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Abstract

PageRank is for ranking Web pages and plays an important role in the Google
search engine. In recent years, large-scale cornputations on PageRank are at-
tractive research topics of numerical linear algebra and its application. The
existing approaches include Krylov subspace methods such as the Arnoldi-
type method, which is the efficient variant of the Arnoldi method for eigen-
value problems. The Arnoldi method requires complex arithmetic, whereas
the Arnoldi-type method does not, and thus, can compute PageRank effi-
ciently. We focus on the non-Krylov subspace method called the Riccati
method and present its variants for computing PageRank. The proposed
Riccati-type methods can efficiently compute PageRank without complex
arithmetic, while keeping the attractive convergence behavior.

1 Introduction

PageRank is for ranking Web pages and large-scale computations on it has
attracted much attention in recent years [5, 8, 10, 11]. The PageRank com-
putation results in an eigenvalue problem of an $n\cross n$ real nonsymmetric
matrix $A$ . Here, $A$ is determined by link structures between Web pages.
The number of Web pages $n$ can be large, while each Web page often has
a few hyperlinks. Thus, $A$ is large and sparse. In addition, $A$ is positive
and column stochastic. From the Perron Frobenius theorem, it follows that
the largest eigenvalue of $A$ in magnitude is simple and equal to 1 and its
corresponding positive eigenvector exists [5]. This eigenpair is denoted by
$(\lambda, x)$ , where $\lambda=1$ and $x_{j}>0$ . When $\Vert x\Vert_{1}=1$ , the eigenvector $x$ defines a
PageRank vector, where $x_{j}$ shows the ranking of the jth page [5, 10].

The important point to note here is the influence of a parameter $\alpha(0<$

$\alpha<1)$ in $A$ . As reported in [6], rankings of Web pages $x_{j}$ change with
$\alpha$ . Higher values of $\alpha$ will give true PageRank vectors [8]. Meanwhile, $\alpha$

determines the difficulty of computing $x$ . It is shown that $|\tilde{\lambda}|\leq\alpha$ , where $\tilde{\lambda}$

is the second largest eigenvalue of $A$ in magnitude [5]. When $\alpha$ is close to
1, $\lambda$ will not be well separated from other eigenvalues. Consequently, more
iterations are taken to compute $x$ (corresponding to $\lambda$ ) by simple means like
the power method, and thus faster methods are required.
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2 The Arnoldi variants for computing PageRank

The Arnoldi method [1, 2] shows faster convergence than the power method.
However, the Arnoldi method computes Ritz values of $A$ , which will be com-
plex numbers. To avoid complex arithmetic, the Arnoldi-type method was
proposed [6]. In this method, the known eigenvalue $\lambda$ is utilized as a fixed
shift to compute a refined Ritz vector [7]. This vector denoted by $u$ is gen-

erated so that it minimizes a relative residual norm

$\frac{\Vert Au-u\Vert_{2}}{\Vert u\Vert_{2}}, u\in \mathcal{K}_{k}(A, u_{0})$ , (1)

where $\mathcal{K}_{k}(A, u_{0})$ is the $k(\ll n)$ dimensional Krylov subspace with respect

to $A$ and an initial vector $u_{0}\in \mathbb{R}^{n}$ . Since $u$ can be computed via a singular

value decomposition of a real matrix [6], the Arnoldi-type method requires

no complex arithmetic. The method will stop if a norm of the residual
$r=Au-u$ is enough small. Otherwise, $u$ is set to $u_{0}$ as a new initial vector,
and then the next iteration will start. As reported in [6], the Arnoldi-type

method shows faster convergence than the power method, in particular, when
$\alpha$ is close to 1.

A variant of the Arnoldi-type method was recently proposed [12]. This

variant has a weight of inner products as a parameter, while keeping the
advantage of the Arnoldi-type method. Let $\tilde{u}_{0}\in \mathbb{R}^{n}$ be an approximate

eigenvector and $\tilde{r}$ be its residual vector $\tilde{r}=A\tilde{u}_{0}-\tilde{u}_{0}$ . Instead of (1), the

variant computes a new approximate eigenvector $\tilde{u}$ so that it minimizes a
weighted residual norm

$\frac{\Vert A\tilde{u}-\tilde{u}\Vert_{W}}{||\tilde{u}\Vert_{W}}, \tilde{u}\in\mathcal{K}_{k}(A,\tilde{u}_{0})$ , (2)

where $W$ is an $n\cross n$ positive diagonal matrix whose jth diagonal element is

$w_{jj}= \frac{|\tilde{r}_{j}|}{\Vert\tilde{r}\Vert_{1}}$ . (3)

Since each element of $\tilde{u}_{0}$ will converge to each ranking of Web pages, a larger

jth element $\tilde{r}_{j}$ means the slower convergence of the jth ranking $\tilde{u}_{j}$ . Through
the minimization of (2), $W$ determined in (3) leads to update $\tilde{u}_{j}$ much more.
Since $W$ changes per iteration, the method is called the adaptively acceler-
ated Arnoldi method. When $W=I$ , the method results in the Arnoldi-type

method. Compared to the Arnoldi-type method, the adaptively accelerated
Arnoldi method requires to store one more $n$-vector for diagonal elements of
$W$ and more computations on $W$-weighted norms per iteration.
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3 New Riccati variants for computing PageRank

We consider an alternative approach to computing PageRank using the Ric-
cati method [3], because the method often shows faster convergence than
the Arnoldi method. The Riccati method iteratively computes approximate
eigenvectors. In the method, a Riccati equation needs to be solved to gen-
erate subspaces. Usually, the equation is approximately solved. To be more
precise, a Riccati equation is reduced to an eigenvalue problem of a small non-
symmetric matrix so that an approximate solution of the Riccati equation can
be easily generated from an eigenvector. The reduction step gives not only
a way to solve a Riccati equation approximately, but also the relationship
between the Riccati method and the Arnoldi method. Implicitly, the Riccati
method uses approximate eigenvectors computed by the Arnoldi method to
expand subspaces. This relationship motivates to consider a Riccati-type
method for computing PageRank efficiently. To avoid complex arithmetic in
the Riccati method, we use the Arnoldi-type method instead of the Arnoldi
method as follows. Let us assume that $(m-1)$ dimensional subspace $\mathcal{Z}_{m-1}$

is given. Here, the Arnoldi-type method is used to expand $\mathcal{Z}_{m-1}$ to

$\mathcal{Z}_{m}=Z_{m-1}+span\{u\}, u\in \mathcal{K}_{k}(A, z_{0})$ , (4)

where $z_{0}\in \mathbb{R}^{n}$ is a starting vector for the $k$-dimensional Krylov subspace
and $u\in \mathbb{R}^{n}$ is an approximate eigenvector computed by the Arnoldi-type
method. In this subspace $\mathcal{Z}_{m}$ , a new approximate eigenvector $z\in \mathbb{R}^{n}$ is
generated so that it minimizes a relative residua12-norm

$\frac{\Vert Az-z\Vert_{2}}{\Vert z\Vert_{2}}, z\in \mathcal{Z}_{m}$ . (5)

Reusing computational results in the Arnoldi-type method enables us to com-
pute $z$ , which minimizes (5), without matrix-vector multiplications [9]. This
Riccati-type method can compute PageRank without complex arithmetic,
while keeping the attractive convergence behavior, as reported in the next
section.

Through the above approach, we consider a variant of the Riccati-type
method. Instead of the Arnoldi-type method, we use the adaptively acceler-
ated Arnoldi method to generate subspaces. To be more precise, we replace
$u$ in (4) by an approximate eigenvector $\tilde{u}$ computed by the adaptively ac-
celerated Arnoldi method. In addition, we update the weight $W$ for the
adaptively accelerated Arnoldi method per iteration. These simple modifi-
cations enables us to derive another Riccati-type method. The derivation of
this variant is straightforward and indicates that our approach can be flexibly
incorporated with several approaches based on the Arnoldi-type method.
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4 Numerical experiments

We report numerical experiments to compare the Riccati-type method (R1)
and its variant (R2) with the Arnoldi-type method (A1) and the adaptively
accelerated Arnoldi method (A2). Computational environment is Fortran
77 double precision arithmetic run under Linux with Intel Xeon E5-1680 v3
(3.2 GHz). Our codes are compiled by Intel Fortran compiler (ver. 15.0.3)
with an option -fast. Test matrix $A$ comes from Stanford $(n=281,903)$
obtained from the matrix collection [4]. The parameter of $A$ is set to $\alpha=$

$1-10^{-j}(j=1, \ldots, 4)$ . In all the methods, initial vectors are given by
$[$1, . . . , $1]^{T}$ . These methods stop if a relative residual 1-norm is less than
$10^{-7}$ , since the PageRank vector is the eigenvector normalized by 1-norm. To
compare the methods under the same condition, the major part of memory
usage is common to all the methods and kept to be $10n$ as follows. In Al,
the dimension of Krylov subspace is set to $k=10$ . In A2, $k=9$ due to store
the weight $W$ . In Rl and R2, two $n$-vectors need to be stored additionally
per iteration [9]; one is for a basis vector to expand the subspace $\mathcal{Z}_{m}$ , and
the other is a workspace. To keep memory requirements under constant $(10n$

in this experiment), the dimension of Krylov subspace $k$ is decreased by 2
per iteration. In Rl, $k=10$ , 8, 6, 4 at each iteration, and after the 4 steps
Rl restarts. In R2, $k=9$ , 7, 5, 3 at each iteration due to store the weight $W.$

Table 1 shows computational results.

Table 1: Computational results of Al (Arnoldi-type), A2 (adaptively accel-
erated Arnoldi), Rl (Riccati-type), and R2 (variant of Riccati-type). MV
and Time show the number of matrix-vector multiplications taken for con-
vergence and computational time (sec.).

Table 1 shows better performances of the Riccati-type method and its
variant, in particular, when $\alpha$ is close to 1. The convergence behaviors are
illustrated in Figure 1. For higher values of $\alpha$ , the Riccati-type method and
its variant show faster convergence.
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Number of matrix-vector multiplications

Figure 1: Convergence behaviors of Al (Arnoldi-type), A2 (adaptively accel-

erated Arnoldi), Rl (Riccati-type), and R2 (variant of Riccati-type).
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5 Conclusions

We have explored a variant of the Riccati method to compute PageRank
efficiently. The relationship between the Riccati method and the Arnoldi
method motivates us to incorporate the advantage of the Arnoldi-type method
for computing PageRank into the Riccati method. The proposed Riccati-type
method can compute PageRank without using complex Ritz values and addi-
tional matrix-vector multiplications. Through this approach, we have derived
another Riccati-type method utilizing the adaptively accelerated Arnoldi
method. Numerical experiments illustrate the better performances of the
Riccati-type methods, in particular, when $\alpha$ is close to 1.
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