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Some topics in LP-theory for second-order
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1. Introduction

In this paper we deal with the second-order elliptic operators of the form
(1.1) Au(z) := —div(a(z)Vu(z)) + F(z) - Vu(z) + V(z)u(z), z€R",
where N € N and the coefficients (a, F, V') satisfy the following condition:

(A1) ta =a € CYRY;RV*N), F € CY(RY;R"), V € L (RN;R) and a(z) is positive-
definite for every z € RV, that is, (a(z)¢,€) > 0 for every z € RV, £ € CV \ {0}.

Here (-, -) is the usual Hermitian product. Under condition (A1) we define the minimal
and maximal realization of 4 in L? = LP(RY) (1 < p < 00) respectively as

Apmint 1= Au,
{D(Ap,min) = C°(R"),
{ Apmaxtt = Au,
D(Apmax) == {u € LP N VVI?,’CP(RN); Au € [P}

Our interest is the following properties of A, min and Apmax:
e essential m-accretivity of Apmin
e m-accretivity of Apmax
e m-sectoriality of Apmax
(see e.g., Goldstein [7]). There properties are strongly related to the evolution equation

(12) O =0, 1€ (0,00, w0 =
The m-accretivity of A, max gives solvability of (1.2) and the m-sectoriality of Apmax
implies the smoothing effect of solutions to (1.2), which may be expected for equations
of parabolic type. Here we only discuss the essential m-accretivity of Ap min.

As is well-known, second-order elliptic operators appear in the theories of non-
relativistic quantum mechanics and stochastic analysis. In particular, some important



models of them are written by using the operator A in (1.1) with unbounded coefficients.
For instance, in non-relativistic quantum mechanics the Schrédinger operators

Su(z) = ~Au(a:) +V(z)u(z), zeRY

(@ = (6;x);x and F = 0, where &; is the Kronecker delta) describe the motion of a
quantum mechanical particle under the potential V. On the other hand, in stochastic
analysis the Ornstein-Uhlenbeck operators

Aouu(a:) = —Au(z) + Bz - Vu(z), ze€RY

(a = (djk)jk, F Z ¥ Bixz;)e and V = 0) describe the process of random variables,
where B = (B,k)jk is'an N x N-matrix. Our interest is the m-accretivity of operators
which have the differential expression A.

There exist many investigations dealing with these problems for uniformly elliptic
operators with bounded coefficients (see e.g., Kato [9, Example V.3.34], Fattorini [5,
Chapter 3], Lunardi [12, Chapter 3] and their references).

For unbounded coefficients, the Schrédinger operators —A+V have been considered
in many previous works (see e.g., Kato [8, 11], Simon [18], Semenov [17], Okazawa
[15, 16] and others). The operators A with unbounded diffusion and drift are also
dealt with (see e.g., Cupini-Fornaro [3], Metafune-Pallara—Priiss-Schnaubelt [13] and
Fornaro-Lorenzi [6]). '

Here we describe recent results for the (essential) m-accretivity of Apmin and Apmax
with unbounded diffusions. In Eberle [4], it is shown that under

@—(gr—z’ﬁ < a(|z|log(e + [:1:‘))2, z € RV \ {0},
the operator Apmin With F = 0and V = 01is essentially m-accretive in L?. In Metafune—
Pallara-Rabier-Schnaubelt [14], they proved the essential m-accretivity of Apmin under

the following conditions: there exist p € CV(RY) satisfying limjzj00 (%) = o0 and
|Vp| # 0 a.e. on RV and constants s, s’ > 0 satisfying 0 < s’ < s and

3 divF

(1.3) |4 - 0;

: leF 2 \
(1.4) V- - >—s|(F,Vp)—|1- E div(aVp) | + s*(aVp,Vp);
(1.5) e P*?(F,Vp) € L*(R");

(1.6) e~P97(aVp, Vp) € L®(RV).

They also deal with the m-accretivity of Zp,mm under a similar restriction as (1.3)—(1.6)
mentioned above. Although their result enables us to deal with general coefficients if
p = 2, a certain restriction on the derivative of the diffusion a is required when p # 2
(see condition (1.4)). Because of this gap between p = 2 and p # 2, it seems to be
unnatural from the view point of LP-generalization.
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In [19], the m-accretivity of Apmax and coincidence of Apmax and the closure of
Apmin are proved if the coefficients a, F' and V satisfy that there exists a nonnegative
auxiliary function ¥, € L2 (RV; [0, 00)) such that

loc

17) U—f)T—l <1+ ,@) (), zeRY\Bg,
(1.8) '—‘%ﬂ <140, f(zl), zeRY\By,
(1.9) vie) - BFE@ S g ), ser?

p

with f(r) = rlogr for constants R > 1 and r € [2,0), where By is the N-dimensional
ball with center at the origin and radius R. More generally, the case where

sern={recironeo; [ fera= oo}

is dealt with in [20]; note that the case where V = 0 and ¥, = 0 is proved in [4,
Theorem 2.3] and Fg essentially appears in its proof. The optimality of Fg is shown in
[2, Example 3.5]. This result may be regarded as a natural generalization from p = 2
to p # 2. In [19], the following view point is crucial.

Proposition 1.1 (see [19, Section 1]). Assume that (A1) is satisfied. Then for every
1< g < oo, we Wl (RY) and ¢ € CP(RV),

ocC

(1.10) /R (Ap)wds = /R ) {mw,w) + (v - di;’p )wm—} dx
+ /R ) [%(wvw, F) - %wvm, F)] de,

where ¢’ = q—& (the Hélder conjugate of q).

The equality (1.10) may be regarded as a generalization in L? of decomposition
formula for sesquilinear form in L? into symmetric and anti-symmetric parts.

Recently, in [21], the endpoint case r = oo of [19] is discussed under an additional
condition similar to the oscillation condition |[V,|? < y¥3 (see (1.15) below).

On the other hand, in Kato [10], the essential selfadjointness of the Schrédinger
operators (—div(aV-) + V)o min With the following coefficients is posed.:

(a(z)e, 2) g

| L <B4 |22, 2z € RN\ Bg,
(K) EE )
V(@) > daft, @eRY,

with k, ¢, £ > 0. This problem is partially solved in [14] under the additional condition
¢ > £%/4. In the case ¢ < £2/4, the negative answer (counterexample) is given in [22]
which is written in LP-framework.



The first purpose of this paper is to prove the assertions of the essential m-accretivity
of Apmin in [19] and [21] via a unified approach. The second is to give a summary of
answer to Kato’s selfadjointness problem and its proof in L2-framework (which is simpler
than [22]).

Here we introduce the main assumption of this paper (almost the same setting as

(1.7)-(1.9)).

(A2) There exist constants a,8 > 0,7 € [2,00], R > 0 and a nonnegative auxiliary
function ¥, € L (RV; R) such that

(1.11) ig%)%ﬂ a(l+ U,(z)'+ (]xl log ixl) a.a. € RV \ Bg;
(1.12) <F(| )[ .2) < B+ Vy(x)) ({x{ log|z|) a.a.z€RY\ Bg;
(1.13) - V- diVsz ¥, ae on RY.

p

Now we are in a position to state our main result. The first theorem is the assertion
for essential m-accretivity in the case where r € [2, 00).

Theorem 1.1 ([19, Theorem 1.1]). Let 1 < p < co. Assume that (Al) and (A2) are
satisfied with r € [2,00). Then Apmin 15 essentially m-accretive in LP, that is,

(114)  Re fR Ayt B dz 2 0 Vi € D(Apmin),  BOF Apun) = L7,

where R(1 + Apmin) 5 the range of 1+ Apmin.

The second is the assertion for essential m—accretlvxty in the endpoint case r = 00
of Theorem 1.1.

‘Theorem 1.2 ([21, Theorem 1.1}). Let 1 < p < co. Assume that (Al) and (A2) are
satisfied with r = co. Assume further that ¥, € WE™°(RY) and there ezists v, > &5+
such that
1 (F,VY,)  (aVT,, V)

e on RV,
P 1+, Paswye M

(1.15) 0, > =

Then Apmin is essentially m-accretive in LP.

The conditions (1.13) and (1.15) in Theorem 1.2 can be replaced with a weaker
condition.

Theorem 1.3. Let 1 < p < co. Assume that (A1) and (1.11) and (1.12) are satisfied
with r = co. Assume further that ®, € Wl1 °(RN) and there exists v, > 12_:1.:1 such that

divF 1 (F,V¥,) (aVV,, VT,)
) VYV - > m: il el b L4 A e TR e. N
(1.16) %4 ’ _max{ 14T, Yo 0+ 0,)2 a.e. on R

Then Apmin ts essentially m-accretive in LP.
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The last theorem is a summary of the answer to Kato’s selfadjointness problem.

Theorem 1.4 ([21, Theorem 3.1] and {22, Theorem 1.1}, p = 2). The following asser-
tions hold:

i) If (a,V) satisfies (A1) and (K) with c > E’;z, then Agmin 18 essentially selfadjoint.
4 ' /

(ii) If N 25 and ¢ < 3“—‘}4—‘3, then there exists a pair (a,V) such that (a,V) satisfies
(A1) and (K) with k = ko and ¢ = ¢y and Ay min is not essentially selfadjoint.

The plan of this paper is as follows. Theorems 1.1, 1.2 are proved in Section 2 via
a unified approach. In Section 3, We prove Theorem 1.4 (i) and (ii). The proof of (i)
is based on Theorem 1.3 and the other is a simplified version of that in [22].

2. Proofs of Theorems 1.1 and 1.3

First we show that A, min is accretive in L? (the first part of (1.14)).

Proof of Theorems 1.1 and 1.8 (accretivity). Let u € CP(RN). If 2 < p < oo, then
taking the real part of (1.10) with ¢ = p, w = [u[’"%u and ¢ = u, we see from (A1)
and V — Q%E > 0 that '

Re ‘/M(fm)ﬂlui"“2 dz = (p—1) /RN [u,p"4(aRe(ﬁVu), Re(wVu)) dz

+ / (P4 (alm(aVu), In(TV4)) d
RN

+/ (v - d“’F) |ufP dz > 0.
RN p

If1 < p < 2, then we use (1.10) with ¢ = p, w = (ju]* + e)%u (e > 0) and ¢ = u.
Letting € | 0, we obtain the accretivity of Aymin for 1 <p<2. O

Next we prove the (essential) maximality of Apmin, that is, R(1 + Apmin) (the range
of 1 + Apmin) is dense in LP. We only prove the case 2 < p’ < 00 (1 < p < 2).in
order to avoid the complicated computation. The case 1 < p’ < 2 can be verified via a
procedure similar to the other case with e-regularization as in the proof of accretivity
(see [19, Theorem 1.1], [20, Theorem 1.1] and [21, Theorem 1.1]).

Here we need the following lemma.

Lemma 1. Let v € L7 be real-valued. Assume that (A1) and
(2.1) f v(p+ Ap)dz =0 Vy € CP(RY).
RN

Then v € HL (RN) N C(R"). Moreover, if & € W (R") has a compact support in
RV then

I {(p = 1)(aV, Vo)B[o*~ + (aVv, v<1>>v|v|”'2] da
RN

+/ [~1—,(F,V<I>) + (1 +V - d“'F) @] Io]? dz = 0.
RN LP p




Proof. Using the elliptic regularity (see e.g., Agmon [1, Lemma 5.1]) iteratively, we see
v € HE (RV)NC(RY). Then using (1.10) with ¢ = p and w = v and ¥ = ¢, we deduce

1 1 divF
/ [(aVv,ch) + = (F,vVp) — =(F,¢Vv) + (1 +vV - ) 'ucp] dz = 0.
RN , p p p
The above equality is verified even for ¢ € H'(R") with a compact support. Here we
choose ¢ = ®v|v[”’~2. Then noting that
1
P

we obtain the desired assertion. : O

vV — lt,on = —-17'{7(1)}1;(”’,
P 1Y

Proof of Theorem 1.1 (mazimality). Assume (2.1) for v € L7 (RY). It suffices to prove
that v = 0 a.e. on RY. We may assume without loss of generality that v is real-valued.
We take the cut-off functions {(,}, € WH(RY) as

1 if |z| < expexpn,
Gu(z) =1 0 if > expexp(n + 1),

n+1—loglog|z| otherwise

for n € N and z € RY. Applying Lemma 1 with ® = (7, we deduce that

(p'"l)/ G{aVo, Voo P dz + 7 / 0 HaVe, VG P de
Bn K ,

n\Kn-l
r divF

+= GTHE, V) ol dz + / (n (1 +V-
p Kn\Kn~1 Kn

) [v|P dz = 0,
where K, := supp (». By the Cauchy-Schwarz and Young inequalities, we have

: 2
(2.2) f o (1 Ly o WF )mv' dz < —0 / =24V C, Vo) 0| da
Kn p Kn\Kn—-l

T 4(p' - 1)
- CYE, VG ol da.
p Kn\Kn—~l

On the other hand, note that

-
— % ifre K\ Kn,
Vu(z) = < |z|log|z] n \ Ky
’ 0 otherwise.
Thus it follows from (1.11), (1.12) of the condition (A2) and Young’s inequality that
there exist constants C;, Cy > 0 such that for every n > loglog R,
r—2

G HaV6n VG) = ﬁ%g% < aC;H2(1 + \pp)l_% < 2@7;‘1’2(01 + G+ ‘I'p))»

-1 F 1 !
GG = ST < p1 4 0y < F (G4 G+ ).
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- Therefore, combining (2.2), (1.13) and the above estimates, we have
/ G+ Tl do < (Cy + Co) lof? dz + / G+ L) do.
Kn Kn\Kn 1 Kﬂ\Kn-
Consequently, we see that

/ ol de < (Cy + 02)/ (ol de — 0

Kn\Kn—l
as n — 0o. This implies that v = 0 a.e. on RY, that is, R(1+ Apmin) is dense in LP. O

Proof of Theorem 1.8 (maximality). Assume (2.1) for real-valued function v € L¥. As
in the proof of Theorem 1.1, we prove that v = 0 a.e. on RY. Applying Lemma 1 with
® =0;1¢2 (0, :=1+¥,), we deduce that

-2 pl__2 pl__2
(23) (o' = 1) ¢2(aVv, V) |v| dx+2/ GaaV, V) ulP % dz
@p Kn\Kn- 67’
2 p’—2 2 pl
Cn<0,V’U,V‘I;p>|’U| v dSE - }7/ Cn(F’ v\fPH'vl dl‘
Kn ep p Kn\Kn-1 ep

' 2 ’ ; ,

o+ -2—/ SRSV g +/ o (1 +V - dWF) [v|P dz = 0.
P’ JKn\Kn-1 ©p . Op p

By the Cauchy-Schwarz and Young inequalities, we have
. .
/ [« (1 LV divF 1 (F,V¥,) 2 — (aVY,, V\I!p)) of? de

©p p P @p g e
, ¢(aVv, Vu)|v[P'~ 2 ¢ aV\I/,,,V\I/ )|v]
=-(p'-1)
Op
2 7 -2y p' -2
_ <n<aVv,V\I;p>lv| v, / cn<aVv,vcn>1vl v
Kn ep Kn\Kn—-l @P
2 -4
L[ GRVGE,
D JKn\Kn- O,
2 p-2
B (p' 11— __1__) GE(aVy, Vu)|v| do
4')’10, O,
) 1
_2/ (n{aVy, Vi) |vl? 'vdx___?;/ Cn{F, V) [v]? d
Kn\Kn-—l ep ] p Kn\Ku 1 ep

-1 " o ?
< (p/ _1- _}_) / (aV¢,, VCﬂ)!”l do — __2_,_/ Gl F, V) v d
%) JKa\Kno S, P’ JKo\Kn1 ©p |

Therefore we see from (1.11), (1.12) and (1.16) that

G ( ) 26 / :
=2 lP dz < e 4 v dz — 0
/n e,,' | P 4vp P’ K,.\Kn_ll |

as n — oo. This implies that v = 0 a.e. on RY. This completes the proof. O



Remark 2.1. The difference between the proof of Theorem 1.1 and one of Theorem 1.1
is only the choice of sequence of . If r € [2,00), then we do not need to assume the
differentiability of ¥,,. On the other hand, if r = oo, then the differentiability of ¥, is
required.

3. Proof of Theorem 1.4

Proof of Theorem 1.4 (i). To apply Théorem 1.2 with p = 2, we put
Vy(z) := max{1, cz[*} — 1.

Then we see from (K) that for everyvx € RV satisfying |z| > ¢™/%,

{(a(x)V¥y(z), VIs(z)) 2 (a(z)z, z)|z |2
(1+ Ty(2))? - 2|z|
< kx|t

2
< Ef—\lip(a:).

Therefore if ¢ > kf?*/4, then Theorem 1.2 is applicable to (a,V), that is, Agmm is
essentially m-accretive in L?. Since Az pin is symmetric, we obtain the essential selfad-
jointness of Az pin. 0O

To give a clear proof, we show Theorem 1.4 (ii) for £ € (0,2] (For the other case,
see [22]). Before starting, we give a strategy of the proof. The proof is divided into the
following three parts.

Step 1. We consider the Schrédinger operators

(3.1) B=-A,+ &%— +W(y) inRY:=RM"!x(0,00)

with 0 < W € C(RY) and prove that By (B defined on Ce(RY)) is

nonnegative but not essentially selfadjoint in L2(RY) when A € (-1, ).

Step 2. Using diffeomorphism @ : RY — R" we translate the operator B in RY into
an operator A in RY; remark that A is not essentially selfadjoint in L?(R").

Step 3. We construct (a, V) such that (K) is satisfied with £ = kg and ¢ = ¢p and
corresponding operator Agmin is not essentially selfadjoint in LZ(RN ).

3.1. Step 1

Lemma 2. Assume —% < X\ < 3. Then Bymin is nonnetgative but not essentially
selfadjoint in LE(RY). :

L]
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Proof. (nonegativity) Let v € Cg°(Rff ). Then by integration by parts and the one-
dimensional Hardy inequality (with respect to yn), we have

2
[ Bty = [ 1wopara [ ey
RY RY RY Un
2 2
>/ Ov d+/\/ l-—vi,—dy+/ Wvl* dy
RN

+

Oyn

( ) I—E—d +/ Wv|? dy
RY YN
0.

Therefore we can find the Friedrichs extension Bp of By min. We remark that D(Br) C
D(1/yn). More precisely,

v

1 2
(,\+ Z) / P gy < vll 2wy Brollzamy) Yo € D(Br)-
| RY Y

(Non-selfadjointness) First we prove Fix n € C§°(R;[0,1]) such that n(s) = 1 for
Is| <1 and n(s) = 0 for |s| > 2 and set

N
¥(v) = )iV T y)

Then noting that A € (—1,2), we have ¢ € L*(RY) and yy't ¢ L*(RY) and therefore
¥ ¢ D(BF). Define

f:=v+ By.

Then noting that (—-j“% + ;"5)3%”‘/ M1 =, we have

8
IBo@)| < C (1+ V) x(aam-ixon

and hence f € L*(RY). Setting Yw = ¥—(1+Br)~' f ¢ D(Br), we have Yw + Bypw =
0. This yields

/ (’U -+ Bz,m;n’v)’ll)w dr = / ’l)('(ﬁw -+ Bl,l)w) dz = 0.
RY RY

+

Hence Bj min is not essentially selfadjoint in L2(RY). O

3.2. Step 2

The following elementary lemma gives a transform of operators in R¥ into one in Rﬂ‘r’ .
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1/2

Lemma 3. Let & € C®°(RY;RY) be a diffeomorphism with detD®(y) = yy~. Set
J: CPRN) —» CPRY) as

(3.2) Ju(y) = yy ‘u(®(y)).

Then J can be extended to an isometry from L*(RN) to L2(RY) and for every u €
CSO(QQ)J

(3.3) —div(a®Vu) = J~ ( A - -—1~——) Ju,
4%

where a® € C®(Qy, RV?) is defined as a®(z) = (D@ DP*) (27 (z)).

3.3. Step 3

Now we consider the operator
A%u = —div(a®Vu) + ¢|z|tu,
where @ is determined later. Then we have

Lemma 4. Condition (K) for a® is equivalent to the following condition:
1 | .
(34) 1 [VIRQ)P[ < KA+ 12@NRG)P i 12w 2 R

Now we introduce a suitable . We define ® € C®(RY;R") as follows: for y =
(', yn) with ¢ € RV and yy > 0,

(yN)1/2 e 1 ;
(35) 2,) = (W), o) = Flum)
Here F € C®(R4;R) satisfies F'(t) > 0 and
| tifo<t<?
3.6 Fy = GD 2
(3:6) Q {3/2 if 4 <t<o0.

Remark 3.1. In view of (3.4), the choice of &y = F may be essential because of

aor] <o ve (052)

This property will be used in Lemma 5.

Next we verify (K) for a® with precise constant k > 0.

Lemma 5. If N > 5, then there exists Ry > 0 such that a® satisfies (K) ‘;wz'th k=1.
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Proof. Observe that N > 3 + 2( yields 48 < 1 for every p > 2 and hence ky = 1.
Therefore we only prove the general case.

By virtue of Lemma 4, it suffices to prove (K) that (3.4) holds with k = 1 and for
some Ry. By the definition of &, we see that

(yn)2 e |
(F'(yN)) W)
1 1 F'(yn)
N-1 <2y~ F'(yn)

(3.7) Vie(y)* =2

3

) B@) + Fuw)ex(y)

where &(y) = (®1(y), ..., ®n_1(y)). Here we prove (3.4) by dividing its proof into three
cases:

(The case yy > %). In this case F(ynx) = (yn)?*" and hence we have

.
(38) V() =2 (3) W)

3By (y)|5

Therefore there exists R; > 0 such that (3.4) holds with k = 1 if |®(y)| > R;.

(The case 2 < yy < %). In this case, F, 1/F’ and F"” are uniformly bounded on
(5%, =%5]. Hence

)

%IVIQ(y)Izl < G1|2(y)| + Cold(w)I* < (Cr + Cal@(w))) |2 (W),
where

ta/? ﬁ ’( )
C; = max ¢ sup (--——~) , sup F'(t), ¢,
e N0 ez

Ly [1- 20
N -_ 1 tG[%,%]

C; =

26 F'(t)|

Thus there exists R, > 0 such that (3.4) holds with k = 1 if |®(y)| > R..
(The case 0 < yy < 2) Observe that

F(@) = IF@OIF, F'() = -E|F@I*"

Hence

(ﬁ) [N (3)[Fb(y)

Bl®nw)|5|1dW)|2 — 2@ N (yn)|*HE

Via@)? =2



where 8 = 324 Noting that |®y(y)| > 1, we have

(g)‘ﬁ B (y)| P18()] < (g)”‘“ﬁ ()

On the other hand, putting |®x(y)| = [®(y)]/s and |®;(y)'| = [2(y)|V1 - s (s € [0,1]),
we have

0 . 2 2t
S|P = 20W)IF (871~ ) = %)
By the standard computation, we have

' 6527:‘2(1 —5) —sg"}e

<1l
Hence we can choose R3 > 0 such that (3.4) holds with k = 1 if [¢(y)| > Rs. Conse-
quently, taking Ry = max{R;, Ry, Rs}, we have (3.4) with k = ko and R = Ry. a

Next we define
We(y) = |2@)|Y, yeRY.

Then we have

Lemma 6. Let £ > 0. Then there exists M > 0 depending only on £ such that ify € Rﬂf
satisfies yn < 2, then

4 1 4 1 3644
3.9 — —— < Wiy) £ = + M(yn) T D |y,

Proof. By the definition of ¢ and F, we have

£

2(¢+2) N
£\ W= Lo 203 ¢ ~
Wi(y) = ((") (?J_N)N'ﬁﬂﬁ‘%%!y ?+ ('2' yN) ) .
Noting that ¢ < 2, the triangle inequality yields
. g . -2 e -2 e Tvi"i - .
\zwv) SWily) < ('Q*ZUN +(3 (yw) 2N |y |

4 1 g\ NI £(B+1)+2
<pomat(3) @ FEWE

This completes the proof. O

Proof of Theorem 1.4 (ii). Setting W, >0as

~ 4 1 —
Wely) = Wa(y) = 5 ”) € C(RY),

we deduce
A%u= J'B%Ju
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with 4 N 1
d _ ac 1y 1 7
B® =-A (62 4) " + cWe(y)

Apllying Lemma 2 to A = ﬁ/ € (-1, and W = cW,, we see that B2 . is
not essentially selfadjoint in L2(R ). Since J is an isometry, A2, is not essentially
selfadjoint in L2(RY). This completes the proof. O
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