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1. A special class of contractions

In 1814, a French mathematician Jean-Victor Poncelet [26] described his
famous closure theorem: Let $C$ and $D$ be two conics on the complex projec-
tive plane. If there exists a closed $n$-gon inscribed in $D$ and circumscribed to
$C$ then, stal.ting at an arbitrary point of $D$ , there is a closed $n$-gon inscribed
in $D$ and circumscribed to $C$ (cf. [13]). A rigid proof of Poncelet’s closure
theorem was given by Jacobi [20] based on the elliptic function theory (cf.
[27]). For a pair of two conics $C$ and $D$ on the plane, a point $P\in C$ and
a point $Q\in D$ have a relation $P\sim Q$ if there is a tangent line of $C$ at $P$

passing through $Q$ . By this relation the space curve

$L=\{(P, Q)\in C\cross D:P\sim Q\}$

has a parametrization by elliptic functions with common modular invariants
(cf. [4]). In this sense, $L$ is an elliptic curve. From a matrix theoretic view
point, the Poncelet property arises in the boundary of the numerical range
of some contraction matrices. Let $A$ be an $n\cross n$ matrix. The numerical
range of A is defined as

$W(A)=\{\langle Ax, x\rangle:x\in \mathbb{C}^{n}, ||x||=1\}$ , (1.1)

and the rank-k numerical range of $A$ is introduced and defined in [7] as the
set

$\Lambda_{k}(A)=$ { $\lambda\in \mathbb{C}$ : $PAP=\lambda P$ for some rank $k$ orthogonal projection $P$},

$1\leq k\leq n$ . In the case $k=1,$ $\Lambda_{k}(A)$ reduces to $W(A)$ . The rank-k
numerical range $\Lambda_{k}(A)$ is a compact convex set and $\Lambda_{k}(A)\neq\emptyset$ if $3k\leq n+2$
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(cf. [3, 7, 8, 22 If $A$ is a contraction, i.e., $||Ax||\leq||x||$ for any $x\in \mathbb{C}^{n},$

then its numerical range $W(A)$ is contained in the closed unit disc. Mirman

[23] found an important class $S_{n}$ of $n\cross n$ matrices for which the boundary
$C=\partial W(A)$ of the numerical range of a matrix $A\in S_{n}$ and the unit circle
$D=\{z\in \mathbb{C} : |z|=1\}$ form a Poncelet pair. Gau-Wu [15] independently
found the Poncelet property for the $S_{n}$ class. For a survey on numerical
range and the Poncelet property, see for instance [17], and for recent works
on the Poncelet property, see [10, 16, 24]. A formulation of the Poncelet
property of a matrix $A\in S_{n}$ using the complex algebraic geometry was
given in [2, 25]. An $n\cross n$ matrix $A$ is in $S_{n}$ if $A$ is a contraction, $A$ has no
eigenvalue with modulus 1, and rank$(I_{n}-A^{*}A)=1.$

Figurel

In Figure 1, we provide an example of the boundary of the numerical
range of a matrix $A$ in $S_{3}$ . We present two quadrilaterals inscribed in the
unit circle and circumscribed to $\partial W(A)$ .

The following result characterizes the class of $S_{n}$ matrices.

Proposition l.l[Mirman; Gau,P. Y. Wu] Let $A_{0}\in S_{n}$ . Then there exists
an $n\cross n$ unitary matrix $U$ so that $UA_{0}U^{*}=(a_{ij})$ is an upper triangular
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matrix given by

$a_{\dot{z}j}=\{\begin{array}{ll}a_{\hat{J}}, if i=j;(1-|a_{i}|^{2})^{1/2}(1-|a_{j}|^{2})^{1/2}, if i=j-1;\prod_{k=i+1}^{j-1}(-\overline{ap})(1-|a_{i}|^{2})^{1/2}(1-|a_{j}|^{2})^{1/2}, if i<j-1;0, if i>j;\end{array}$ (1.2)

for some $|a_{j}|<1,$ $j=1$ , 2, .. . , $n.$

The numerical range of a matrix $A\in S_{n}$ can be expressed as

$W(A)=\cap${ $W(U)$ : $U$ is an $(n+1)$ -dimensional unitary dilation of $A$}

(cf. [15, 23]) which also gives a partial answer to Halmos’ conjecture, namely,

closure$(W(T))=\cap${$clos\alpha re(W(U))$ : $U$ is a unitary dilation of $T$},

for a contraction operator $T$ on a complex Hilbert space (cf. [1]). A general
answer is given by Choi and Li $|9$]. Moreover, it is shown in [14, Theorem

1.2] that an $n\cross n$ contraction $A$ with rank$(I_{n}-A^{*}A)=k$ has a general
consequence:

$\Lambda_{k}(A)=\cap$ { $W(U)$ : $U$ is an $(n+k)$ -dimensional unitary dilation of $A$}.

Proposition 1.2 [Gau, Wu]. Let $A=(a_{ij})$ be a $S_{n}$ matrix (1.2). Then any
$(n+1)\cross(n+1)$ unitary dilation of $A$ is unitarily equivalent to a member

of a one-parameter family of unitary matrices $B(\lambda)=(b_{ij}(\lambda))$ given by

$b_{ij}(\lambda)=\{\begin{array}{ll}a_{ij}, if 1\leq i,j\leq n;\lambda(1-|a_{j}|^{2})^{1/2}, if i=n+1,j=1;\lambda(\prod_{k=1}^{j-\lambda}(-\overline{a_{k}}))(1-|a_{j}|^{2})^{1/2}, if i=n+1, 2\leq j\leq n;(1-|a_{i}|^{2})^{1/2}, if j=n+1, i=n;(\prod_{k=;+1}^{n}(-\overline{a_{k}}))(1-|a_{i}|^{2})^{1/2}, if j=n+1, 1\leq i\leq n-1;\lambda\prod_{k=1}^{n}(-\overline{a_{k}}) , if i=j=n+1;\end{array}$

(1.3)

where $\lambda$ is a parameter on the unit circle $|z|=1.$
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2.$The$ algorithm generating new Poncelet pairs

In [2], a complex algebraic formulation was given for $A\in S_{n}$ . In [6], new
Poncelet pairs are found. Let $A$ be a $S_{n}$ matrix (1.2) and $B(\lambda)$ its unitary
dilation matrix (1.3). We present an algorithm that computes the defining
polynomial $L(X, Y)$ which produces a new part $C_{P}$ : $L(X, Y)=0$ of the
new Poncelet curve with respect to the boundary generating curve of $W(A)$ .

Algorithm

Figure 2; new Poncelet pair

$\bullet$ Step 1 Compute $F_{B(\lambda)}(t, x, y)$ associated with the matrix $B(\lambda)$ of the
form (1.3).

$\bullet$ Step 2 Substitute $y=-1/Y-xX/Y$ into $F_{B(\lambda)}(t, x, y)$ and define a
pQlynomial

$H(x, X, Y : \lambda)$ $=$ $Y^{n+1}F_{B(\lambda)}(1, x, -1/Y-xX/Y)=F_{B(\lambda)}(Y, xY, -1-xX)$

$= c_{n+1}(X, Y)x^{n(n+1)}+\cdots+c_{0}(X, Y)$ .

$\bullet$ Step 3 Take the resultant $R(X, Y : \lambda)$ of $H(x, X, Y : \lambda)$ and $H_{x}(x,$ $X_{\}}Y$ :
$\lambda)$ with respect to $x.$

$\bullet$ Step 4 Find a factor polynomial $K(X, Y : \lambda)$ of the resultant $R(X,$ $Y$ :
$\lambda)$ of total degree $(n+1)n/2$ in $X,$ $Y$ with multiplicity 2.
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$\bullet$ Step 5 Substitute $\lambda=((1-s^{2})+2is)/(1+s^{2})$ into $K(X, Y;\lambda)$ and
$K_{X}(X, Y;\lambda)$ .

$\bullet$ Step 6 Take the respective numerators $\tilde{K}(X, Y;s)$ and $\tilde{K}_{X}(X, Y;s)$

of $K(X, Y;s)$ and $K_{X}(X, Y;s)$ .

$\bullet$ Step 7 Compute the Sylvester’s resultant $S(X, Y)$ of $\tilde{K}(X, Y;s)$ and
$\tilde{K}_{X}(X, Y;s)$ with respect to $s.$

$\bullet$ Step 8 Find a factor $L(X, Y)$ of $S(X, Y)$ with multiplicity 2.

In Figure, we present the graphic of a new Poncelet curve for a matrix $A$

in $S_{4}$ . The union of the curve labeled 4 and the curve labeled 2 is $L(X_{\}}Y)=$

O. The curve labeled 1 is $\partial\Lambda_{2}(A)$ . The curve labeled 3 is $\partial W(A)$ .

Example. Let $n=3$ and

$B(\lambda)=(0a0$ $-\lambda a\sqrt{1-a^{2}}1-a^{2}a0$ $\lambda a^{2\sqrt{1-a^{2}}}-a\sqrt{1-a^{2}}1-a^{2}a$ $-a^{2\sqrt{1-a^{2}}}a-\lambda a^{3}$

for $a$ is a positive real number less than 1. Then the polynomial $L(X, Y)$

which gives the equation $L(X, Y)=0$ of the new Poncelet curve is given by

$L(X, Y)=6a(-a^{2}+1)XY^{2}+(a^{6}+3a^{2}-4)Y^{2}+2a(a^{2}+3)X^{3}$

$+(a^{6}-21a^{2}-4)X^{2}+6a(-a^{4}+3a^{2}+2)X+(a^{6}-9a^{2})$ .

3. Matrices unitarily similar to complex symmetric
matrices

In this section we present a result related with the inverse problem for the

shape of a numerical range (cf. [18]).

Theorem 3.1(cf.[5]). Every matrix in $S_{n}$ is unitarily similar to a com-
plex symmetric matrix.

Proof. Let $A\in 8_{n}$ . Then by [16,. Corollary 1.3] (see also [23] [Theorem

4 the matrix $A$ has a canonical upper triangular form. The matrix $A$

also dilates to an $(n+1)\cross(n+1)$ unitary matrix $W$ with distinct eigen-

values (cf. [15, Lemma 2.2]). We assume the distinct eigenvalues of $W$ are
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given by $c_{1},$ $c_{2}$ , $\cdots$ , $c_{n+1}$ , and their respective corresponding eigenvectors are
$f_{1},$ $f_{2}$ , $\cdots$ , $f_{n+1}$ . Let $P$ be the $n$-dimensional orthogonal projection satisfying
$A=(PWP)|_{C^{n}}$ . By replacing $f_{j}$ by $\exp(i\theta_{j})f_{j}$ for some angles $\theta_{1}$ , . .. , $\theta_{n+1},$

the space $C^{n}=P(C^{n+1})$ is expressed as

$C^{n} = \{z_{1}f_{1}+z_{2}f_{2}+\cdots+z_{n+1}f_{n+1}:(z_{1}, \ldots, z_{n+1})\in C^{n+1},$

$b_{1}z_{1}+b_{2}z_{2}+\cdots+b_{n+1}z_{n+1}=0\}$

for some non-negative real numbers $b_{1},$ $b_{2},$ $\rangle b_{n+1}$ . Since the modulus of
any eigenvalue of $A$ is strictly less than 1, the numbers $b_{j}$ are positive. Then
the space $C^{n}=P(C^{n+1})$ consists of the linear spans of

$\{b_{1}f_{2}-b_{2}f_{1}, b_{1}f_{3}-b_{3}f_{1}, . . . , b_{1}f_{n+1}-b_{n+1}f_{1}\}$ . (3.1)

Let $\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\}$ be an orthonormal basis of $C^{n}=P(C^{n+1})$ obtained by
the Gram-Schmidt orthonormalization of $n$ independent vectors in (3.1).
The vectors $\xi_{j}$ are expressed as

$\xi_{j}=\xi_{j,1}fi+\xi_{j,2}f_{2}+\cdots+\xi_{j,n+1}f_{n+1}$

for some real numbers $\xi_{j,k}$ with $\xi_{j,j+1}>0$ and $\xi_{j,j+2}=\xi_{j,j+3}=\cdots=0\dot{ノ},$

$j=1$ , 2, . . . , $n$ . With respect to the orthonormal basis $\{\xi_{1}, . . . , \xi_{n}\}$ , the
operator $A$ on the $n$-dimensional Hilbert space $C^{n}$ satisfies the property

$\langle A\xi_{\ell}, \xi_{k}\rangle=\sum_{j=1}^{n+1}c_{j}\xi_{\ell,j}\xi_{k,j}=\sum_{j=1}^{n+1}c_{j}\xi_{k,j}\xi_{l,j}=\langle A\xi_{k},\xi_{l}\rangle.$

Thus the operator $A$ has a symmetric matrix representation with respect to
this orthonormal basis $\{\xi_{1}, . . . , \xi_{n}\}.$

$\square$

We are interested in matrices unitarily similar to complex symmetric
matrices. In [18] Helton and Spitkovsky proved that every $n\cross n$ complex
matrix $A$ has an $n\cross n$ complex symmetric matrix $B$ satisfying $W(A)=$

$W(B)$ . This result follows from the followin theorem.

Theorem 3.2(Helton and Vinnikov [19]). Suppose that $F(x, y, z)$ is a
degree $n$ ternary homogeneous polynomial with real coefficients for which
the equation $F(\cos\theta, \sin\theta, z)=0$ in $z$ has $n$ real solutions for every angle
$0\leq\theta\leq 2\pi$ and $F(O, 0,1)=1$ . Then there exist $n\cross n$ real symmetric
matrices $G,$ $H$ satisfyng

$F(x, y, z)=\det(xH+yG+zI_{n})$ .
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This result prove\‘a that the conjecture posed by P. Lax [21](page 184) is true.

In [11], page 95, M. Fiedler posed a similar conjecture by relaxing $H,$ $G$ by

Hermitian matrices. In $|12$], Fiedler proved the assertion of Theorem 3.2 in

the case $F(x, y, z)=0$ is a rational curve.

In [28] T. Takagi proved that every Toeplitz matrix is unitarily symmetric

to a complex symmetric matrix.
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