with (1.4) and that $f$ satisfies (1.5).

Then there exists a uniquely determined quadruple $(u.v, u)$ , z) of nonnegative functions
which solve (1.3) classically in $\Omega\cross(0, \infty)$ . Moreover the solution is bounded in the sense
that there exists some constant $M>0$ such that

$\Vert u(\cdot, t)\Vert_{L(\Omega)}\infty+\Vert v(\cdot, t)\Vert_{W^{1\infty}(\Omega)}+\Vert w(\cdot, \ell)\Vert_{L^{\infty}(\ddagger l)}+\Vert z(\cdot, t)\Vert_{L^{\infty}(1)}\leq M$ for $allt\geq 0.$

Remark 1.1. As to the Keller-Segel system (1.1) with the logistic source in higher
dimensions $(n\geq 3)$ , global existence has been left as an open problem when $\mu>0$ is
arbitrary small ([22]). However, using signal production mechanism (see the discussion
in [5]) we can establish global existence for arbitrary $\mu>0$ in $n=3.$
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Remark 1.2. Our method rests on the overt)alanced structure of the problem (1.3) with-
out, using dampeRing effect of logistic source. It is an opev} $qu()$stion to establish global

existence and boundedness of solutions to (1.3) in higher spacial dimensions $n\geq 4.$

To determine a.symptotic behavior, the method in [5] (a not directly be applied more
realistic case (1.3) with the logistic source (for more details, see Section 3). As a way out
of this situation, we make a comparison with a suitable ODE and then this idea enables
us to apply the fashion in [5].

Theorem 1.2. Assume that $u_{0},$ $v_{0},$ $\iota v_{0}$ and $z_{0}$ comply with $(1.4)_{i}$ and that $u_{0}\not\cong 0$ . More-
over, $f$ is supposed to satisfy $\langle$ 1.8). Then the solution $(u, v, w. z)$ satisfies

$\Vert u(_{1}t)-(\frac{r}{1^{4}})^{\frac{1}{\alpha-1}}\Vert_{L^{\infty}(\Omega)}arrow 0, \Vert v(\cdot, t)-(\overline{v_{0}}+\overline{w_{0}})\Vert_{L^{\infty}(i1)}arrow 0,$

$\Vert w(\cdot.t)\Vert_{L^{\infty}(\Omega)}arrow 0,\cdot \Vert z(\cdot, t)-(\frac{r}{\mu})^{\frac{1}{n1}}\Vert_{L^{\infty}く}(_{\vee}f)arrow 0$

as $tarrow\infty$ , where the constants $\overline{v_{0}}$ and $\overline{uf0}$ are given by

$\overline{v_{0}}$ $:= \frac{1}{|\Omega|}\int_{\zeta\downarrow}v_{0}$ and $\overline{w_{0}}$ $:= \frac{1}{|\Omega|}\int_{\}}w_{0}.$

Plan of paper. After preparing some regularity arguments in Section 2, we will
establish Theorem 1.2 in Section 3. Using ODE comparison method, the asymptotic
stability of solutions to (1.3) is precisely determined,

2. Preliminaries

Noting that $f(u)=ru-\mu u^{\alpha}\leq C$ with some constant $C>0$ , the following local
existence statement can be proved by modifying the proof of [4, Theorem 3.1].

Lemma 2.1. Assume that $u?$) and $z_{0}$ satisfy (1.4) and $f$ fulfils (1.5). Then there
exist $T_{\alpha\lambda\infty}\in(0, \infty] and a$ unique classical solution $(u_{\backslash }.v_{\backslash ,)}w_{\backslash }.z)$ of (1.3) in $\Omega\cross(0_{\grave{J}}T_{\max})$

which is such that

$0\leq u\in C^{0}(\overline{\Omega}\cross[0_{\backslash }T_{\max}))\cap C^{2,1}(\overline{\Omega}\cross(0, T_{\max}$

$(I\leq v\in C^{0}(\overline{\Omega}\cross[0_{:}T_{\max}))\cap C^{2_{\backslash }1}(\overline{\Omega}\cross(O, T_{\alpha:ax}))\cap L_{loc}^{\infty}([O_{:}\propto W^{1,\infty}(\Omega))$ ,

$0\leq w\in C^{0}(St \cross[0, T_{rnax}))\cap C^{(\rangle,\lambda}(\overline{\Omega}\cross(O, T_{\max}))$ and
$0\leq\sim\gamma\in C^{0}(\overline{\Omega}\cross[0,\cdot T_{ma,\mathfrak{c}})\rangle\cap C^{2_{:}1}(\overline{\Omega}\cross(0, T_{\max}$

and such that

(2.1) if $T_{r\mathfrak{n}ax}<\infty$ then $\lim_{t\nearrow T_{\max}}(\Vert u(\cdot, t)\Vert_{L^{\infty}(\zeta))}+\Vert v(\cdot, t)\Vert_{W^{1\infty}}$ $+\Vert z(_{:}t$ ) $\Vert_{L^{\infty}(1)})=\infty.$

Although in the system (1.3) the total masss $f_{\Omega}u$ is not preserved due to the logis-
tic source, we can immediately derive an upper bound for the total mass $\int_{\Omega}u$ . As a
preparation, let us introduce the following statement.
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Lemma 2.2. There exists some constant $m>0$ such that

$\int_{(\iota}u(x.t)dx\leq m forallt\in(0, T_{\max})$ .

Proof. We integrate the first equation in (1.3) axld use the Holder inequality to see that

$\frac{d}{dt}\int_{l}u=r\int_{\zeta)}u-\mu\int_{()}u^{(\rangle}\leq r\int_{\downarrow}u-\frac{\mu}{|\Omega|^{\alpha-J}}(\int_{\Omega}u)^{\alpha}$ for all $t\in(0, T_{\max})$ .

Therefore, by invoking a straightforward ODE comparison argument we complete the

proof. $\square$

Furthermore, as a preparation to establish asymptotic stability of solutions, we state

the following boundedness result.

Proposition 2.3. Suppose that (1.4) and (1.5) hold. the solution $(u, v, w, z)$ of (1.3) is

global and bounded in the sense that there exist $\theta\in(0_{\backslash }1)$ and $C>0$ such that

$\Vert u(\cdot, t)\Vert_{L^{\infty}(1t)}+\Vert v(\cdot, t)\Vert_{W^{l\infty}(\zeta l)}+\Vert w(\cdot, t)\Vert_{L^{\infty}(11)}+\Vert z(\cdot, t)\Vert_{L^{\infty}(\zeta\})}\leq C$ for $allt>0$

as well as

$\Vert u\Vert_{c^{2+\theta.1+\S}(f^{-}l\cross[t,t+1])}+\Vert v\Vert_{C2(\overline{\Omega}\cross[l,t+1])}2\{\theta,1+^{\theta}+\Vert z\Vert_{C2((lx[t,iarrow 1])}2+\theta_{i}1+^{\theta-}\leq C$ for all $t\geq 1.$

Proof. Thanks to Lemma 2.2 we can proceed similar way as in [5, Section 3]. In light of
the extensibility statement in Lemma 2.1, the local solution actually exists globally in time
and standard parabolic regularity arguments ([11]) guarantee some further boundedness
properties. $\square$

Proof of Theorem 1.1. Combining Lemma 2.1 and Proposition 2.3 finishes the proof. $\square$

3. Asymptotic stability

Before proving Theorem 1.2, we review the sketch of the proof of asymptotic behavior
in the case that (1.3) without any logistic source in [5, Section 4]. From the Arzel\‘a-Ascoli

theorem boundedness of solutions firstly asserts a convergence of $v$ . Next, we rewritten
the first equation of (1.3) ss

(3.1) $u t)- \overline{u_{0}}=e^{t\Delta}(u_{0}-\overline{u_{0}})-\int_{0}^{t}e^{(t-s)\Delta}\nabla\cdot u\nabla v$

and then semigroup property and the convergence result of $v$ make sure that the limit
of the right hand side of (3.1) as $tarrow\infty$ must be zero. Accordingly we deduce the
stabilization property of $u$ such as $\Vert u(\cdot, t)-\overline{u_{0}}\Vert_{L^{\infty}(\Omega)}arrow 0$ as $tarrow\infty$ . Finally semigroup
techniques and convergence results of $v$ and $u$ ensure the convergence property of $z$ and
then determine the convergence of $w.$

In this paper we consider the case that (1.3) with the logistic source $ru-\mu u^{\alpha}$ and so
this term disturbs estimating (3.1). To overcome this difficu] $ty$ we employ the comparison
principle.
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Proof of Theorem 1.2. Since Proposition 2.3 claims that $(v(\cdot, t))_{t\geq 1}$ is $boul?ded$ in $C^{2+\theta}(St)$

and hence relatively compact in $C^{2}(\overline{\Omega})$ by the Arzpl\‘a Ascoli theorem, we applv [5, Lemma
4.3] to have

$\Vert v(\cdot, t)-L\Vert_{W^{2.\propto}(\zeta\})}arrow 0 a_{t}\backslash tarrow\infty$

with some constant $L\geq 0$ . In particular we see

$\Vert\Delta v(\cdot, t)\Vert_{L^{\infty}(l1)}arrow 0$ as $tarrow\infty,$

so for all $\epsilon>0$ we can choose some $t_{0}>0$ fUlfilling

$\Vert\triangle v(_{:}t)\Vert_{L}\propto(\zeta))\leq e$ for all $t\geq t_{0}.$

Thus, the first equation of (1.3) is estimated as

$u_{t}\leq\triangle u-\nabla v\cdot\nabla u+(r\cdot+\epsilon\rangle u-\mu u^{()}$

Not,ing fhat $\overline{y}(t)$ is a solution of the following problem:

$\{\begin{array}{l}\overline{y}’(t)=(r+\epsilon)\overline{y}-\mu\overline{y}^{Q}. t>t_{0},\overline{y}(t_{0})=\Vert u(_{:}t_{0})\Vert_{L}\infty(\}) :\end{array}$

the comparison $pri\iota\backslash$ciple gives immediately the estimate

$u(x, t)\leq\overline{y}(t)$ for all $x\in\Omega,$ $t>t_{0}.$

Therefore it follows that

$\ddagger im\sup_{tarrow\infty}\sup_{x\in f?}u(x, t)\leq\lim_{tarrow}\sup_{\infty}\overline{y}(t)=\lim_{tarrow\infty}\overline{y}(t)=(\frac{r+\epsilon}{\mu})^{\frac{\lambda}{\alpha 1}}$

Since $\xi j>0$ is arbitrary, we conclude that

(3.2) $\lim_{tarrow}\sup_{\infty}\{>\mathfrak{U}x\in\zeta\}\backslash pu(x_{\}}t)\leq(\frac{r}{\mu})^{\frac{\lambda}{\alpha 1}}$

Proceeding similarly, we also have

$u_{t}\geq\Delta u-\nabla v\cdot\nabla u+(r-\epsilon)u-\mu u^{\alpha}$

and

(3.3) $1 i_{tarrow\infty x\in\Omega}IY:\inf i\mathfrak{x}\tau fu(x, t)\geq(\frac{r}{\mu})^{\frac{1}{\alpha-1}}$

Collecting (3.2) and (3.3) yields that

(3.4) $\Vert u-(\frac{r}{\mu})^{\frac{1}{cv-1}}\Vert_{\iota\infty\langle\zeta))}arrow0$ as $tarrow\infty.$

In the rest of proof, using (3.4) instead of [5, Lemma 4.4] we can proceed in the same way
$a_{A}q$ in [5, Section 4]. The proof is completed. $\square$

Remark 3.1. We underline that the proof of Theorem 1.2 remains valid for any spacial

dimensions if the solution enjoys some boundedness property as Proposition 2.3.
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