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1. A special class of contractions

In 1814, a French mathematician Jean-Victor Poncelet [26] described his
famous closure theorem: Let C' and D be two conics on the complex projec-
tive plane. If there exists a closed n-gon inscribed in D and circumscribed to
C then, starting at an arbitrary point of D, there is a closed n-gon inscribed
in D and circumscribed to C (cf. [13]). A rigid proof of Poncelet’s closure
theorem was given by Jacobi [20] based on the elliptic function theory (cf.
[27]). For a pair of two conics C and D on the plane, a point P € C and
a point @ € D have a relation P ~ @ if there is a tangent line of C at P
passing through (). By this relation the space curve

L={(P,Q)eCxD:P~Q}

has a parametrization by elliptic functions with common modular invariants
(cf. [4]). In this sense, L is an elliptic curve. From a matrix theoretic view
point, the Poncelet property arises in the boundary of the numerical range
of some contraction matrices. Let A be an n X n matrix. The numerical
range of A is defined as |

W(4) = {{4z,z) 1z € C*, [|a]| =1}, (1.1)

and the rank-k numerical range of A is introduced and defined in [7] as the
set

Ap(A) = {\ € C: PAP = )\P for some rank k orthogonal projection P},

1 <k <n. In the case £ = 1, Ag(A) reduces to W(A). The rank-k
numerical range Ay (A) is a compact convex set and Ag(A) #0if 3k < n+2



(cf. [3, 7,8, 22]). If A is a contraction, i.e., ||Az|| < ||z|| for any z € C",
then its numerical range W (A) is contained in the closed unit disc. Mirman
[23] found an important class S, of n X n matrices for which the boundary
C = OW(A) of the numerical range of a matrix A € S, and the unit circle
D = {z € C: |z| = 1} form a Poncelet pair. Gau-Wu [15] independently
found the Poncelet property for the S, class. For a survey on numerical
range and the Poncelet property, see for instance [17], and for recent works
on the Poncelet property, see [10, 16, 24]. A formulation of the Poncelet
property of a matrix A € S, using the complex algebraic geometry was
given in [2, 25]. An n x n matrix A is in Sy, if A is a contraction, A has no
eigenvalue with modulus 1, and rank(l, — A*A) = 1.

Figurel

In Figure 1, we provide an example of the boundary of the numerical
range of a matrix A in S3. We present two quadrilaterals inscribed in the

unit circle and circumscribed to W (A4).
The following result characterizes the class of S,, matrices.

Proposition 1.1[Mirman ; Gau,P. Y. Wu] Let Ap € S,. Then there exists

an n X n unitary matrix U so that UAoU™ = (a;) is an upper triangular’
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maftrix given by

aj, ifi=7j;
v = § (= a2~ a2, LSITE )
TN Hoa Ca) = a2 = o), i<j-1
0, if 1> 7;

for some |a;| < 1, j=1,2,...,n.
The numerical range c;f a matrix A € S, can be expressed as
W(A) = ﬂ{W(U ) : Uisan (n + 1)—dimensional unitary dilation of A}
(cf. [15, 23]) which also gives a partial answer to Halmos’ conjecture, namely,
closure(W(T)) = ﬂ{closure(W(U )) : U isaunitary dilation of T'},

for a contraction operator 7' on a complex Hilbert space (cf. [1]). A general
answer is given by Choi and Li [9]. Moreover, it is shown in [14, Theorem
1.2] that an n X n contraction A with rank(l, — A*A) = k has a general
consequence:

Ap(A) = m{W(U ) : Uisan (n + k)—dimensional unitary dilation of A}.

Proposition 1.2 [Gau, Wu]. Let A = (a;;) be a S, matrix (1.2). Then any
(n+1) x (n+ 1) unitary dilation of A is unitarily equivalent to a member
of a one-parameter family of unitary matrices B(A) = (b;;(\)) given by

’a,'j, if1<4,5<n;
A1 — |a;]?)Y/2, ifi=n+1,7=1,
MIHZ (-a0) (1 - a2, fi=nt1,2<5<m
b =9 (1= Py, fj=n+li=n;
M (a0) (A = la)Y2, ij=n+11<i<n—1;
\%szl(_a;), ifi=j=n+1,

(1.3)

where A is a parameter on the unit circle |z| = 1.
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2.The algorithm generating new Poncelet pairs

In [2], a complex algebraic formulation was given for A € Sy,. In [6], new
Poncelet pairs are found. Let A be a S, matrix (1.2) and B()) its unitary
dilation matrix (1.3). We present an algorithm that computes the defining
polynomial L(X,Y) which produces a new part Cp : L(X,Y) = 0 of the
new Poncelet curve with respect to the boundary generating curve of W(A).

Algorithm

Figure 2; new Poncelet pair

e Step 1 Compute Fpy)(t, z, y) associated with the matrix B()) of the
form (1.3).

o Step 2 Substitute y = —1/Y — 2X/Y into Fi((t,z,y) and define a
pelynomial
H(z,X,Y : \) = Y" M Fg,(L,z,-1/Y —zX/Y) = Fpy(Y,2Y, -1 — zX)
= (X V)" 4 4 (X, Y).
e Step 3 Take theresultant R(X,Y : X) of H(z, X,Y : A) and Hp(z, X,Y :
A) with respect to z.

e Step 4 Find a factor polynomial K(X,Y : A) of the resultant R(X,Y :
A) of total degree (n+ 1)n/2 in X,Y with multiplicity 2.



o Step 5 Substitute A = ((1 — s?) + 2is)/(1 + s?) into K(X,Y;A) and
Kx(X,Y; ).

e Step 6 Take the respective numerators K(X,Y;s) and Kx(X,Y;s)
of K(X,Y;s) and Kx(X,Y;s).

o Step 7 Compute the Sylvester’s resultant S(X,Y’) of K(X,Y;s) and
Kx(X,Y;s) with respect to s.

e Step 8 Find a factor L(X,Y) of S(X,Y) with multiplicity 2.

In Figure , we present the graphic of a new Poncelet curve for a matrix A
in S4. The union of the curve labeled 4 and the curve labeled 2is L(X,Y) =
0. The curve labeled 1 is OA3(A). The curve labeled 3 is 9W (A).

Example. Let n = 3 and

a 1—a? —av1—a2 a?V1-a?
0 a 1—a? —avli—a
B(A) = 0 V1 —a?

0 a
MW1—a2 —=dav1—a2 Xa%V1—a? —ad

for a is a positive real number less than 1. Then the polynomial L(X,Y)
which gives the equation L(X,Y) = 0 of the new Poncelet curve is given by

L(X,Y) = 6a(—a® + 1)XY? + (a® + 30> — 4)Y? + 2a(a® + 3) X3

+(a® — 21a® — 4)X? + 6a(—a* + 3a% + 2) X + (a® — 9a?).

3. Matrices unitarily similar to complex symmetric
matrices

In this section we present a result related with the inverse problem for the
shape of a numerical range (cf. [18]).

Theorem 3.1(cf.[5]). Every matrix in Sy, is unitarily similar to a com-
plex symmetric matrix.

Proof. Let A € S,. Then by [16, Corollary 1.3] (see also [23] [Theorem
4]), the matrix A has a canonical upper triangular form. The matrix A
also dilates to an (n + 1) x (n + 1) unitary matrix W with distinct eigen-
values (cf. [15, Lemma 2.2]). We assume the distinct eigenvalues of W are
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given by ci,¢a, ..., cnt1, and their respective corresponding eigenvectors are
f1, f2,-.., fat1. Let P be the n-dimensional orthogonal projection satisfying

= (PWP)|c». By replacing f; by exp(i8;) f; for some angles 1, ..., 60,11,
the space C" = P(C"*!) is expressed as

C" = {afit+znfo+ -+ zmsifari: (21,..., 241) € C,
biz1 +bazo+ -+ bpy12p41 = 0}
for some non-negative real numbers by, bg,...,b,41. Since the modulus of

" any eigenvalue of A is strictly less than 1, the numbers b; are positive. Then
the space C" = P(C"*1) consists of the linear spans of

{b1fa — baf1, bifs —b3fi, ..., b1fat1 — bup1fi} (3.1)

Let {£1,43,...,&n} be an orthonormal basis of C* = P(C™*!) obtained by
the Gram-Schmidt orthonormalization of n mdependent vectors in (3.1).
The vectors £; are expressed as

&=¢&1h+ €j,2f2 + -t Ent1 frt

for some real numbers &;; with &j+1 > 0 and £ 42 = & je3 = -+ =0,
Jj = 1,2,...,n. With respect to the orthonormal basis {¢1,...,&,}, the
operator A on the n-dimensional Hilbert space C™ satisfies the property

n+1 n+1
(Ao, &) = cibosbrg = cibrjfey = (Abk, &)
j=1 j=1

Thus the operator A has a symmetric matrix representation with respect to
this orthonormal basis {£1,...,&,}. O

We are interested in matrices unitarily similar to complex symmetric
matrices. In [18] Helton and Spitkovsky proved that every n X n complex
matrix A has an n X n complex symmetric matrix B satisfying W(A4) =
W (B). This result follows from the followin theorem.

Theorem 3.2(Helton and Vinnikov [19]). Suppose that F(z,y,z2) is a
degree n ternary homogeneous polynomial with real coefficients for which
the equation F'(cosf,siné,z) = 0 in z has n real solutions for every angle
0 £6 <27 and F(0,0,1) = 1. Then there exist n x n real symmetric
matrices G, H satisfyng '

F(z,y,2) = det(zH + yG + z1I,).
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This result proved that the conjecture posed by P. Lax [21](page 184) is true.
In [11], page 95, M. Fiedler posed a similar conjecture by relaxing H,G by
Hermitian matrices. In [12], Fiedler proved the assertion of Theorem 3.2 in
the case F'(z,y,z) = 0 is a rational curve.

In [28] T. Takagi proved that every Toeplitz matrix is unitarily symmetric
to a complex symmetric matrix.
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