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1 Introduction

Current supercomputers, such as $K$ computer and Chinese Tianhe 2, have close to, or even more
than one million cores. The supercomputers in the next generation will have still higher degrees of
parallelism. It is expected that supercomputers will have performance of $10^{18}$ or lExa flops, and called
$exa$-scale computers. They would consist of about one million nodes, and the parallelism within each
node will be about one thousand, with combined multicore and SIMD parallelisms.

Several challenges are anticipated in effective programming on such an extremely large scale parallel
computers. Some eminent challenges must be power consumption, programming complexity, fault
tolerance, memory barrier, and communication latency. In this article, we focus on the problem of
higher communication latency in exa-scale computers. The problem of communication latency is not
new. In the past, the relative cost of communication latency was kept under a certain limit by assigning
large enough computations to all processors, so that the processors are busy enough. This idea leads to
weak scaling, in which the total size of the computation is increased linearly to the number of processors.
However, now the number of processors is so big, and thus the problem size is extremely big. Users may
not want to make the problem still larger, but may want to reduce the computation time by keeping
the problem size and using more processors. This idea of strong scaling must be carefully introduced,
because communication latency could bring serious performance degradations: The computations are
distributed into more processors, and the amount of computations per processor will become less, while
more messages might be required for the larger number of processors to communicate each other. The
resulting effect brings a situation that larger part of execution time is occupied by communication.
Even now on $K$ computer, some application program spends much longer time for communication than
time for computation.

Those observations leads people into research on a class of algorithms in which the amount of
communication or the number of messages are reduced at the cost of increased amount of computations,
compared to existing algorithms. Such algorithms are collectively called $Communication-\mathcal{A}$voiding or
$CA$ algorithms. Communication-avoiding algorithms may reduce the total execution time of some
parallel computations, especially of strong scaling on extremely large scale parallel computers.

Perhaps the most famous and successful communication-avoiding algorithm in dense matrix com-
putations is TSQR (Tall-Skinny QR) algorithm[l]. Various kinds of temporal blocking algorithms[2, 3]
have been proposed for stencil computations. Communication-avoiding iterative sparse solvers, which
is the topic of this article, are also investigated with great efforts[4]. We consider algorithms that
reduces the number of messages (on each processor) in this article.
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2 Communication-Avoiding Krylov Subspace Methods

2.1 Conjugate Gradient (CG) Method and its Communication

The following pseudo-code shows the Conjugate Gradient (CG) method (without preprocessing), which
is one of the most basic Krylov subspace methods of iterative linear solvers. Here, $(u, v)$ in the
expression represents an inner product of vectors $u$ and $v$ , and the suffixes are used to identify iteration
counts.

Inputs: $A,$ $b,$
$x_{0}$

$p_{0}=r_{0}=b-Ax_{0}$

for $i=0$ , 1, 2, . . .
$\alpha_{i}=(r_{i}, r_{i})/(p_{i}, Ap_{i})$

$r_{i+1}=r_{i}-\alpha_{i}Ap_{l}’$

$x_{i+1}=x_{i}+\alpha_{i}p_{i}$

$\beta_{i}=(r_{i+1}, r_{i+1})/(r_{i}, r_{i})$

$p_{i+1}=r_{i+1}+\beta p_{i}$

In parallelizing CG method, communication is needed to compute one matrix-vector product $Ap_{i}$

and two inner products $(r_{i}, r_{i})$ and $(p_{i}, Ap_{i})$ . The other computations are scalar-vector products, vector
additions/subtractions, and scalar operations, which requires no communication. In the following, we
first focus on the communication for the inner products.

2.2 Reduction of the Number of Inner Products in the CG Method

It is known that the number of inner products in the CG method can be reduced from two to one
(Saad[5], Meurant[6], D’Azevedo[7]). Such a reduction of the number of inner products becomes
possible by introducing a matrix-matrix multiplication of very thin matrices. There are some methods
with slight differences as cited above. They will be effective on some large scale parallel computers,
perhaps are effective on some contemporary computers already. Their convergence might be affected
by rounding errors incurred by the different expressions employed for the algorithm. We do not discuss
them more in this article.

In order to further reduce the number of inner products, one way is to choose a positive integer
$k$ and to collect the computations of $k$ steps of $i$ loop into one, which is a well-known technique as
( $k$-way) look unrolling. This is known as multi-step CG method. One of oldest work in this kind is
one by van Rosendale[8]. Chronopoulos and Gear[9] proposed $s$-step method which is multi-step CG
method. Chronopoulos and Kucherov[10] discusses blocking of $s$-step method. Thesis by Toledo[ll]
proposed new multi-step methods. Thesis by Hoemmen[4] is convenient to survey recent works.

Krylov subspace methods, including the CG method, can construct approximate solutions if the
Krylov subspace:

$K_{m}=span\{r_{0}, Ar_{0}, A^{2}r_{0}, . . . , A^{m}r_{0}\}$

is available. Applying this technique to the CG method, it leads to an iterative solver with the number
of inner products is $1/k$ times those of the CG method.

But the above straightforward construction of Krylov subspace, which is known as monomial basis,
is not numerically stable. This is easily understood when one notices that the computation of $A^{m}r_{0}$ is
mathematically equivalent to the power method. The vector $A^{m}r_{0}$ is almost parallel to the eigenvector
of the eigenvalue with largest absolute magnitude, and the other eigen-components decrease relatively
to the largest one and hidden by the rounding errors. As a result, numerical dimension of the Krylov
subspace becomes shorter than expected, and the approximate solution does not converge to the
analytical solution well. In experiments, a slowdown of the convergence is observed if the unrolling
factor $k$ is larger than 2 to 5, in many cases.
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To avoid such degradation of convergence, we use Chebyshev polynomial $T_{m}(x)$ to generate Krylov
subspace as:

$S=(r, Ar, T_{2}(A)r, \ldots, T_{m}(A)r)$ .

Here, $T_{m}(x)$ represents an orthogonal polynomial on the interval $[\lambda_{\min}, \lambda_{\max}]$ (where $\lambda_{\min}$ and $\lambda_{\max}$ are
the smallest and the largest eigenvalues of $A$ ) by scaling and shifting the usual Chebyshev polynomial
on the interval [-1, 1]. Chebyshev polynomial $T_{m}(x)$ has all of its local maxima, local minima and zeros
in the interval $[\lambda_{\min}, \lambda_{\max}]$ , and the magnitudes of the local maxima and local minima are all l’s. Zeros
of Chebyshev polynomials of different degrees never coincide with each other. And exactly one of the
zeros of $T_{m}(x)$ exists in between two neighboring zeros of $T_{m-1}(x)$ . Those properties of the Chebyshev
polynomial guarantee that no one eigenvector of $A$ will not surpass others in the Krylov subspace, and
numerically stabilize the generation of the Krylov subspace. The following is our formulation of such
an algorithm:

Inputs: $A,$ $b,$ $x_{0},$
$M^{-1}$

$r_{0}=b-Ax_{0}$

for $i=1$ , 2, 3, . . .
$r=r_{(i-1)k}$

$S_{i}=M^{-1}(r, AM^{-1}r, T_{2}(AM^{-1})r, \ldots, T_{k-1}(AM^{-1})r)$

if $i>1$ then
$B_{i-1}=(Q_{i-1}^{T}AQ_{i-1})^{-1}Q_{i-1}^{T}AS_{i}$

$Q_{i}=S_{i}-Q_{i-1}B_{i-1}$

else
$Q_{i}=S_{i}$

$a_{i}=(Q_{i}^{T}AQ_{i})^{-1}Q_{i}^{T}r$

$x_{ik}=x_{(i-1)k}+Q_{i}a_{i}$

$r_{ik}=r_{(i-1)k}-AQ_{i}a_{i}$

which we call Chebyshev-Basis $CG$ or CBCG method[12]. Derivation will be given in the next subsec-
tion. But in the above pseudo-code we include the preconditioning $M^{-1}\approx A^{-1}.$

The above pseudo-code only provides its mathematical formulation. A straightforward implemen-
tation of it would contain much more matrix-vector products than the original CG method, but, as
Kumagai et $a1.[14]$ pointed out, it can be implemented with just $k$ matrix-vector products. We do not
apply elaborate preconditioning more than Jacobi preconditioner, but there are proposals of precondi-
tioners suitable to communication-avoiding Krylov subspace method, for example Yamazaki et $a1.[15]$

proposed a strong preconditioner without introducing additional communication.

2.3 Review of the CG Method

The CG method solves a linear equation
$Ax=b,$

where the coefficient matrix $A$ must be symmetric positive definite. There are several derivations and
several implementation details of CG method, and the followings are those on which our CBCG method
is based on.

The CG method starts with an initial guess of the solution $x_{0}$ (which can be just O), and constructs
approximation solutions $x_{1},$ $x_{2}$ , . . . , one for each iteration. The approximate solution $x_{i}$ is constructed
as

$x_{i}=x_{0}+ \sum_{j=0}^{i-1}\alpha_{j}p_{j},$

where $p_{j}$ ’s are vectors called search direction vectors. Thus, the approximate solution is the sum of
initial guess $x_{0}$ and a linear combination of search direction vectors $p_{g}.$
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Search direction vectors must be bi-orthogonal:

$p_{i}^{T}Ap_{j}=0 (i\neq j)$ .

First we proceed the derivation of the CG algorithm assuming availabilities of $p_{j}’ s$ , and after that we
will explain how to obtain such vectors.

The coefficients $\alpha_{i}$ ’s are chosen so that the $A$-norm of the error

$(x-x_{i})^{T}A(x-x_{i})=(x-x_{0}- \sum_{j=0}^{i-1}\alpha_{j}p_{j})^{T}A(x-x_{0}-\sum_{j=0}^{i-1}\alpha_{j}p_{j})$

is minimized. The $A$-norm of the error can be represented as

$(x-x_{i})^{T}A(x-x_{i})=e_{0}^{T}Ae_{0}-2e_{0}^{T}A \sum_{j=0}^{i-1}\alpha_{j}p_{j}+\sum_{j=0}^{i-1}\alpha_{j}^{2}p_{j}^{T}Ap_{j},$

where $e_{0}=x-x_{0}$ . Differentiating it by $\alpha_{j}$ and then equating them to zeros, we have:

$\alpha_{j}=\frac{e_{0}^{T}Ap_{j}}{p_{j}^{T}Ap_{j}}.$

Thus the coefficients $\alpha_{j}$ ’s are determined.
Next, the construction of search direction vectors $p_{j}$ ’s is explained. They are created by Gramm-

Schmidt $A$-orthogonalization of Krylov subspace

$K_{i}=span\{r_{0}, Ar_{0}, A^{2}r_{0}, . . . , A^{i}r_{0}\},$

which results in:

$p_{i}=r_{i}- \sum_{j=0}^{i-1}\frac{p_{j}^{T}Ar_{i}}{p_{j}^{T}Ap_{j}}p_{j}$ . (1)

Here a property called Lanczos principle gives an important equality

$p_{j}^{T}Ar_{i}=0 (j<i-2)$

(which we omit the proof), and they simplify the equation (1) of orthogonalization as

$p_{i}=r_{i}+ \beta_{i-1Pi-1}, \beta_{i-1}=-\frac{p_{i-1}^{T}Ar_{i}}{p_{i-1}^{T}Ap_{i-1}}.$

By summarizing the above results, the CG method is defined as in Section 2.1. There, some
expressions different from those shown in the derivation are employed: some reduces rounding errors,
and some reduces computational costs.

2.4 Deriving the CBCG Method

It is known that the Krylov subspace has several useful properties such as:

$K_{i} = span\{r_{0}, Ar_{0}, A^{2}r_{0}, . . . , A^{i}r_{0}\}$

$= span\{r_{0}, r_{1}, r_{2}, . . . , r_{i+1}\}$

$= span\{p_{0},p_{1},p_{2}, . . . , p_{i+1}\}.$
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As it is clear from the above explanation of the CG method, it holds that

$x_{i}-x_{0}= \sum_{j=0}^{i-1}\alpha_{j}p_{j}\in K_{i},$

which means that the approximate solution $x_{i}$ is chosen from the Krylov subspace so to minimize
$A$-norm of the error.

Our strategy is to create the same Krylov subspace as the CG method (except rounding errors). In

the following presentation, $i$ is used for the index of outer (unrolled) loop, and $j$ is used for the index

of inner loop which runs from $0$ to $k-1$ . Then $ik+j$ corresponds to the loop index of the original CG

method.
In the CBCG method, $k$ dimensions of Krylov subspace are created at once. Let $q_{i,j}$ be the vectors

that spans the Krylov subspace:

$K_{ik}=span\{q_{1,1}, q_{1,2}, . . . , q_{1,k}, q_{2,1}, q_{2,2}, . . . , q_{i,k}\}.$

Also let $Q_{i}$ be a matrix which consists of $k$ vectors of $q_{i,j}$ :

$Q_{i}=(q_{i,1}, q_{\’{i},2}, \ldots, q_{x,k})$ .

Next we introduce a constraint on $Q_{i}$ (this constraint is not unique, and other choices can be

considered):
$Q_{i_{1}}^{T}AQ_{i_{2}}=0 (i_{1}\neq i_{2})$ ,

meaning that the $Q_{i}$ matrices are $A$-orthogonal. But vectors within one $Q_{i}$ matrix may not be A-

orthogonal (unlike CG method). Thus we may have

$q_{ij_{1}}^{T}Aq_{ij_{2}}\neq 0.$

As the approximate solution is contained in the Krylov subspace, it has the form as:

$x_{ik}=x_{0}+ \sum_{i,j}\alpha_{i,j}q_{i,j}.$

It can be written as

$x_{ik}=x_{0}+ \sum_{\iota=0}^{i-1}Q_{\iota}a_{\iota}$

by using a vector consisting of $\alpha_{i,g}$

$a_{i}=(\alpha_{i,1},\alpha_{i,2}, \ldots, \alpha_{i,k})^{T}.$

First, the coefficient $a_{i}$ is determined from the $A$-norm of the error

$(x-x_{ik})^{T}A(x-x_{ik})$

$=(x-x_{0}- \sum_{\iota=0}^{i-1}Q_{\iota}a_{\iota})^{T}A(x-x_{0}-\sum_{\iota=0}^{i-1}Q_{\iota}a_{\iota})$

$=e_{0}^{T}Ae_{0}-2e_{0}^{T}A \sum_{\iota=0}^{i-1}Q_{\iota}a_{\iota}+\sum_{\iota=0}^{i-1}a_{\iota}^{T}Q_{\iota}^{T}AQ_{b}a_{\iota},$

where $e_{0}=x-x_{0}$ again. Differentiating it by $a_{i}$ and equating it to zero, we have

$a_{i}=(Q_{i}^{T}AQ_{i})^{-1}Q_{i}^{T}r_{0}.$
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Next construction of $q_{\iota,j}$ is explained. In the original CG method, the search direction vector $p_{i}$

is created by Gramm-Schmidt $A$-orthogonalization from the residual vector $r_{i}$ . In CBCG method, the
search direction vector $q_{i,j}$ is again constructed by Gramm-Schmidt $A$-orthogonalization from some
vector $s_{i,j}$ . That is, by letting

$S_{i}=(s_{i,1}, s_{i,2}, \ldots, s_{i,k})$ ,

Gramm-Schmidt reads as

$Q_{i}=S_{i}- \sum_{\iota=0}^{i-1}Q_{\iota}(Q_{\iota}^{T}AQ_{\iota})^{-1}Q_{\iota}^{T}AS_{i}.$

Similar to the CG method, most of the terms in the above formula are not required. Let

$B_{i-1}=-(Q_{i-1}^{T}AQ_{i-1})^{-1}Q AS_{i},$

and then it is similar to $\beta_{i}$ in the CG method. We have

$Q_{x}=S_{i}+Q_{i-1}B_{i-1}$ , (2)

as we will prove it later.
To expand the same Krylov subspace as the CG method, $s_{i,j}$ must be in $K_{ik+j}-K_{ik+j-1}$ . For

brevity, we temporary let $r=r_{(i-1)k}$ . Then from the fact that $r\in K_{(i-1)k+1}$ , it can be seen that

$s_{i,j}=A^{j-1}r$

satisfies $s_{i,j}\in K_{ik+j}$ (this is the monomial basis).
Finally we show equation (2). In the original CG method, it is known that

$\forall a\in K_{i-1}, r_{i}^{T}v=0$

and
$A^{j}r_{i}\in K_{i+j}$

are satisfied. First assume that $\iota+j<i$ . Then $A^{j}r_{\iota}\in K_{\iota+j}$ implies that $A^{j}r_{\iota}$ and $r_{i}$ are orthogonal.
Then the right hand side of

$(A^{j}r_{i})^{T}r_{\iota}=r_{i}^{T}(A^{J}r_{\iota})$

must be $0$ , and $A^{j}r_{l}$ and $r_{\iota}$ are orthogonal. Fkom $r=r_{(i-1)k}$ and

$s_{i,k}\in span\{r, Ar, A^{2}r, . . . , A^{k-1}r\},$

it is shown that all of $As_{i,1},$ $As_{i,2}$ , . . . , $As_{i,k}$ are orthogonal to all vectors from $r_{0}$ to $r_{(i-2)k}$ . Thus $AS_{i}$

is orthogonal to any vector in $K_{(i-2)k+1}$ , and thus it is also orthogonal to all column vectors found in
$Q_{0}$ to $Q_{i-2}$ . Thus Gramm-Schmidt $A$-orthogonalization is simplified as equation (2).

As is seen in the derivation (and also in the pseudo-code), our CBCG method is a straightforward
extension of the original CG method. There are two inner-product-like communication, as is shown by
Kumagai et $a1.[14]$ . It could be combined to one, but we prioritize the numerical stability. However,
the stability of the CBCG method is not perfect. One reason is that the Chebyshev polynomial is
not perfect for all matrices. Another point of instability is at the inverse of $Q_{i-1}AQ_{i-1}$ , which is not
necessarily non-singular.
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2.5 Numerical Instability of Communication-Avoiding CG Methods

Chebyshev polynomial is not perfect. For some matrices, $k$ can be chosen almost arbitrarily without
affecting convergence, but for some other matrices, a larger $k$ degrades the convergence because of
rounding errors. We have an unpublished work of generating Krylov subspace in a numerically more
stable manner than the CBCG method, which will be reported in future.

In this paper, we review our previous work[16], where we have investigated the influence of the
rounding errors and the corruption of the Krylov subspace into convergence, by using monomial basis
in a communication-avoiding CG method presented in Hoemmen’s work[4], modified in an introduction
of restarts based on Beale’s method[17].

We had executed numerical experiments using 25 matrices from the University of Florida Sparse

Matrix Collections [18]. The matrices are small ones, from $27\cross 27$ “ex5” matrix to $2910\cross 2910$

“nasa2910” matrix. Jacobi preconditioner is applied, and the convergence of $A$-norm of the residual
vector is observed (but the stopping criteria is based on 2-norm of the residual).

The convergence of static iterative methods, such as Jacobi, Gauss-Seidel and SOR methods, is
asymptotically linear for symmetric matrices: that is, the norm of the residual vector decreases by
a constant factor (which is between $0$ and 1) by one iteration. The convergence of Krylov subspace
methods, including the CG method, can be superlinear, that is, the residual norm decreases faster
than linear. In our observations, we classify convergences of the CG method into three types: The
first type is linear, where the observed convergence till the stopping criteria is almost linear. The
numbers of iteration counts to the stopping criteria tend to be relatively large, and thus this linear
convergence implies a slow convergence. The second type is accelerated, where the convergence of the
residual becomes faster as iterations proceed. This is typical superlinear convergence. The third type
is stairs-like convergence, where the convergence is faster intermittently, after a significant number of
iterations with almost stagnated residual norms. Such convergence is also frequently observed in the
CG method.

Next we observed the convergence of communication-avoiding CG method with different values of
$k$ . The major criterion that we chose for comparison is the effective numbers of inner products, defined
by the number of outer iterations (indexed by $i$ in the previous pseudo-code) divided by $k$ . The number
of outer iterations includes iterations lost by restart, since our restart rolls back the iterations when it
detects divergence. For many problems of linear type convergence, the convergence was insensitive to
the choice of $k$ value. In such cases, choosing large $k$ gives small numbers of inner products. For many
problems of superlinear (accelerated type and stairs-like type) convergence, a large value of $k$ degrades

the convergence. The superlinear convergence ceases to appear, and the number of inner products

increases because many iterations are required until convergence. In such cases, the value of $k$ should
be carefully chosen so that the convergence is not affected much.

One can expect that the best choice of $k$ is related to the condition number (when the monomial
basis is applied). We compared the “optimal’ $k$ that gives smallest number of inner products until

convergence, against the $\hat{k}$ that satisfies $\kappa^{\hat{k}}\approx 10^{16}$ , where $\kappa$ is the condition number of the coefficient
matrix, and $10^{16}$ is the inverse of machine epsilon. In many cases the optimal $k$ is larger than $\hat{k}$ , and
significantly larger in cases of linear convergence. In cases of accelerated convergence, $k$ can be more
than twice as $\hat{k}$ , and in cases of stairs-like convergence, the optimal $k$ is close to $\hat{k}$ . We also noticed
that stairs-like convergence is observed with matrices with relatively large condition numbers $(\geq 10^{6})$ .

2.6 Matrix Powers Kernel

As stated above, in the generation of Krylov subspace $S_{i}$ , we need $k$ matrix-vector products. The

communication in those $k$ matrix-vector products is exactly same for the Chebyshev basis and the
monomial basis, as three-term recurrence formula of the Chebyshev polynomial can be used. So it is
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enough to investigate Matrix Powers Kernel or $MPK$:

$(r, Ar, A^{2}r, \ldots, A^{k-1}r)$ .

If the linear equation (i.e. the coeficient matrix $A$ ) is derived by discretizing a partial differential
equation (such as Poisson’s equation) with regular mesh, the communication also coincides with stencil
computations. In such cases, the vast existing knowledge about temporal blocking strategies of stencil
computations can be directly utilized in communication-avoiding Krylov subspace methods.

However, in such cases where the linear equation is derived by FEM (Finite Element Method)
with irregular mesh, one has to assume quite a general structure for the sparsity pattern of matrix
$A$ , usually distributed after partition by a general purpose graph partitioner. Research on efficient
and effective Matrix Powers Kernel constructions for such general sparse matrices is still in an early
stage. Basic methods are those called PA1 and PA2 in the paper by Hoemmen[4]. They require
just one communication for $k$ iterations, but a drawback is duplicated computations, that is, multiple
processors do the same computations independently (PA2 has less duplicated computations than PA1).
That incurs further increase of computational cost, and sometimes the increase of computational cost is
higher than the communication cost reduction. Our resent work on Matrix Powers Kernel is presented
in a paper[19]. There we show an algorithm that removes duplicated computations at the cost of larger
number of communication operations.

2.7 Implementation of CBCG Method on K Computer

In recent paper[14], we have implemented the CBCG method on $K$ computer, which is the largest
supercomputer in Japan at the time of writing this article. The matrix of size $300^{3}=27$ , 000, 000
is defined by discretization of a Poisson equation which appears in a computational fluid dynamics
analysis. The values for $k$ are 10 and 20.

The numbers of iterations until convergence were almost same as that of the CG method, and so
the convergence was not degraded by rounding errors. When we used 12,288 or less numbers of nodes,
the original CG implementation was faster, but when we use more 24,576 or larger numbers of nodes,
the CBCG implementation became faster than the CG method. With larger numbers of nodes, alarger
$k$ tends to be more effective.

3 Conclusion

In this article, we have introduced basic concepts of communication-avoiding Krylov subspace methods,
and summarizes our efforts on them. At reduction of the number of inner products, the numerical
stability is slightly degraded, and iteration counts to convergence increase. The instability is much
reduced by using Chebyshev basis, but the current technology is not fully satisfactory.

One of most serious questions arises from the existence of matrix inverse as $(Q_{i-1}AQ_{i-1})^{-1}$ . It is
not guaranteed that $Q_{i-1}AQ_{i-1}$ is full rank. We do not know what is the optimal way to cope with
the situation that $Q_{i-1}AQ_{i-1}$ is singular or numerically singular. There are many other questions to
answer: How should we choose the value of $k$ for a given problem? What is the most efficient way to
estimate $\lambda_{\min}$ and $\lambda_{\max}$ ? Which algorithm among many CA-CG methods is best for given platform
and given problem? Do we have a better basis than the Chebyshev basis, if more information about
eigenvalues is available? For Matrix Powers Kernel, we have much more things to investigate. There
are many temporal blocking strategies in stencil computations, but a few are extended to general
matrix. Graph partitioners may need to be redesigned toward Matrix Powers Kernel. Effective and
efficient implementations should be investigated. We still need to spend more efforts toward answers
to those questions.
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