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1 Introduction

We consider a free boundary problem for a reaction-diffusion equation:

(FBP) $\{\begin{array}{ll}u_{t}-d\triangle u=f(u) , t>0, g(t)<r<h(t) ,u(t, g(t))=0, u(t, h(t))=0, t>0,9’(t)=-\mu u_{f}(t,g(t\rangle) , t>0,h’(t)=-\mu u_{r}(t, h(t)) , l>0,g(0)=g_{0}, h(0)=h_{0}, u(0, r)=u_{0}(r) , g_{0}\leq r\leq h_{0},\end{array}$

where $d,$ $\mu,$ $g_{0}$ and $h_{0}(g_{0}<h_{0})$ are positive constants, $r=|x|(x\in \mathbb{R}^{N})$ ,
$\triangle=\partial_{r}^{2}+(N-1)\partial_{r}/r$ for $N\geq 2$ , and the initial function $u_{0}$ satisfies

$u_{0}\in C^{2}(g_{0}, h_{0})\cap C([g_{0}, h_{0} u_{0}>0 in (g_{0}, h_{0})$ , $u_{0}(90)=u_{0}(h_{0})=$ O.

Moreover the nonlinear function is assumed to satisfy

$f\in C^{1}(\mathbb{R})$ , $f(0)=f(1)=0,$ $f(u)>0(0<u<1)$ , $f(u)<0(u>1)$ ,

$f’(O)>0,$ $f(u)/u$ is decreasing with respect to $u\in[O$ , 1 $].$

Problem (FBP) may be used to model the spreading of invasive or new
species, where $u(t, r)$ represents the population density of the species that

occupy a radially symmetric region denoted by

$\Omega(t)=\{x\in \mathbb{R}^{N};g(t)<|x|<h(t)\}.$

The free boundaries $r=g(t)$ , $h(t)$ imply the spreading front of the species,

whose behaviors are determined by Stefan conditions $g’(t)=-\mu u_{r}(t, g(t\rangle)$ ,

$h’(t)=-\mu u_{r}(t, h(t))$ , respectively. It will be shown that $g(t)$ is decreasing and
$h(t)$ is increasing with respect to $t>0$ , and hence $\Omega(t)$ is expanding in $t>0.$
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Figure 1. $\Omega(t)$ and free boundaries $(N=2)$

This kind of free boundary problem was first proposed by Du-Lin [3] for
$N=1$ :

$\{\begin{array}{ll}u_{t}-du_{xx}=u(a-bu) , t>0, 0<x<h(t) ,u_{x}(t, O)=0, u(t, h(t)\rangle=0, t>0,h’(t)=-\mu u_{x}(t, h(t)) , t>0,h(O)=h_{0}, u(O, x)=u_{0}(x) , 0\leq x\leq h_{0},\end{array}$ (1.1)

where $a$ and $b$ are positive constants, $d,$
$\mu$ and $h_{0}$ are defined as in (FBP), and $u_{0}$

satisfies $u_{0}\in C^{2}(0, h_{0})\cap C([0, h_{0} u_{0}>0 in (0, h_{0}),$ $u_{0}’(0)=u_{\zeta)}(h_{()})=0$ . They
proved the global existence and uniqueness of solutions to (1.1), and showed
the spreading-vanishing dichotomy for asymptotic behaviors of solutions. It
means that, for any solution $(u, h)$ of $(1.1\rangle,$ either (i) or (ii) occurs as $t$ tends
to infinity:

(i) Spreading: $\lim_{tarrow\infty}h(t)=\infty,$ $\lim_{tarrow\infty}u(t, x)=a/b$ locally uniformly
in $[0, \infty)$ ;

(ii) Vanishing: $\lim_{tarrow\infty}h(t)\leq(\pi/2)\sqrt{d}/a,$ $\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C(0,h\langle t))}=0.$

Here spreading implies the species succeed to establish themselves, while van-
ishing implies the extinction of the species. The number $(\pi/2)\sqrt{d}/a$ is called
a threshold number in the sense that, once the free boundary reaches this
number, spreading necessarily occurs. They also showed that, when spreading
occurs, $h(t)/t$ converges to a constant as $tarrow\infty$ . This result implies that the
spreading speed becomes almost constant in sufficiently large time.

After the work of Du-Lin [3], the free boundary problem has been studied
by many researchers. Kaneko-Yamada [13] replaced Neumann boundary con-
dition $u_{x}(t, 0)=0$ in (1.1) with Dirichlet boundary condition $u(t, 0)=0$ and
gave sufficient conditions for spreading and vanishing. They also considered a
bistable problem, where the nonlinear function of the problem is replaced by
$u(u-c)(1-u)$ for $0<c<1/2$ , and showed that such a threshold does not
appear in the bistable problem. There are a lot of papers on onedimensional
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free boundary problem (cf. Du-Lou [4], Du-Matsuzawa-Zhou [6], Gu-Lin-Lou
[8], Guo-Wu [9], Kaneko-Oeda-Yamada [11], Kaneko-Matsuzawa [12], Liu-Lou
[15], Wang [16] etc However there are only a few papers which deal with
multi-dimensional free boundary problem (cf. Du-Guo [1], Du-Guo [2], Du-
Matano-Wang [5], Kaneko [10]).

The situation is completely different in multi-dimensional free boundary

problems. When $N\geq 2$ , the geometric profile of free boundary relates strongly

to the regularity of solutions. For example, when some parts of the free bound-
ary connect each other, singularity appears for the density function. Then we

can not deal with classical solution afterwards. However, introducing a weak
form, we can consider the problem for all time. In (FBP), such a phenomenon

actually occurs according to initial data and parameters in the equations:
The purpose of this paper is to introduce some results of Kaneko-Yamada

[14] where the following contents are discussed:

(i) Existence and uniqueness of classical/weak solutions for (FBP);

(ii) Generation of singularity and regularity of weak solutions;

(iii) Spreading and vanishing in multi-dimensional problem (FBP).

Let $(u, g, h)$ be solutions of (FBP) and $\Omega(t)=\{x\in \mathbb{R}^{N}, g(t)<|x|<h(t)\}.$

Throughout this paper, we employ the notion of spreading, vanishing and
singularity in the following sense:

(i) Spreading is the case where $\bigcup_{t>0}\Omega(t)=\mathbb{R}^{N}$ and $\lim_{tarrow\infty}u(t, r)=1$

uniformly in any compact set of $[0,$ $\infty$

(ii) Vanishing is the case where $\bigcup_{t>0}\Omega(t)$ is a bounded set in $\mathbb{R}^{N}$ and
$\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C(g(t),h(t\rangle)}=0$ ;

(iii) Singularity is the case where there exists a number $\tau*\in(O, \infty$] such that
$\lim_{tarrow T}\cdot g(t)=0.$

We obtain the existence and uniqueness of classical solutions to (FBP) until
inner boundary $g(t)$ reaches the origin and singularity appears. We continue

to consider the problem afterwards by introducing a weak formulation, and

moreover the weak solutions recovers smoothness immediately after singular-
ity appears. Hence we study spreading and vanishing for classical solutions.
Furthermore it will be shown that, if $\lim_{tarrow\infty}h(t)=\infty$ , then singularity ap-
pears at a finite time. We can refer details of proofs to [14].

The paper is organized as follows: in Section 2 we give main results for
(FBP). This section is divided into two subsections; the former one relates to

the existence and uniqueness of solutions to (FBP) and the latter is concerned
with asymptotic behaviors of solutions.
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2 Main Results

2.1 Existence and uniqueness of solutions

In this section we show the existence and uniqueness of solutions to (FBP).

The assertions are summarized as follows:

$\bullet$ Let $T\in(O, \infty]$ satisfy $\lim_{larrow T}g(t)>0$ . Then there exists a unique local

dassical solution for $0<t<T,$ $g(i)<r<h(t)$ . In other words $u,$ $u_{r},$

$u_{rr}$ and $u_{t}$ are continuous for $0<t<T,$ $g(t)<r<h(t)$ . Moreover
the classical solution is extended to some time $\tau*$ when $g\langle t$ ) reaches the

origin.

$\bullet$ There exists a unique weak solution in the sense of Definition 1 for all

time. This fact implies that we can solve the free boundary problem after
$g(t)$ arrives at the origin at $t=T_{\}}^{*}$ and that a weak solution is identical
with a classical solution for $0<t<\tau*.$

$\bullet$ Every weak solution recovers smoothness for $T>\tau*$ . Ihat means $u,$ $u_{r},$

$u_{rr}$ and $u_{t}$ are continuous for $t>T_{\rangle}^{*}g(t)<r<h(t)$ .

We have the local existence of a unique classical solution to (FBP).

Theorem 1. For any given $\alpha\in(0,1)$ , there exists a number $T>0$ depending

on $g_{\zeta j},$
$h_{0\}}\alpha$ and $\Vert u_{く)}\Vert_{C^{2}(g_{0},h_{0})}$ such that (FBP) has a unique solution $(u, g, h)$

satisfying

$(u,g, h)\in\{C^{\frac{(1+\alpha)}{2},\lambda+\alpha}(\overline{\Omega}_{T})\capC^{1+\frac{\alpha}{2},2+\alpha}(\Omega_{T})\}\cross C^{1+\frac{\alpha}{2}}[0, T]$ $\cross$ Cl$+$量 $[0,T],$

where $\Omega_{T}=\{(t, r)\in \mathbb{R}^{2}|0<t\leq T, g\langle l)<r<h(t)\}.$

In the following theorem, we give the boundedness of solutions and mono-
tonicity of the free boundaries, and show the time interval such that the clas-

sical solution exists.

Theorem 2. Let $T$ be any positive constant such that $g(T)>0$ . Then it holds
that

$0<u(t, r)\leq C_{X}in\Omega_{T}$ and $-\infty<g’(t)<0<h’(t)\leq\mu C_{2}$ , for $0<l\leq T,$

where constants $C_{1}$ and $C_{2}$ are independent of $T$ , and $\Omega_{T}$ is the same as that

of Theorem 1. Moreover the classical solution exists for $t\in(0, T_{\max})$ , where
$T_{\max}$ is a positive constant that satisfies $T_{\max}=\infty$ and $\lim_{tarrow T_{\max}}g(t)>0$ , or
$\tau_{\max}\grave{\in}(0, \infty] and \lim_{tarrow T_{\max}}g(t)=0.$

We will introduce weak solutions to (FBP), referring to Du-Guo [2] and
Friedman [7],
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Definition 1. Let $G_{T}=(0,T)xG$ for some $T>0$ and bounded domain $G$

satisfying $[0, h_{0}]\subseteq G\subset[O, \infty$). A function $u(t, r)$ is called a weak solution to

(FBP) over $G_{T}$ when it satisfies

$\bullet$ $u\in H^{1}(G_{T})\cap L^{\infty}(G_{T})$ , $u\geq 0inG_{T},$

$\bullet\iint_{G_{T}}d(r^{N-1}u_{r}\phi_{r})-r^{N-1}\alpha_{i}(u)\phi_{t}drdt-\int_{G}r^{N-1}\alpha(\tilde{u}_{0})\phi_{0}dr\backslash$

(2.1)

$= \int\int_{G_{T}}r^{N-1}f(u)\phi drdt$

for any $\phi\in C^{1}(G_{T})$ satisfying $\phi=0$ for $(\{T\}\cross G)\cup([0,T]\cross\partial G)$ and
$\phi_{0}(r)$ $:=\phi(0, r)$ . In (2.1), $\alpha$ and $\tilde{u}_{0}$ are given by

$\alpha(u)=\{\begin{array}{ll}u, u>0,u-d/\mu, u\leq 0,\end{array}$ $\tilde{u}_{0}=\{\begin{array}{ll}u_{0}, r\in[g_{0}, h_{0}],0 r\in G\backslash [g_{0}, h_{0}].\end{array}$

We can apply a result in [2] to (2.1) to obtain the following result on the
global existence of unique weak solutions.

Proposition 1. For any $T>0$ , let $G\supset[O, h_{0}]$ be a suficiently large domain.
Then there exists a unique weak solution for (FBP) over $[0, T]\cross G.$

Remark 1. By a comparison principle for the free boundary problem, one can
choose a suitably large domain $G$ such that $G$ includes $[0, h(T)].$

We provide a relation between classical solutions and weak solutions.

Proposition 2. The following results hold true:

(i) Let $u=u(t, r)$ be a classical solution to (FBP). Then a function

$v(t, r)=\{\begin{array}{ll}u(t, r) , (t, r)\in\bigcup_{0<t<T}\{t\}\cross(9(t), h(t)) ,0, (t, r)\in\bigcup_{0<t<T}\{t\}\cross(G\backslash (g(t), h(t)))\end{array}$

is a weak $\mathcal{S}$olution to $(F^{i}BP)$ over $G_{T}=(0, T)\cross G.$

(ii) Let $v$ be a weak solution to (FBP) over $G_{T}=(0, T)\cross G_{f}$ and let $h,$ $g\in$

$C^{1}(0, T)(g(t)<h(t)$ for $0\leq t\leq T)\mathcal{S}$atisfy

$\{r\in G, g(t)<r<h(t)\}=\{r\in G, v(t, r)>0\},$

$\{r\in G, r\leq g(t), h(t)\leq r\}=\{r\in G, v(t,r)=0\}$

for $0\leq t\leq T$ . If a function $u$ satisfies the following properties,

$\bullet$ $u=v$ for $(t, r) \in\bigcup_{0<t<T}\{t\}\cross[g(t), h(t)],$

$\bullet$

$u,$ $u_{r}$ is continuous for $(t, r) \in\bigcup_{0\leq t<T}\{t\}\cross[g(t), h(t)],$

$\bullet$

$u_{rr},$ $u_{t}$ is continuous for $(t, r) \in\bigcup_{0<t<T}\{t\}\cross(g(t), h(t))_{f}$
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then $(u, g, h)$ is a classical solution to (FBP),

The following theorem assures any weak solution must become smooth
immediately after singularity appears.

Theorem 3. Assume that there exists a constant $\tau*$ $>$ $0$ satisfying
$\lim_{tarrow T}*g(t)=0$ . Then any weak solution must be in $C^{1,2}(D_{T^{*}})_{f}$ where $D_{T^{*}}=$

$\bigcup_{t>\tau*\{\ell\}\cross}(0, h(t))$ .

2.2 Spreading, vanishing and singularity

In this section we study the asymptotic behaviors of solutions to (FBP). With
the help of Theorem 3, we may consider the classical solutions in large time,

which makes it easier to investigate spreading and vanishing. The main results
of this section are summarized as follows:

$\bullet$ If the outer boundary expands to infinity $( i.e. \lim_{tarrow\infty}h(t)=\infty)$ , then
the inner boundary reaches the origin at a finite time (i.e. $\lim_{zarrow\tau}*g(t)=$

$0$ for $\tau*<\infty$).

$\bullet$ Spreading-vanishing dichotomy holds true for (FBP) in the sense of The-
orem 5.

$\bullet$ There are some sufficient conditions for spreading and vanishing. If ini-
tial habitat is larger than the threshold value, or population density is
sufficiently large, then spreading occurs. On the other hand, if initial
habitat and the density are small, then vanishing occurs.
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Figure 2. A profile of solution that generates singularity

The following theorem shows the generation of singularity.

Theorem 4. If the solution $(u, g, h)$ satisfies $\lim_{tarrow\infty}h(t)=\infty$ , then there
exists a finite value $\tau*\in(O, \infty)$ such that $\lim_{tarrow T}*g(t)=0.$

We will prepare some threshold numbers that play important roles. Let $\Omega$

be a bounded domain in $\mathbb{R}^{N}$ . Denote by $\lambda_{1}=\lambda_{1}(d;\Omega)$ the least eigenvalue for

$\{\begin{array}{ll}-d\Delta\phi=\lambda\phi, x\in\Omega,\phi=0, x\in\partial\Omega.\end{array}$

It is well known that $\lambda_{1}(d\cdot\Omega)$ is continuous with respect to $d$ and $\Omega$ , and
$\lambda_{1}(d;\Omega_{1})>\lambda_{1}(d, \Omega_{2})$ if $\Omega_{1}\subset\Omega_{2}(\Omega_{1}\neq\Omega_{2})$ . Let $\Omega$ be a ball with radius $l>0,$

that is, $\Omega=B_{l}$ $:=\{x\in \mathbb{R}^{N};|x|<l\}$ . Then $\lambda_{1}(d;B_{l})$ is decreasing with
respect to $l$ and satisfies

$\iotaarrow 0+hm\lambda_{1}(d;B_{l})=+\infty, \lim_{larrow+\infty}\lambda_{1}(d;B_{l})=0.$

Hence there exists a unique number $R_{\eta}^{*}$ such that

$f’(0)=\lambda_{1}(d;B_{R_{0}^{*}})$ , $f’(0)>\lambda_{1}(d;B_{l})f\circ rl>$ 瑞．
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We now replace $\Omega$ to $B_{l}\backslash B_{g(t)}$ . Similarly we find $B_{l_{1}}\backslash B_{g(t_{1})}\subseteq B_{i_{2}}\backslash B_{g(i_{2})}$ for
$t_{1}\leq t_{2},$ $l_{1}\leq l_{2}$ (because $g(t)$ is decreasing) and determine a unique positive

number $R^{*}=R^{*}(d,g(t))$ for each $t\geq 0$ which satisfies

$f’(O)=\lambda_{1}(d;B_{R^{*}}\backslash B_{g(t)})$ , $f’(O)>\lambda_{1}(d, B_{l}\backslash B_{g(t)})$ for $l>R^{*}$

The following proposition shows the dependence of $R^{*}(d,g(t))$ on $d$ and $t.$

Proposition 3. The following results hold for $R^{*}(d, g\langle t)$ ).

(i) $R^{*}(d, g(t))$ is monotone decreasing with respect to $t>0$ and monotone
increasing with respect to $d>0.$

(ii) $R^{*}(d, g(i))$ is continuous for $d$ and $\ell$ . Moreover if there exists a number
$\tau*>0$ such that $\lim_{tarrow T}*g(t)=0_{f}$ then $\lim_{tarrow T}*R^{*}(d, g(t))=R_{0}^{*}.$

$T1)e$ fo lowing theorem provides spreading, vanishing and singularity for
the free boundary problem.

Theorem 5. Let $(u, g, h)$ be any solution to (FBP). Then either (i) or (ii)

holds true:

(i) Spreading: $\bigcup_{t>0}\overline{\Omega}(t)=\mathbb{R}^{N},$ $1i\alpha 1_{tarrow\infty^{u(t,r)}}=1$ uniformly in any bounded
subset of $[0, \infty$ );

Singularity: there exists finite value $\tau*<\infty$ such that $\lim_{tarrow T}*g(t)=0$ ;

(ii) Vanishing: If $g_{\infty}$ $:= \lim_{tarrow\infty}g(t)>0$ (resp. $g(T_{1})=0$ for some $T_{1}<\infty$),

then $\bigcup_{t>0}\overline{\Omega}(t)CB_{R}.$ $\backslash B_{9\infty}\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C(g(t),h(t)\rangle}=0$

$($ resp. $u_{t>0}\overline{\Omega}(t)C\overline{B}_{R_{\infty}^{*}},$ $\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{C(g(t),h(t))}=0)$ , where
$R_{\infty}^{*}$ $:= \lim_{tarrow\infty}R^{*}(d,g(t))$ . $Moreover_{J}$ for some $\beta>0,$

$\Vert u(t, \cdot)\Vert_{C(g(t),h(t)\rangle}=O(e^{-\beta t})$ as t $arrow$ o科．

We provide a sufficient condition for singularity.

Proposition 4. If $h_{0}\geq R^{*}(d, g_{0})$ , then singularity appears at a finite time,

and spreading occurs as $tarrow oo.$

The following theorem gives sufficient conditions for spreading and vanish-
ing concerning on initial data.

Theorem 6. Assume $h_{0}<R^{*}(d,g_{0})$ . Let a smooth function $\phi=\phi(r)$ satisfy
$\phi(g_{0})=\phi(h_{0})=0$ . Then there exists a positive number $\sigma^{*}\in[0, \infty]$ such that

$\bullet$ If $u_{0}>\sigma^{*}\phi$ , then singularity appears and spreading occurs;

$\bullet$ If $u_{0}\leq\sigma^{*}\phi$ , then vanishing occurs.
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