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ABSTRACT. We show that a gyrometric preserving transforma-
tions between connected open subsets of the positive cones are
uniquely extended to a gyrometric preserving surjection between
the underlying cones.

1. $IN^{r}fRODUC’$rION

A celebrated Mazur-Ulam theorem states that a surjective isome-
try from a normed real-linear space onto a normed real-linear space is
affine in the sense that it is a real-linear isometry followed by a transla-
tion (cf.[9]).. Mankiewicz [6] generalized in the way that any surjective
isometry between connected open subsets of normed real-linear spaces
is extended to a surjective isometry between underlying normed real-
linear spaces. As the main motivation to our present investigation we
mention that in the paper [1] we prove that a gyrometric preserving
surjection from a GGV onto a GGV is a gyrometric preserving iso-
morphism followed by the translation. The idea of the proof in [1]
emploies the one in the proof of the celebrated Mazur-Ulam theorem
due to V\"ais\"al\"a [9]. The following is expected to be true: a gyromet-
ric preserving surjection between connected open subsets of $GGV^{\rangle}s$ are
extended to a gyrometric preserving surjection between the underlying
GGV’s. We have not yet prove the above conjecture. There is an ob-
struction to prove the conjecture by applying simply the way similar
to the proof of Mankiewicz. We explain it; we show how to extend the
given isometry between connected open subsets to a global isometry.
The essential part of the proof of Mankiewicz [6] is as follows. Sup-
pose that $X_{j}$ is a normed real-linear space for $j=1$ , 2. Suppose that
$B_{j}=\{x\in X_{j} : \Vert x\Vert<\epsilon\}$ for $\epsilon>$ O. Suppose that $T$ : $B_{1}arrow B_{2}$ is
a surjective isometry. We give $\tilde{T}$ : $X_{1}arrow X_{2}$ by $\tilde{T}(z)=rT(\frac{1}{r}z)$ for a
$z\in X_{1}$ , where $r>0$ is a large enough such that $\frac{1}{r}z\in B_{1}$ . To show

an idea we omit preciseness: we omit to prove $\tilde{T}$ is well defined in the
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sense that it is independent of the choice of $r$ . We infer that $\tilde{T}$ is a
surjective isometry from $X_{1}$ onto $X_{2}$ . We show that it is an isometry
by applying the distributive law:

$\Vert z-w\Vert=\Vert r(\frac{1}{r}z-\frac{1}{r}w)\Vert=r\Vert\frac{1}{r}z-\frac{1}{r}w\Vert$

$=r \Vert T(\frac{1}{r}z)-T(\frac{1}{r}w)\Vert=\Vert r(T(\frac{1}{r}z)-T(\frac{1}{r}w)\Vert$

$= \Vert rT(\frac{1}{r}z)-rT(\frac{1}{r}w)\Vert=\Vert\tilde{T}(z)-\tilde{T}(w) z, w\in X_{1}$

A distributive law such as $r\otimes(a\oplus b)=(r\otimes a)\oplus(r\otimes b)$ is not assumed
for GGV’s. Hence it is an obstruction for extending a gyrometric pre-
serving map between connected open sets to a global one.

2. GENERALIZED GYROVECTOR SPACES

The definition of a generalized gyrovector spaces (GGV) is the fol-
lowing.

Definition 1 (A generalized gyrovector space [1]). Let $(G, \oplus)$ be a
gyrocommutative gyrogroup with the $map\otimes:\mathbb{R}\cross Garrow G$ . Let $\phi$ be
an injection from $G$ into a real normed space $(\mathbb{V},$ $\Vert$ We say that
$(G, \oplus, \otimes, \phi)$ $(or (G, \oplus, \otimes)$ just for a simple notation) is a generalized
gyrovector space or a GGV in short if the following conditions (GGVO)
to (GGV8) are fulfilled:

(GGVO) $\Vert\phi(gyr[u, v]a)\Vert=\Vert\phi(a)\Vert$ for any $u,$ $v,$ $a\in G$ ;
(GGVI) $1\otimes a=a$ for every $a\in G$ ;
(GGV2) $(r_{1}+r_{2})\otimes a=(r_{1}\otimes a)\oplus(r_{2}\otimes a)$ for any $a\in G,$ $r_{1},$

$r_{2}\in \mathbb{R}$ ;
(GGV3) $(r_{1}r_{2})\otimes a=r_{1}\otimes(r_{2}\otimes a)$ for any $a\in G,$ $r_{1},$ $r_{2}\in \mathbb{R}$ ;
(GGV4) $(\phi(|r|\otimes a))/\Vert\phi(r\otimes a)\Vert=\phi(a)/\Vert\phi(a)$ for any $a\in G\backslash \{e\},$ $r\in$

$\mathbb{R}\backslash \{0\}$ , where $e$ denotes the identity element of the gyrogroup
$(G, \oplus)$ ;

(GGV5) $gyr[u, v](r\otimes a)=r\otimes gyr[u, v]a$ for any $u,$ $v,$ $a\in G,$ $r\in \mathbb{R}$ ;
(GGV6) gyr $[r_{1}\otimes v, r_{2}\otimes v]=id_{G}$ for any $v\in G,$ $r_{1},$

$r_{2}\in \mathbb{R}$ ;
(GGVV) $\Vert\phi(G)\Vert=\{\pm\Vert\phi(a)\Vert\in \mathbb{R} : a\in G\}$ is a real one-dimensional

vector space with vector addition $\oplus’$ and scalar multiplication
$\otimes’$ ;

(GGV7) $\Vert\phi(r\otimes a)\Vert=|r|\otimes’\Vert\phi(a)\Vert$ for any $a\in G,$ $r\in \mathbb{R}$ ;
(GGV8) $\Vert\phi(a\oplus b)\Vert\leq\Vert\phi(a)\Vert\oplus’\Vert\phi(b)\Vert$ for any $a,$ $b\in G.$

Definition 2. Let $(G, \oplus, \otimes)$ be a GGV. Let $\rho(a, b)=\Vert\phi(a\ominus b)\Vert$ for
all $a,$ $b\in G$ , where $a\ominus b=a\oplus(\ominus b)$ . We call $\rho$ the gyrometric on $G$

on a GGV.
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Suppose that $p$ is a gyrometric for a GGV $G$ . We proved the equation
[1, (4)] of the form

(1) $p(z, w\rangle=p(\ominus z, \ominus w)=p(w, z) , z, w\in G.$

By Proposition 15 in [1] we have

(2) $\rho(x\oplus z, x\oplus w)=\rho(z, w) , x, z, w\in G.$

We call the inequality (GGV8) the gyrotriangle inequality. It is not
the triangle inequality. In general the gyrometric does not satisfy the
triangle inequality.

3. A $POSI^{t}$TIVE CONE OF THE POSITIVE INVERTIBLE ELEMENTS

The GGV is a generalization of a gyrovector spaces [8], which is
a generalization of an inner product space. The Einstein gyrovector
space and the M\"obius gyrovector space are examples of a gyrovector
space [8]. We exhibited that the positive cone of all positive invertible
elements is an example of a GGV [1].

Example 3 ([1]). Suppose that $A$ is a unital $C^{*}$-algebra with the norm
$\Vert\cdot\Vert$ axld $A_{+}^{-1}$ is the set of all positive invertible elements of $A$ . Let $t$ be
a positive real number. Put

$a\oplus_{t}b=(a^{\frac{\ell}{2}}b^{t}a^{\frac{{\}}{2}})^{\frac{1}{t}}$

for all $a,$ $b\in A_{+}^{-1}$ Then $(A_{+}^{-1}, \oplus_{t})$ is a gyrocommutative gyrogroup.
The identity element 1 of $A$ as the $C^{*}$-algebra is the identity element
of the gyrogroup. The inverse element $\ominus a$ is $a^{-1}$ , the inverse of $a$ in $A.$

For $a,$ $b\in A_{+}^{-1}$ put
$X=(a^{\frac{t}{2}}b^{t}a^{\frac{t}{2}})^{-\frac{1}{2}}a^{\frac{t}{2}}b^{\frac{t}{2}}.$

Then $X$ is a unitary element in $A$ and

$gyr[a, b]c=XcX^{*},\cdot a, b, c\in A_{+}^{-1}$

is the gyroautomorphism generated by $a$ and $b.$

Put $r\otimes a=a^{r}$ for every $a\in A_{+}^{-\lambda},$ $r\in \mathfrak{W}.$ Define$\phi\prime=log:A_{+}^{-1}arrow A_{S},$

the real-linear subspace of all self-adjoint elements in $A$ . The vector
space $\log(A_{+}^{-1})$ $\oplus’,$ $\otimes’\rangle=(\mathbb{R}, +, \cross)$ is the usual 1 dimensional real
vector space of the real line; $\oplus’$ is the addition of real numbers $and\otimes’$

is the scalar multiplication of real numbers. Then $(A_{+}^{-1}, \oplus_{t}, \otimes_{\}}\log)$ is a
GGV. In fact, (GGVO) holds since $gyr[a, b]$ is a unitary transform for
every pair $a_{\}}b\in A_{+}^{-1}$ Simple calculations confirm that the conditions
from (GGVO) to (GGV6) and (GGV7) hold. The condition (GGVV)
is trivial by the definition $of\oplus’and\otimes’$ . The condition (GGV8) is also
satisfied; see [1].
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The gyrometric $\rho$ is given by the equation

$\rho(a, b)=\Vert\log(a^{\frac{t}{2}}b^{-t}a^{\frac{t}{2}})^{\frac{1}{t}}\Vert$

for $a,$ $b\in A_{+}^{-1}$ Note that in the case where $t=1$ the metric $\rho(a, b)$ is
the Thompson metric itself. The gyromidpoint of $a$ and $b$ is given by
the equation

$p(a, b)=(a^{\frac{t}{2}}(a^{\frac{t}{2}}b^{-t}a^{\frac{t}{2}})^{-\frac{1}{2}}a^{\frac{t}{2}})^{\frac{1}{t}},$

which coincides with the geometric mean of $a$ and $b$ for the case of
$t=1.$

In the case of the GGV of the positive cone, the gyrometric satisjfes
the usual triangle inequality (cf. [1, p. 399

4. EXTENSION OF A GYROMETRIC PRESERVING $SURJEC^{r}$rION

BETWEEN CONNECTED OPEN SUBSETS OF THE POSITIVE CONES

For the case of the GGV of all invertible positive elements in a uni-
tal $C^{*}$-algebra we have that a surjective gyrometric preserving map
between connected open subsets of the positive cones is uniquely ex-
tended to a surjective gyrometric preserving map between the whole of
the positive cones. Note that the topology induced by the gyrometric
coincides with that induced by the metric induced by the original norm
of the $C^{*}$-algebra. For $\epsilon>0$ , let $B_{j}^{\epsilon}(1)=\{a\in A_{j+}^{-1} : \rho_{j}(a, 1)<\epsilon\}.$

Lemma 4. Let $T$ : $B_{1}^{\epsilon}(1)arrow B_{2}^{\epsilon}(1)$ be a bijection with $T(1)=1.$
Suppose that $T$ is gyrometric preserving. Then

$T( \frac{1}{2}\otimes a)=\frac{1}{2}\otimes T(a) , a\in B_{1}^{\epsilon}(1)$ .

By induction we have that

$T( \frac{1}{2^{n}}\otimes a)=\frac{1}{2^{n}}\otimes T(a)) a\in B_{1}^{\epsilon}(1)$

for every positive integer $n$ . Then we have

Lemma 5. Then there exists a Jordan $*$-isomorphism $J$ from $A_{1}$ onto
$A_{2}$ and a central projection $p$ in $A_{2}\mathcal{S}uch$ that

$T(a)=pJ(a)+(1-p)J(a)^{-1}, a\in B_{1}^{\epsilon}(1)$ .

Lemma 5 is the essential point where the given gyrometric preserving
map on a connected open subset of the GGV of the positive cone is
extended to the whole of the GGV of $A_{1+}^{-1}:z\mapsto pJ(z)+(1-p)J(z)^{-1}$

defines a gyrometric preserving surjection from $A_{1+}^{-1}$ onto $A_{2+}^{-1}.$
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Lemma 6. Suppose that $T$ and $S$ are surjective gyrometric preserving
maps from $A_{1+}^{-1}$ onto $A_{2+}^{-1}$ such that $T=S$ on an open ball. Then $T=S$

on $A_{1+}^{-1}.$

By the above lemma the extension is unique.

Theorem 7. Let $U_{j}$ be a non-empty connected open subset of $A_{j+}^{-1}$ for
$j=1$ , 2. Let $T$ : $U_{1}arrow U_{2}$ be a surjection. Then $TlS$ gyrometric
preserving if and only if there exists a Jordan $*$-isomorphism $J$ form
$A_{1}$ onto $A_{2}$ and a central projection $p\in A_{2}$ such that

(3) $T(z)=(b(pJ(z)+(1-p)J(z)^{-1})^{t}b)^{\frac{1}{*}}\} z\in U_{1\}}$

where $b=(pJ(a_{0})+(1-p)J(a_{0})^{-1})^{-t}\# T(a_{0})^{t}$ for an and any $a_{0}\in U_{1}$ ;
$b$ is unique for any $a_{0}\in U.$ In this case $T$ is extended to a gyrometric
preserving surjection from $A_{1+}^{-1}$ onto $A_{2+}^{-1}.$

We show a sketch proof. Let $a_{0}\in U_{1}$ be arbitrary. Choose a suf-
ficiently small $\epsilon>0$ with $\{b\in A_{1+}^{-1} : \rho_{1}(a_{0}, b)<\epsilon\}\subseteq U_{1}$ . Then the
induced map $T’$ : $B_{1}^{\epsilon}(1)arrow B_{2}^{\epsilon}(1)$ defined by

$T’(z)=\ominus {}_{t}T(a_{0})\oplus_{t}T(a_{0}\oplus_{t}z) , z\in B_{1}^{\epsilon}(1)$

is a surjective gyrometric preserving map from $B_{1}^{\epsilon}(1)$ onto $B_{2}^{\epsilon}(1)$ . Then
by Lemma 5 $T’$ is extended to a surjective gyrometric preserving map
from $A_{1+}^{-1}$ onto $A_{2+}^{-1}$ . So is $T$ . As $U_{1}$ is connected the extension is
unique up to given point $a_{0}$ . As $a_{0}$ is arbitrary there is an $\epsilon_{0}>$ and a
surjective gyrometric preserving map $T_{0}$ from $A_{1+}^{-1}$ onto $A_{2+}^{-1}$ which is
an extension of $T$ on $\{b\in A_{1+}^{-1} : \rho_{1}(a_{0}, b)<\epsilon\}$ . Let $a_{0}$ and $a_{1}$ be a pair
of points in $U_{1}$ . As $U_{1}$ is connected and open, there is a continuous
map $\gamma$ : $[0, 1]arrow U_{1}$ with $\gamma(0)=a_{0}$ and $\gamma(1)=a_{1}$ . By compactness
of $\gamma([O, 1]$ there is a sequence $t_{0},$ $\ldots t_{n}\rangle\in[0,1]$ with $t_{0}=0,$ $t_{n}=1$ and
$\epsilon_{j}>0$ such that

$\gamma([O, 1])\subset\bigcup_{j}\{z\in A_{1+}^{-1}:\rho_{1}(\gamma(t_{j}), z)<\epsilon_{j}\}\subseteq U_{j}$

and

$\{z\in A_{1+}^{-1}:\rho_{1}(\gamma(t_{j}), z)<\epsilon_{j}\}\cap\{z\in A_{1+}^{-1}:\rho_{1}(\gamma(t_{j+1}), z)<\epsilon_{j}\}\neq\emptyset$

for $j=0$ , . . . , $n-1$ . By Lemma 6 we see that $T_{j}=T_{j+1}$ on $A_{1+}^{-1}$ as
$T_{j}=T_{j+1}$ on $\{z\epsilon A_{1+}^{-1}:\rho_{1}(\gamma(t_{j}), z)<\epsilon_{j}\}\cap\{z\in A_{1+}^{-1}:\rho_{\lambda}(\gamma(t_{j+1}), z)<$

$e_{j}\}$ for $j=0$, . . . , $n-1$ . Hence we have $T_{0}=T_{n}$ . Therefore $T_{0}$ is a
unique extension of $T$. This does not give a complete proof, refer for
the precise proof in [2].

Note that Hatori and Moln\’ar [3] proved the case where $U_{j}=A_{j+}^{-1}$

and $t=1$ . Honma and Nogawa [4] proved the case of general $t$ . Note
also that the connectivity of the open sets in Theorem 7 is essential.
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Let $U=\{a\in A_{1+}^{-1} : \rho_{1}(a, 1)<1\}\cup\{a\in A_{1+}^{-1} : \rho_{1}(a, 10)<1\}$ . Suppose
that $J$ is a Jordan *-isomorphism from $A_{1}$ onto itself which is not the
identity transformation. Then the map $T:Uarrow U$ defined by

$T(a)=\{\begin{array}{ll}J(a) , \rho_{1}(a, 1)<1a, \rho_{1}(a, 10)<1.\end{array}$

is a surjective gyrometric preserving map while it is not extended to a
surjective gyrometric preserving map from $A_{1+}^{-1}$ by Lemma 6.
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