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Abstract

We introduce the notion of operational convex combinations to-

gether with operational exetreme points for linear maps of $M_{n}(\mathbb{C})$

and show that automorphisms are the operational extreme points of
the set of the unital completely positive maps on $M_{n}(\mathbb{C})$ .

1 Introduction

In the paper [1], we gave some characterization for unital positive Tr-preserving
maps of the algebra of $n\cross n$ conplex matrices $M_{n}(\mathbb{C})$ from a view point of
von Neumann entropy for states of $M_{n}(\mathbb{C})$ , That is, a positive unital ‘lft-

preserving map $\Phi$ of $M_{n}(\mathbb{C})$ preserves the von Neumann $e’$ntropy of a given

state $\phi$ if and only if $\Phi$ plays a role of an automorphism for $\phi.$

In this note, we pick up the set of unital completely positive (called“ ucp”

for short) maps of $M_{n}(\mathbb{C})$ . That is, for a unital linear map of $M_{n}(\mathbb{C})$ , we re-
place the property”Tr-preserving and positive”’ to the property”completely

positive”, and investigate that what kind of position the automorphisms

stand in ucp maps.
Here, we shall consider the notion of convexity not only scalar multipli-

cation but also the multiplication via operators and generalize the notion of
convexity, i.e., we introduce the notion of operational convex conbination.

The motivation for the terminology “‘operational convex conbinations”
comes from the following two definitions: One is Lindblad’s “operational
partition” in [6] (see [7] or [8]) and the other is Cuntz’s canonical endomor-
phism $\Phi_{n}$ in [5]. It seems to be natural for treating the set of ucp maps as
the set of operational convex conbinations of automorphisms of $M_{n}(\mathbb{C})$ .

We also introduce the notion of operational extreme point, and we show

that automorphisms are operational extreme points in ucp maps of $M_{n}(\mathbb{C})$ ,
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which implies that automorphisms are extreme points in ucp maps of $M_{n}(\mathbb{C})$

in the usual sense.

2 Operational partitions

What we need to define a convex sum? In usual we need a probability vector
$\lambda=(\lambda_{1}, \cdots, \lambda_{n})$ :

$\lambda_{i}\geq 0, \sum_{i}\lambda_{i}=1.$

Given a finite subset $x=\{x_{1}, x_{n}\}$ of a vector space $X$ , the vector
$\sum_{i}\lambda_{i}x_{i}$ is a convex sum of $x$ via $\lambda^{\rangle}$

Now, we consider such a $\lambda$ as a “‘finite partition of 1”’

Two generalized notions of finite partition of 1 are given in the fram\’ework

of the non-commutative entropy as follows:
Let $A$ be a unital $C^{*}$-algebra.
(1) A finite subset $\{x_{1}, x_{k}\}$ of $A$ is called a finite partition of unity

by $Connes-St\emptyset$rmer ([4]) if they are nonnegative operators which satisfy that
$\sum_{i=1}^{n}x_{i}=1_{A},$

(2) A finite subset $\{x_{1}, x_{k}\}$ of $A$ is called a finite operational partition
in $A$ of unity of size $k$ by Lindblad ([6]) if $\sum_{i}^{k}x_{i}^{*}x_{i}=1_{A}.$

Our main target in this note is a finite subset $\{v_{1}, v_{k}\}$ of non-zero
elements in $A$ such that $\{v_{1}^{*}, v_{k}^{*}\}$ is a finite operational partition of unity
so that $\sum_{i}^{k}v_{i}v_{i}^{*}=1_{A}$ . We call such a set $\{v_{1}, v_{k}\}a$ finite operational
partition of unity of size $k$ in $A$ , and denote the set of all finite operational
partition of unity in $A$ by FOP(A) :

FOP$(A)= \{\{v_{1}, \cdots, v_{k}\}|0\neq v_{i}\in A, \forall i, \sum_{i}^{k}v_{i}v_{i}^{*}=1_{A}, k=1, 2, \}(2.1)$

We denote by $U(A)$ the set of all unitaries in $A$ . Clearly, $U(A)$ is the set of
the most trivial finite operational partition of unity with the size 1.

2.1 Unital completely positive (ucp) map $\Phi$

Let $M_{n}(\mathbb{C})$ be the $C^{*}$-algebra of $n\cross n$ matrices over the complex field $\mathbb{C}.$

A linear map $\Phi$ on a unital $C^{*}$-algebra $A$ is positive iff $\Phi(a)$ is positive
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for all positive $a\in A$ and completely positive iff $\Phi\otimes 1_{k}$ is positive for all
positive integer $k$ , where the map $\Phi\otimes 1_{k}$ is the map on $A\otimes M_{k}(\mathbb{C})$ defined
by $\Phi\otimes 1_{k}(x\otimes y)=\Phi(x)\otimes y$ for all $x\in A$ and $y\in M_{k}(\mathbb{C})$ .

We restrict the unital $C^{*}$-algebra $A$ to $M_{n}(\mathbb{C})$ .
In [3, Theorem 2], Choi gave the following characterization: a linear map

$\Phi$ of $M_{n}(\mathbb{C})$ is completely positive iff $\Phi$ is of the form $\Phi(x)=\sum_{i=1}^{m}v_{i}xv_{i}^{*}$ for
all $x\in M_{n}(\mathbb{C})$ by some $\{v_{i}\}_{i=1}^{m}\subset M_{n}(\mathbb{C})$ . Moreover, for $\{v_{i}\}_{i=1}^{m}$ inducing the
form $\Phi(x)=\sum_{i=1}^{m}v_{i}xv_{i}^{*}$ , we may require that $\{v_{i}\}_{i}$ is linearly independent
so that in the form the number $m$ is uniquely determind. Such a form was
called a ‘canonical’ expression for $\Phi$ (see [3, Remark 4

Let us call the uniquely determind number $m$ the size of the $\Phi.$

Now we pick up the case where $\Phi$ is a unital completely positive (called
”’ucp”’ for short) map of $M_{n}(\mathbb{C})$ . Then the $\{v_{1}, \cdots, v_{m}\}\subseteq M_{n}(\mathbb{C})$ used
in the form $\Phi(x)=\sum_{i=1}^{m}v_{i}xv_{i}^{*},$ $(x\in M_{n}(\mathbb{C}))$ satisfies that $\sum_{i=1}^{m}v_{i}v_{i}^{*}=1.$

This means that each ucp map $\Phi$ of $M_{n}(\mathbb{C})$ is induced some $\{v_{1},$ $)v_{m}\}$ in
FOP$(M_{n}(\mathbb{C}))$ .

Given an operator $v\in M_{n}(\mathbb{C})$ , the map Adv on $M_{n}(\mathbb{C})$ is given by
$Adv(x)=vxv^{*},$ $(x\in M)$ . Then the group $Aut(M_{n}(\mathbb{C}))$ of all automorphisms
of $M_{n}(\mathbb{C})$ is written by the form $Aut(M_{n}(\mathbb{C}))=$ $\{$Adu $|u\in U(M_{n}(\mathbb{C}))\},$

where $U(M_{n}(\mathbb{C}))$ is the group of all unitaries in $M_{n}(\mathbb{C})$ . Similarly, the set
$UCP(M_{n}(\mathbb{C}))$ of all ucp maps on $M_{n}(\mathbb{C})$ is written by the following form:

$UCP(M_{n}( \mathbb{C}))=\{\sum_{i=1}^{m}Adv_{i}|\{v_{i}\}_{i=1}^{m}\in FOP(M_{n}(\mathbb{C})), m=1, 2, \}(2.2)$

3 Operational Convex Combination

3.1 Operational convexity

Definition 3.1. Let $\{\Phi_{i}\}_{i=1}^{m}$ be a set of linear maps on $M_{n}(\mathbb{C})$ and $\{v_{i}\}_{i=1}^{m}\in$

$FOP(M_{n}(\mathbb{C}))$ . We call $\sum_{i=1}^{m}Adv_{i}\circ\Phi_{i}$ an operational convex combination of
$\{\Phi_{i}\}_{i=1}^{m}$ with an operational coeficients $\{v_{i}\}_{i=1}^{m}$ . We also say that a subset
$S$ of linear maps on $M_{n}(\mathbb{C})$ is operational convex if it is closed under all
operational convex combinations.

We can consider $UCP(M_{n}(\mathbb{C}))$ as the set of all operator convex combi-
nations of the group $Aut(M_{n}(\mathbb{C}))$ . Moreover $UCP(M_{n}(\mathbb{C}))$ is represented as
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the set of all operational convex combinations of the identity $id$ of $M_{n}(\mathbb{C})$ .
We give some characterization for a role of $Aut(M_{n}(\mathbb{C}))$ in $UCP(M_{n}(\mathbb{C}))$

from a view point of extreme points.

3.1.1 Cuntz’s canonical endomorphism as an example

The Cuntz’s canonical endomorphism $\Phi_{n}$ ([3]) is an interesting example in
unital completely positive maps of infinite dimensional simple $C^{*}$-algebras,
which is given as an operational convex combination of the identity: Let
$\{S_{1}, S_{2}, \cdots, S_{n}\}$ be isometries on an infinite dimensional Hilbert space $H$

such that $\sum_{i}S_{i}S_{i}^{*}=1$ . The Cuntz algebra $O_{n}$ is the $C^{*}$-algebra generated by
$\{S_{1}, S_{2}, \cdots, S_{n}\}$ . The map $\Phi_{n}$ is given as $\Phi_{n}(x)=\sum_{i}S_{i}xS_{i}^{*}$ for all $x\in O_{n}.$

So, in our notation, $\{S_{1\}}8_{2}, \cdots, S_{n}\}\in FOP(O_{n})$ and $\Phi_{n}\in UCP(O_{n})$ .
The left inverse $\Psi$ of $\Phi_{n}$ plays an inportant role in the theory of Cuntz

algebras and it is given by the form $\Psi(x)=(1/n)\sum_{i}S_{i}^{*}xS_{i},$ $(x\in O_{n})$ .
We remark that $\Psi$ is also an operational convex combination of the iden-

tity and $\Psi\in UCP(O_{n})$ .
Later we discuss in another paper on the case of unital infinite dimensional

$C^{*}$-algebras represented by $O_{n}.$

3.1.2 Operational extreme point

Now let us remember the notion of extreme points. Let $S$ be a convex set.
Then a $z\in S$ is an extreme point in $S$ if $z$ cannot be the convex combination
$\lambda x+(1-\lambda)y$ of two points $x,$ $y\in S$ with $x\neq y$ and $\lambda\in(0,1)$ , i.e., if
$z=\lambda x+(1-\lambda)y,$ $(x, y\in S)$ then $x=y=z.$

In this note, we say this notion of extreme points an extreme point in the
$u\mathcal{S}uat$ sense.

In the usual sense, any automorphism of $M_{n}(\mathbb{C})$ can not be expressed
as a convex combination of two automorphisms (see [IO]). However if we
replace a convex combination to an oparational convex combination, then it
is possible as in the following example:

Example 3.2. Let $v,$ $w$ be unitaries in $M_{n}(\mathbb{C})$ , and let $\lambda\in(0,1)$ .
Let $a=\lambda^{1/2}v^{*}$ aKld b $=(1-\lambda)^{1/2}w^{*}$ . Then $\{a, b\}\in FOP(M_{n}(\mathbb{C}))$ , and

the operational convex combination of the automorphisms $\Phi$ and $\Psi$ of $M_{n}(\mathbb{C})$

with $\Phi=$ Adv and $\Psi=Adw$ with the operational coefficients $\{a, b\}$ is the
identity map, i.e., $a\Phi(x)a^{*}+b\Psi(x)b^{*}=x$ for all $x\in M_{n}(\mathbb{C})$ .
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Moreover, for a given $\Theta\in Aut(M_{n}(\mathbb{C}))$ with $\Theta=Adu,$ $(u\in U(M_{n}(\mathbb{C}))$ ,
if we let $a’=\lambda^{1/2}uv^{*}$ and $b’=(1-\lambda)^{1/2}uw^{*}$ then $\{a’, b’\}\in FOP(M_{n}(\mathbb{C}))$ ,
and the operational convex conbination of $\Phi$ and $\Psi$ with the operational
coefficients $\{a’, b’\}$ is the automorphism $\Theta$ , i.e., $a’\Phi(x)a’*+b’\Psi(x)b’*=\Theta(x)$

for all $x\in M_{n}(\mathbb{C})$ .

In the case of operational convex combinations for linear maps $\Phi$ and $\Psi$

on $M_{n}(\mathbb{C})$ with an operational coefficient $\{a, b\}\in FOP(M_{n}(\mathbb{C})$ , the map
Ada $0\Phi$ corresponds $\lambda x$ and the Adb $0\Psi$ does $(1-\lambda)y$ . Putting this in mind,

let us define as follows and show that an automorphism of $M_{n}(\mathbb{C})$ (i.e., the
ucp maps with the size 1) is an operational extreme point.

Definition 3.3. Let $S$ be an operational convex subset of linear maps on
$M_{n}(\mathbb{C})$ . We say that a $\Phi\in S$ is an operational extreme point of $S$ if a
reprensentation of $\Phi$ that $\Phi=Ada\circ\Phi_{1}+Adb\circ\Phi_{2},.(\Phi_{i}\in S, (i=1,2),$ $\{a, b\}\in$

$FOP(M_{n}(\mathbb{C}))$ implies that $aa^{*}=\lambda 1_{M_{n}(\mathbb{C})},$ $bb^{*}=(1-\lambda)1_{M_{n}(\mathbb{C})}$ for some
$\lambda\in(0,1)$ so that $\lambda^{-1}Adao\Phi_{1}=\{1-\lambda\}^{-1}Adbo\Phi_{2}=\Phi.$

Remark 3.4. (1) If $\{a, b\}\in FOP(M_{n}(\mathbb{C}))$ , then, of course, $\{aa^{*}, bb^{*}\}$ is
always a finite partition of unity in the $Connes-St\emptyset rmer$ ’s sense. This defi-
nition says that if an operational extreme point $\Phi\in S$ is represented as an
operational convex combination of $\Phi_{i}\in S,$ $(i=1,2)$ , $\{a, b\}\in FOP(M_{n}(\mathbb{C}))$ ,

then the Connes Strmer partition $\{aa^{*}, bb^{*}\}$ is a probability vector.
(2) If a $\Phi\in S$ is an operational extreme point of a convex subset $S$ of

linear maps on $M_{n}(\mathbb{C})$ , then $\Phi$ is an extreme point of $S$ in the usual sense.
In fact, assume that $\Phi=\lambda\Phi_{1}+(1-\lambda)\Phi_{2},$ $(\Phi_{i}\in S)$ and $\Phi$ is an operational

extreme point of $S$ . Then $\Phi_{1}=\lambda^{-1}\lambda\Phi_{1}=\Phi$ and $\Phi_{2}=\{1-\lambda\}^{-1}(1-\lambda)\Phi_{2}=\Phi$

so that $\Phi$ is an extreme point of $S$ in the usual sense.

The following lemma plays a key role to prove our main theorem:

Lemma 3.5. Assume that $\sum_{i=1}^{m}Adv_{i}=$ Adu for $\{v_{i}\}_{i=1}^{m}\in FOP(M_{n}(\mathbb{C}))$

and $u\in U(M_{n}(\mathbb{C}))$ . Then $v_{i}$ is a scalar multiple of $u$ for all $i=1$ , 2, $\cdots,$ $m.$

Theorem 3.6. If an automorphism $\Theta$ of $M_{n}(\mathbb{C})$ is decomposed into an op-
erational convex combination that $\Theta=$ Ada $\circ\Phi+Adb\circ\Psi$ via $\{a, b\}\in$
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FOP$(M_{7l}(\mathbb{C}))$ and $\Phi,$ $\Psi\in UCP(M_{n}(\mathbb{C}))$ , then there exist unitaries $v,$ $w\in$

$M_{n}(\mathbb{C})$ and a $\lambda\in(0,1)$ such that

$a=\sqrt{\lambda}uv^{*},$ $b=\sqrt{1-\lambda}uw^{*}$ and $\Phi=A\mathfrak{c}iv,$ $\Psi=Adw$ (3.1)

where $u$ is a unitary with $\Theta=Adu.$

As a direct concequence of thls theorem, we have the following:

Corollary 3.7. The automorphism group is a subset of the operational ex-
treme points of the unital completely positive linear maps on $M_{n}(\mathbb{C})$ .

As we remarked in the above, an operational extreme point is an extreme
point in the usual sense, we have the following another consequence:

An automorphism of $M_{n}(\mathbb{C})$ is an extreme point of the set of $ucp$ maps
on $M_{n}(\mathbb{C})$ in the usual sense.
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