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ABSTRACT. We propose the stochastic model for the beating process of cardiac muscle
cells. The well-posedness and some stochastic calculus of the model problems are derived.
We provide a numerical scheme for simulation and show the convergence order.

1. INTRODUCTION

The mystery of heart beat have attracted the attention of many biological researchers
since lone time ago. Since it can be viewed as a process of synchronous beating of cardiac
muscle cells, the biologists run various experiments to observe the beating of the cell-
network, which are aim to study the role of the community effect of cardiomyocytes in
the entrainment and establishment of stable beating rhythms [3, 4]. The motivation of
this paper is to propose a mathematical model for the beating of cardiac muscle cells,
based on the biological facts and experiment data.

Even for a single cardiac muscle cell, the mechanics of beating has not been fully un-
derstood from the biological point of view. It is known that the change of the distribution
of ions is highly relevant to the beating phenomenon; however, there is no definite answer
to the question of what and how the beating is triggered. By virtue of the experiment
data (the distribution of beating periods), the cardiac cell beating can be considered as a
process $Z(t)$ with the drift $\mu\geq 0$ and noise $\sigma\zeta(t)(\sigma>0)$ :

(1.1) $dZ(t)=\mu dt+\sigma dW(t)$ ,

where $\int_{0}^{t}\zeta(s)ds=W(t)$ , and $W(t)$ is the standard Brownian motion. Here, $Z(t)$ denotes
the state of cell at time $t$ . For simplicity, we set the initial state $Z(0)=Z_{0}\in[0$ , 1), and
the beating state $Z(t-)$ $:= \lim_{s\uparrow t}Z(s)=1$ . Moreover, we assume the cell returns to the
zero state after beating, i.e.

(1.2) $Z(t)=0$ , for $Z(t-)=1.$

From the biological point of view, the cell has a short period of refractory time after
beating and cannot be dragged back to the state just before the beating by noise. Hence,
we assume the reflective boundary at state O. As a result of (1.1) and (1.2), $Z(t)$ is the
$(\mu, \sigma)$ Brownian motion in torus $[0$ , 1) with reflective boundary at O.

To describe the mathematical model rigorously, we introduce the filtered probability
space $(\Omega, F, P)$ . The sample path of $\Omega$ is continuous in $[0, \infty$) except for countably many
points of $discontinuit\dot{y}$, where the left limit exists and the sample path is right-continuous.
$Z(t)$ is an adapted stochastic process of $(\Omega, F, P)$ . The dynamics of $Z(t)$ is determined
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by the stochastic differential equation (SDE):

(1.3a) $dZ(t)=\mu dt+\sigma dW(t)+dL(t)-dS(t)$ ,

(1.3b) $Z(0)=Z_{0}\in[0, 1 )$ ,

where $L(t)$ describes the reflective boundary at $Z=0$ , and $S(t)$ forces $Z(t)$ to jump back
to $0$ when reaching 1. To be specific, $L(t)$ satisfies (cf. [8, 11

$\{$

(i) $L(t)$ is non-decreasing, continuous process, with $L(O)=0,$

(1.4) (ii) $L(t)$ increases only when $Z(t)=0$ $( i.e. \int_{0}^{\infty}Z(t)dL(t)=0)$ ,

such that $Z(t)\geq 0.$

For $n=1$ , 2, . . ., and $t_{0}=0$ , setting the beating time $\{t_{n}\}_{n\geq 1}$ :

(1.5) $t_{0}=0,$ $t_{n}:= \inf\{t>t_{n-1}:Z(t_{-})=1\}$ , for $n\in \mathbb{N}_{+},$

we define $S(t)$ by:

(1.6) $S(t)=n-1$ for $t_{n-1}\leq t<t_{n}.$

From above definitions, we see that $0\leq Z(t)<1$ , and $Z(t)$ is a right-continuous stochastic
process with the jumps only at $\{t_{n}\}_{n\geq 1}$ , where $Z(t_{n,-})=1$ and $Z(t_{n})=0$ . Also, we have
$S(t_{n,-})=n-1$ and $S(t_{n})=n.$

In this note, we shall discuss the mathematical well-posedness of the one-cell model
(1.3) and show some properties of beating period. Then, introducing some restrictions
to describe the community effect of cardiomyocytes, we propose and study the two-cells
model. We extend the two-cells model to the $n$-cells (cell-network) model, and consider
the stablization of beating rhythms when increasing the cell number. The proof of several
propositions and theorems are left out in this note because of page limits, for which one
can refer to our forthcoming preprint [12].

2. THE ONE-CELL MODEL

There exists a unique $(Z(t), L(t), S(t))$ satisfying $(1.3)-(1.6)$ . In fact, setting $X(t)=$

$Z_{0}+\mu t+\sigma W(t)$ , we have:

(2.1) $L(t)= \sup_{0\leq s\leq t}(X(s)-S(s))_{-}$ , where $=- \min$ $0$ ).

$X(t)$ is called the $(\mu, \sigma)$-Brownian motion. We see that $L(t)\geq n$ for $t\geq t_{n}$ , and (1.3) is
equivalent to:

(2.2) $Z(t)=X(t)+L(t)-S(t)$ .

The following theorem shows the unique existence of $(Z(t), L(t), S(t))$ .

Theorem 2.1. For arbitrary $x(t)\in C([O, \infty with x(O)\in[0,1$ ), we set the function
$l(t)$ :

(2.3) $l(t)= \sup_{t_{n}\leq s\leq t}(x(t)-n$
$fort_{n}\leq t<t_{n+1},$ $n=0,1$ , . . . ,

where $t_{0}=0,$ $t_{n}$ $:= \inf\{t>t_{n-1} : (x+l)(t_{-})=n\}$ for $n\geq 1$ . Then, $l(t)$ is the unique

function such that:

(1) $l$ is continuous, non-decreasing function with $l(O)=0$;
(2) $z^{*}=x+l$ satisfies: $z^{*}(t)\geq n$ for $t\geq t_{n},$ $n=0$ , 1, . . .;
(3) $l$ increase only when $z^{*}(t)=n$ , for $n=0$ , 1, . . ..
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$z^{*}Le.tx(t)$
be any path of $(\mu, \sigma)$ Brownian motion with initial $x(O)\in[O$ , 1), then $Z(t)+S(t)=$

Proof. Apparently, $l(t)$ given by (2.3) satisfies $(i)-(iii)$ . We only verify the uniqueness.

Let $\tilde{l}(t)$ be any other solution, and set $\tilde{z}=x+\tilde{l},$ $y=\tilde{z}-z^{*}=\tilde{l}-l.$
$y$ is continuous, with

finite total variance. Hence, we have

(2.4) $0 \leq\frac{y(t)^{2}}{2}=\frac{1}{2}(\tilde{z}(t)-z^{*}(t))^{2}=\int_{0}^{t}(\tilde{z}-z^{*})d\tilde{l}+\int_{0}^{t}(z^{*}-\tilde{z})dl.$

For $\mathcal{S}_{1}=\min\{t_{1}, \tilde{t}_{1}\}$ , where $\tilde{t}_{n}$ $:=\{t>t_{n-1} : \tilde{z}(t_{-})=n\},$ $n\in \mathbb{N}_{+}$ , we have

(2.5) $\int_{0}^{s_{1}}(\tilde{z}-z^{*})d\tilde{l}=\int_{[0,s_{1})\cap\{t:\tilde{z}(t)=0\}}(0-z^{*})d\tilde{l}\leq 0,$

where we use (iii) for $\tilde{l}$ and (ii) for $z^{*}$ . Similarly, we have

(2.6) $\int_{0}^{s_{1}}(z^{*}-\tilde{z})dl=\int_{[0,s_{1})\cap\{t:z^{*}(t)=0\}}(0-\tilde{z})dl\leq 0.$

In view of $(2.4)-(2.6)$ , $\tilde{z}=z^{*}$ for all $s\in[0, s_{1}$ ), and $s_{1}=t_{1}=\tilde{t}_{1}$ . Hence, we show the
uniqueness for $n=1$ , and for arbitrary $n$ , we can obtain the conclusion by the induction
method. $\square$

2.1. The expectation and variance of the beating periods. For any $f\in C^{2}(0,1)$

and $t\in(0, \infty)$ , we have the It\^o’s formula for $Z(t)$ (cf. [2, \S 7 (4)]):

$f(Z(t))=f(Z(0))+ \int_{0}^{t}\mu f’(Z(\mathcal{S}))+\frac{\sigma^{2}}{2}f"(Z(s))ds$

(2.7) $+ \int_{0}^{t}\sigma f’(Z(\mathcal{S}))dW(s)+\int_{0}^{t}f’(Z(t))dL(t)$

$- \sum_{n=1}^{J}(f(Z(t_{n,-}))-f(Z(t_{n})))$ ,

where $J$ is the times of cell beating, i.e. $J= \max\{n : t_{n}<t\}$ ( $t_{n}$ is defined by (1.5)).
We set the beating period $\triangle t_{n}=t_{n}-t_{n-1}$ , where $t_{n}$ is the beating time defined by

(1.5). If $Z_{0}=0$ , then $\{\triangle t_{n}\}_{n\geq 1}$ are independent identically distributed $(i.i.d.)$ random
variables. Using It\^o’s formula (2.7), it is not difficult to prove the following proposition,
which shows the expectation of beating periods $\mathbb{E}(t_{1})$ .

Proposition 2.2. For any $Z_{0}\in[0$ , 1), we have

(2.8) $\mathbb{E}(t_{1})=\{\begin{array}{ll}\frac{1}{\sigma^{2}}(1-Z_{0}^{2}) , for\mu=0,\frac{1-Z_{0}}{\mu}-\frac{1}{\theta\mu}(e^{-\theta Z_{0}}-e^{-\theta}) , for\mu>0,\end{array}$

where $\theta=2\mu/\sigma^{2}.$

To calculate the variance of the beating period, we consider the distribution of $Z(t)$

when $tarrow\infty$ . In fact, for $Z_{0}=0,$ $Z(t)$ is a regenerative Markov process, and $\{t_{n}\}_{n\geq 1}$ are
the regeneration time (i.e. the process $Z$ after $t_{n}$ becomes a probabilistic replica of $Z(t)$
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after $t_{n-1},$ $n\geq 1$ ). For any open interval $A\subset[0$ , 1 $]$ , from the renewal theorem (cf. [1,
(2.25) of Chapter 9 we have

(2.9) $\lim_{tarrow 0}P\{Z(t)\in A\}=\frac{1}{a}\int_{0}^{\infty}P\{Z(t)\in A, T>t\}dt.$

We define a probability measure $\pi$

(2.10) $\pi(A)=\frac{\mathbb{E}(\int_{0}^{T}1_{A}(Z(t)))dt}{E(T)}.$

$\pi(A)$ can be viewed as the expected amount of time (normalized) such that $Z\in A$ during
a regenerative cycle, or equivalently, the probability of $Z\in A$ when $tarrow\infty$ , i.e. (cf. [2,
\S 4 of Chapter 5])

(2.11) $\pi(A)=\lim_{tarrow 0}P\{Z(t)\in A\}.$

With the help of It\^o’s formula (2.7), we obtain the following lemma.

Lemma 2.3. Let $p(z)(z\in[0,1))$ denote the probability density function for the distri-
bution of $Z(t)$ when $tarrow\infty,$ $i.e.$

(2.12) $\pi(A)=\int_{A}p(z)dz.$

Then, we have:

(2.13) $p(z)=\{\begin{array}{ll}2(1-z) , for\mu=0,\frac{\theta}{e^{\theta}-\theta e^{\theta}-1}(e^{\theta z}-e^{\theta}) , for\mu>0,\end{array}$

where $\theta=\frac{2\mu}{\sigma^{2}}.$

We calculate the variance of beating period $Var(t_{1})$ .

Proposition 2.4. For $Z_{0}=0$ , we have

(2.14) $Var(t_{1})= \sigma^{2}\mathbb{E}(t_{1})\int_{0}^{1}|f’(z)|^{2}p(z)dz,$

where $f$ and $p(z)$ are given by Proposition (2.2) and Lemma 2.3. Via calculation, $we$

have:

(2.15) $Var(t_{1})=\{\begin{array}{ll}\frac{2}{3\sigma^{4}}, for \mu=0,\frac{1}{\mu\theta}(\theta+e^{-\theta}-1) , for\mu>0.\end{array}$

Remark 2.1. We have

(2.16) $\frac{Var(t_{1})}{\mathbb{E}(t_{1})^{2}}=\{\begin{array}{ll}\frac{2}{3}, for \mu=0,\frac{e^{\theta}(-5e^{\theta}+e^{-\theta}+4+4\theta+2\theta e^{\theta})}{(1+\theta e^{\theta}-e^{\theta})^{2}}, for \mu>0.\end{array}$

Moreover, for $\mu>0$ , we have $\lim_{\theta\downarrow 0}\frac{Var(t_{1})}{E(t_{1})^{2}}=\frac{2}{3}$ , and $\frac{Var(t_{1})}{E(t_{1})^{2}}$ decreases when $\theta$ increasing.
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3. THE TWO-CELLS PROBLEM

For $i=1$ , 2, let $Z_{i}(t)\in[0$ , 1) denote the state of cell $i$ . To describe the beating process

of two cells with communication, we introduce the potential function $V$ and consider

the synchronous beating due to the community effect. Here, $V(x, y)$ is the continuous
function, satisfying

(3.1) $V(x, y)$ : $[0, 1]^{2}arrow \mathbb{R},$

and there exists some constant $K>0$ such that, for any $x_{i},$ $y_{i}\in[0$ , 1 $],$ $i=1$ , 2,

(3.2) $|V(x_{1}, y_{1})-V(x_{2}, y_{2})|\leq K(|x_{1}-x_{2}|+|y_{1}-y_{2}$

For cell $i$ , we set the refractory period $[0, B_{i}$ ), $B_{i}\in[0$ , 1), during which the cell cannot
receive the influence from the outside environment. If one cell reaches the beating state

and the other cell is outside its refractory period, then two cells beat synchronously and

both return to zero state. Hence, for $i,$ $j\in\{1$ , 2 $\}$ and $i\neq j$ , we have two cases of cell
beating.

(1) When $Z_{i}(t-)=1,$ $Z_{j}(t-)\geq B_{j}$ , then $Z_{i}(t)=Z_{j}(t)=0.$

(2) When $Z_{i}(t-)=1,$ $Z_{j}(t-)<B_{j}$ , then $Z_{i}(t)=0$ and $Z_{j}(t)=Z_{j}(t-)$ .

We call case (1) the synchronous beating, and case (2) the independent beating. Let $k_{n}$

$(n\geq 1)$ denote the time of n-th synchronous beating, i.e. $k_{0}=0$ , and for $n\geq 1,$

(3.3) $\beta_{n}:=i_{YJ}f\{t>\beta_{n-1}:Z_{i}(t_{-})=1, Z_{j}(t)\in[B_{j}, 1), i=1or2, j\neq i\}.$

Moreover, let $t_{n,k}^{i}(k\geq 1, n\geq 0)$ denote the time of k-th independent beating of cell $i$

during $(k_{n}, k_{n+1})$ , i.e. $t_{n,0}^{i}=b_{n}$ , and for $k\geq 1,$

(3.4) $t_{n,k}^{i}:= \inf\{t>t_{n,k-1}^{i}:Z_{i}(t_{-})=1, Z_{j}(t-)<B_{j}, t<k_{n+1}\}.$

For any $t>0$ , we set the number of times of synchronous beating

(3.5) $\backslash J=\max\{n:M<t\},$

and the number of times of independent beating of cell $i$ during $(k_{n},$ $\min\{k_{n+1},$ $t$

(3.6) $J_{n}^{i}:= \max\{k:t_{n,k}^{i}<\min\{k_{n+1}, t$

We define the jump function

(3.7) $S_{i}(t):= \sum_{n=1}^{J}(Z_{i}(t_{n}-)-Z_{i}(k_{n}))+\sum_{n=0}^{J}\sum_{k=1}^{J_{n}^{l}}(Z_{i}(t_{n,k}^{i}-)-Z_{i}(t_{n,k}^{i}))$ ,

where $Z_{i}(k_{n})=Z_{i}(t_{n,k}^{i})=0$ and $Z_{i}(t_{n,k}^{i}-)=1$ according to the definition of the syn-

chronous and independent beating. Let $L_{i}(t)$ satisfies (1.4) with $Z$ replaced by $Z_{i}$ . We

propose the stochastic model for two cells with community effect: for $i=1$ , 2,

(3.8a) $dZ_{i}(t)=\mu_{i}dt+\sigma_{i}dW_{i}(t)+dL_{i}(t)-dS_{i}(t)+V(Z_{i}(t), Z_{j}(t))dt,$

(3.8b) $Z_{i}(0)=Z_{i0}\in[0, 1 )$ ,

where $\mu_{i}\geq 0,$ $\sigma_{i}>0$ and $W_{i}(t)$ denotes the independent standard Brownian motion. In

fact, $Z(t)$ $:=(Z_{1}(t), Z_{2}(t))$ is a regenerative Markov process, and $\{\mathbb{R}\}_{n\geq 1}$ is the set of the

regeneration time. The well-posedness of (3.8) follows from the standard argument (cf.

[8, 6

Theorem 3.1. For arbitrary $V(x, y)sati_{\mathcal{S}}fying(3.1)$ and (3.2), there exists a unique

solution $(Z_{i}(t), L_{i}(t), S_{i}(t))_{i=1,2}$ for (3.8).
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We write the It\^o’s formula of $Z(t)$ for $t\in(0, b_{1})$ , since $Z(t)=(Z_{1}(t), Z_{2}(t))$ is the
probabilistic replica during every regenerative cycle $[t_{n-1}, t_{n}$ ).

For any $f\in C^{2}((0,1)^{2})$ and $t\in(0, b_{1})$ , we have

$f(Z(t))=f(Z(0))+ \int_{0}^{t}\sum_{i=1}^{2}\Gamma f(Z(s))ds$

$+ \int_{0}^{t}\sum_{i=1}^{2}\sigma_{i}f_{i}(Z(s))dW_{i}(\mathcal{S})+\int_{0}^{t}\sum_{i=1}^{2}f_{i}(Z(s))dL_{i}(s)$

(3.9)

$- \sum_{k=1}^{J_{0}^{1}}[f(1, Z_{2}(t_{0,k}^{1}))-f(0, Z_{2}(t_{0,k}^{1}))]$

$- \sum_{k=1}^{J_{0}^{2}}[f(Z_{1}(t_{0,k}^{2}), 1)-f(Z_{1}(t_{0,k}^{2}), 0$

where $f_{i}$ $:=\Delta\partial\partial z_{l}^{-}$ and $\Gamma$ is the elliptic operator:

(3.10) $\Gamma f$ $:= \sum_{i=1}^{2}\mu_{i}f_{i}+\sum_{i=1}^{2}\frac{\sigma_{i}^{2}}{2}f_{ii}$ , with $f_{ii}$ $:= \frac{\partial^{2}f}{\partial z_{i}^{2}}.$

Remark 3.1. Since $L_{i}$ increases only when $Z_{i}=0$ , we have

$\int_{0}^{t}f_{i}(Z(s))dL_{i}(\mathcal{S})=\int_{(0,t)\cap\{t:Z_{l}(t)=0\}}f_{i}(Z(\mathcal{S}))dL_{i}(\mathcal{S})$ .

Applying It\^o’s formula (3.9), we can calculate the expected value and variance of the
synchronous beating period. Setting $\triangle b_{n}=k_{n}-\beta_{n-1}$ , we see that $\{Ae_{n}\}_{n\geq 1}$ are indepen-
dent identically distributed random variables for $Z(0)=(0,0)$ .

Proposition 3.2. For initial value $Z(O)=(Z_{10}, Z_{20})\in[0, 1)^{2}$ , we have

(3.11) $E(k_{1})=f(Z(0))$ ,

where $f$ satisfies:

(3.12) $\{\begin{array}{l}\Gamma f=-1 in D_{2}:=(0,1)^{2},f=0 on \gamma_{sb}:=\{z:z_{i}\in(B_{i}, 1), z_{j}=1, i\neq j\},f_{i}=0 on \gamma_{ri}:=\{z:z_{\iota’}=0\}, i=1, 2,f(0, z_{2})=f(1, z_{2}) for z_{2}\in(0, B_{2}) ,f(z,0)=f(z_{1},1) for z_{1}\in(0, B_{1}) .\end{array}$

Let $p(x)$ be the distribution density of $Z(t)$ as $tarrow\infty,$ $i.e.$

(3.13) $\int_{A}p(x)dx=\lim_{tarrow\infty}P\{Z(t)\in A\}$ , for any $BorelsetA\subset[0, 1)^{2},$

then we have

(3.14) $Var( b_{1})=E(L_{1})\int_{[0,1)^{2}}\sum_{i=1}^{2}0_{i}^{2}|\frac{\partial f}{\partial x_{i}}|^{2}p(x)dx.$
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Proof. It follows from It\^o’s formula (3.9) that

(3.15) $0=f(Z( b_{1}-))=f(Z(0))+\int_{0}^{b_{1}}\Gamma fds+\int_{0}^{k_{1}}\sum_{i=1}^{2}\sigma_{i}\frac{\partial f}{\partial x_{i}}dW_{i}(s)+0+0.$

Since $\Gamma f=-1$ and $\mathbb{E}(\int_{0}^{\mathfrak{c}_{1}}\sum_{i=1}^{2}\sigma_{i_{\overline{\partial}x_{l}}}^{\partial}\perp dW_{i}(s))=0$ , we have

(3.16) $\mathbb{E}(k_{1})=f(Z(0))+0.$

(3.15) yields:

(3.17) $t_{1}^{2}=f(Z(0))^{2}+2\int_{0}^{k_{1}}\sum_{i=1}^{2}\sigma_{i}\frac{\partial f}{\partial x_{i}}dW_{i}(s)+(\int_{0}^{\Downarrow 1}\sum_{i=1}^{2}\sigma_{i}\frac{\partial f}{\partial x_{i}}dW_{i}(s))^{2}$

which implies

(3.18) $\mathbb{E}(k_{1}^{2})=f(Z(0))^{2}+0+\mathbb{E}(\int_{0}^{b_{1}}\sum_{i=1}^{2}\sigma_{i}^{2}|\frac{\partial f}{\partial x_{i}}|^{2}ds)$

By (3.13), we have

$\mathbb{E}(\int_{0}^{k_{1}}\sum_{i=1}^{2}\sigma_{i}^{2}|\frac{\partial f}{\partial x_{i}}|^{2}d_{\mathcal{S}})$

$= \mathbb{E}(\int_{0}^{k_{1}}\int_{[0,1)}\sum_{i=1}^{2}\sigma_{i}^{2}|\frac{\partial f}{\partial x_{i}}(Z(s))|^{2}1_{dx}(Z(s))ds)$

(3.19)

$= \int_{[0,1)}\sum_{i=1}^{2}\sigma_{i}^{2}|\frac{\partial f}{\partial x_{i}}(x)|^{2}\mathbb{E}(\int_{0}^{k_{1}}1_{dx}(Z(s))ds)$

$= \mathbb{E}(k_{1})\int_{[0,1)}\sum_{i=1}^{2}\sigma_{i}^{2}|\frac{\partial f}{\partial x_{i}}|^{2}p(x)dx.$

In view of $Var(\#_{1})=\mathbb{E}(b_{1}^{2})-\mathbb{E}(b_{1})^{2}$ , we obtain (3.14). $\square$

Remark 3.2. The $p(x)$ of (3.13) is not easy to calculate. Let $p(t, x)$ be the distribution

density of $Z(t)$ , i.e.

(3.20) $\int_{A}p(t, x)dx=P\{Z(t)\in A\}$ , for any Borel set $A\subset[0, 1)^{2}.$

Then $p(x)$ equals to the steady state of $p(t, x)$ .

The following lemma on $p(t, x)$ follows from Weyl’s lemma (cf. [7, \S 4.2, 4]) and the
It\^o’s formula (3.9).

Lemma 3.3. $p(t, x)$ of (3.20) satisfies: for all $t\in(0, \infty)$ , $i=1$ , 2, $i\neq j,$

(3.21) $\{\begin{array}{l}\frac{\partial p}{\partial t}=\Gamma_{2}^{*}p+B(p)\delta(x) in (0,1)^{2},p(x, t)=0 onx_{i}=1,F_{i}(p)=0 onx_{i}=0, x_{j}\in(B_{j}, 1) ,F_{i}(p)|_{x_{i}=0}^{x_{l}=1}=0 forallx_{j}\in(0, B_{j}) ,p(x, 0)=\delta(x-Z_{0}) ,\end{array}$
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where $\delta(x)$ is the Dirac delta function, $F_{i}(p)$ $:=(\mu_{i}+V(x_{i}, x_{j}))p-A_{-4_{-}}\sigma^{2}\partial 2\check{\partial}x_{l},$ $B(p)$ $:=$

$\sum\int_{x_{\iota}=1,x_{\mathcal{J}}\in(B_{\mathcal{J}},1)}F_{i}(p)d\gamma$ , and

$\Gamma_{2}^{*}p:=\sum\frac{\sigma_{i}^{2}}{2}\frac{\partial^{2}p}{\partial x_{i}^{2}}-\sum\frac{\partial}{\partial x_{i}}[(\mu_{i}+V(x_{i}, x_{j}))p].$

The exact solution $f$ of (3.12) is not easy to obtain; therefore, in application, instead of
solving (3.12), the numerical simulation of (3.8) is performed to obtain the approximation
of $\mathbb{E}(\triangle k_{1})$ and $Var(\triangle k_{1})$ . The numerical method will be introduced in Section 5.

4. THE $N$-CELLS PROBLEM AND THE NUMERICAL METHOD

We consider the $N$-cells problem. $Z_{i}(t)$ denotes the state of cell $i$ at time $t$ for $i\in$

$\{1, . . . , N\}$ . For simplicity, we consider the cell-network such that all cells are connected
with each other, and every cell has zero refractory, i.e $B_{i}=$ O. Hence, there exists
no independent cell beating in cell-network, and we set the (synchronous) beating time
$\{t_{n}\}_{n\geq 1}$ :

(4.1) $t_{0}=0,$ $t_{n}= \inf\{t>t_{n-1}:Z_{i}(t-)=1for$ some $i\in\{1$ , . . . , $N$

For arbitrary $t>0$ , let $J$ be the number of beating times:

(4.2) $J= \max\{n:t_{n}<t\}.$

We define the jump function

(4.3) $S_{i}(t) := \sum_{n=1}^{J}(Z_{i}(t_{n}-)-Z_{i}(t_{n}))$ ,

where $Z_{i}(t_{n})=0$ . Let $L_{i}(t)$ satisfies (1.4) with $Z$ replaced by $Z_{i}$ . The stochastic model
for $N$-cells reads as: for $i,$ $j\in\{1, . . . , N\},$

(4.4a)
$dZ_{i}(t)= \mu_{i}dt+\sigma_{i}dW_{i}(t)+dL_{i}(t)-dS_{i}(t)+\sum_{j\neq i}V(Z_{i}(t), Z_{j}(t))dt,$

(4.4b) $Z_{i}(0)=Z_{i0}\in[0, 1 )$ ,

where $\mu_{i}\geq 0,$ $\sigma_{i}>0$ and $W_{i}(t)$ denotes the independent standard Brownian motion.

Theorem 4.1. There exists a unique solution $(Z_{i}, L_{i}, S_{i})_{i=1,\ldots,N}$ for (4.4). For the simple
case $\mu_{i}=\mu\geq 0,$ $\sigma_{i}=\sigma>0$ and $Z_{l}\prime(0)=0$ for all $i\in\{1, . . . , N\}$ , we have $\mathbb{E}(t_{1})$ decreases
when $N$ increasing.

5. THE NUMERICAL APPROXIMATION SCHEME

We apply the Euler scheme to the 2-cells stochastic model (cf. [5, 9, 10 which is
not difficult to extend to the $N$-cells problem. Let $\triangle t\ll 1$ be the time-step increment,
and $t_{k}=k\triangle t,$ $k=0$ , 1, . . .. We set $\triangle W(t_{k})=W(t_{k})-W(t_{k-1})$ . Let $\tilde{Z}_{i}(t_{k})$ be the
approximation of $Z_{i}(t_{k})$ , $i=1$ , 2. We give the Euler scheme for problem (3.8): for
$i,$ $j=1$ , 2, $i\neq j,$

(5.1a) $Y_{i}(t_{k})=\tilde{Z}_{i}(t_{k-1})+\mu_{i}\triangle t+V(\tilde{Z}_{i}(t_{k-1}),\tilde{Z}_{j}(t_{k-1}))+\sigma_{i}\triangle W_{i}(t_{k})$ ,

(5.1b) $\tilde{Z}_{i}(t_{k})=\max\{0, Y_{i}(t_{k})\},$

and for the case of synchronous beating, i.e. $\tilde{Z}_{i}(t_{k})\geq 1$ and $\tilde{Z}_{j}(t_{k})\geq B_{j}$ , we set $\tilde{Z}_{i}(t_{k})=$

$\tilde{Z}_{i}(t_{k})=0$ ; for the case of independent beating, i.e. $\tilde{Z}_{i}(t_{k})\geq 1$ and $\tilde{Z}_{j}(t_{k})<B_{j}$ , we set
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$\tilde{Z}_{i}(t_{k})=$ O. We consider the error in the torus domain $[0$ , 1). In the following, $|a-b|$

denotes the distance of $a,$
$b$ in torus $[0$ , 1), i.e. $|a-b|$ $:= \min\{abs(a-b), abs(abs(a-b)-1)\},$

where $abs(\mathcal{S})$ is the absolute value of $\mathcal{S}\in \mathbb{R}.$

Theorem 5.1. Let $K\in\ltimes J$ be the maximum time step and $T_{K}=\delta tK$ . Then we have the
convergence order:

(5.2) $E( \sup_{k}|Z_{i}(t_{k})-\tilde{Z}_{i}(t_{k})|)\leq C(T_{K})(\triangle t)^{1/2-\’{e}}$ , for any $\epsilon\in(0,1)$ .
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