B RAT IR SC AT R ZE 6k
5 1997 % 2016 4E 140-155 140

Asymptotic profiles of solutions to the semilinear wave
equation with time-dependent damping
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1  Introduction

In this note we consider the Cauchy problem of the semilinear wave equation with time-
dependent damping

— —— p n
{ Ugt Au + b(t)ﬂh ‘UI , t> 0,.7: E R y (11)

u(0, z) = eup(x), w(0,z) = eus(z), z € R™

Here u = u(t,z) is a real-valued unknown function and the coefficient of the damping term
b= b(t) behaves as b(t) ~ (1 + t)~? with some 8 € [~1,1).
Our aim is to prove that when p > 1+ 2/n, there exists a unique global solution for small
initial data and the asymptotic profile of the global solution is given by the scaled Gaussian.
As an introduction, we give a short survey about the study of the asymptotic behavior of
solutions to the semilinear wave equation with time-dependent dissipation. In what follows,
unless specifically mentioned, the initial data is sufficiently regular and rapidly decays at
the infinity. The asymptotic behavior of solutions to the damped wave equation has been
- studied for a long time. It is well known that the solution of the wave equation with classical
damping

Uy — Au+u, =0 _ (1.2)
is approximated by a constant multiple of the Gaussian as time tends to infinity. Here we
shall give an intuitive observation about the asymptotic behavior of solutions via Fourier

transform. For simplicity, we consider the initial data (u,u.)(0,z) = (0, g)(z). Applying the
Fourier transform to (1.2), we have

Uy + ‘512’& + 1y = 0, (&1 '&t)(O: &) = (Oa g)(f)
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Solving this ordinary differential equation, we easily deduce

~ . 1 _% — - 2 _ _%( —~4f 2 ~
1,€) = ey (740 - b0V ),

When €] is sufficiently large, 4(t,€) decays exponentially. On the other hand, when 1] is

sufficiently small, we observe .
| 1- VAP
2

and hence,

a(t,€) ~ e 7 g(g).

The right-had side is nothing but the Fourier transform of the solution of the heat equation
v —Av=0, v(0,z)=g(z). (1.3)

Therefore, we expect that the solution of the damped wave equation (1.2) behaves as that of
(1.3). In fact, Matsumura [15] showed the estimates

iaa, /. ;- lol
[8;02u(t)|l e < CA+ )73 77 ([lgllrm + gl amratisiar)

o

li0eu(t) 2 < CQA+1)" 3 G2 =% (|[gl|zm + llgll gevia-2),

where m € [1,2]. Here we remark that the decay rates above is the same as that of the heat
equation (1.3):

18:8%u ()] < Ct G375 gl e,

where 1 < ¢ < p < 0.

The precise asymptotic profile of dissipative hyperbolic equations is firstly studied by
Hsiao and Liu [11]. They studied the hyperbolic conservation law with damping and the
asymptotic profile of the solution is given by a solution of a system given by Darcy’s law.
After that, Nishihara [17] considered a quasilinear hyperbolic equation with linear damping
and proved that the solution has the diffusion phenomena, that is, the solution approaches
to that of the corresponding quasilinear parabolic equation (see also Yang and Milani [31]
and Karch [12] for higher dimensional cases).

More precise information about the asymptotic behavior of solutions to (1.2) is given by
[10, 14, 16, 18]. They proved the LP-L? estimate

n

Jutt) = o(®) = e Aw(t)le < O HE3) gl
where 1 < ¢ < p < oo. Here, when n < 3, w(t, z) is the solution of the free wave equation

wy — Aw =10, (w,w)(0,z)=(0,9)(z)
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(when n > 4, w behaves like a solution of the free wave equation but does not coincides with
it).
Next, we consider the semilinear wave equation with classical damping

uy — Du+u, = [ulf,  (u,w)(0,z) = e(ug, u1)(z). (1.4)
For the corresponding parabolic problem
Vg — Av = Ivip’ ’U(O,l') = E'Ug($),

Fujita [5] discovered that p = 1+ 2/n is the critical cxponcent, that is, if p > 1+ 2/n, then for
any vo € L' N L™, there exists a unique global-in-time solution, provided that ¢ is sufficiently
small; if 1 < p < 1+ 2/n, then for any € > 0, the local-in-time solution blows up in finite
time, provided that vy > 0 and vy # 0. In other words, the number 1 + 2/n is the threshold
between the existence and nonexistence of global solutions for small initial data.

In view of the diffusion phenomena for the linear problem stated before, we expect that
the semilinear damped wave equation (1.4) also has the same critical exponent p = 1 + 2/n.
Indeed, Todorova and Yordanov [22] and Zhang [32] gave an affirmative answer. About the
asymptotic profile of the global solution, Gallay and Raugel [6] considered one-dimensional
case and proved the diffusion phenomena. After that, Hayashi, Kaikina and Naumkin [9]
extended to higher dimensional cases.

One of the generalization of the diffusion phenomena is for wave equation with time-
dependent dissipation

U — Du+b()uy =0,  (u,u)(0,z) = (ug, u1). (1.5)

Wirth [25, 26, 27, 28, 29] studied the asymptotic behavior of solutions via the Fourier trans-
form. For simplicity we assume that b(t) is a positive, monotone function satisfying

T )| <c kb
50| < 6+ 00

for any nonnegative integer k. A typical example is b(t) = (1 +t)~? with 8 € R. We also put

A(E) = exp (% /0 tb(T)d'r), B(t) = Ot%.

- Wirth classified the asymptotic behavior of solutions by the strength of the damping in the
following way:

o (scattering) If b € L'(0,00), then the solution is asymptotically free. Namely, the
solution approaches to that of the wave equation without damping in the energy sense.
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o (non-effective dissipation) If limsup,_,, tb(t) < 1, then the solution satisfies the LP-L¢
estimate

(V)| < 1‘%0 + )7 G3) (fluollwerra + allwee)

for p € [2,00), ¢=p/(p—1) and s > n(1/g = 1/p).

e (scale-invariant weak dissipation) If b(t) = p/(1 + t) with u > 0, then the solution u
satisfies the LP-L9 estimate

1_1 1)

1(Vu, w)llr < €1 + )T G357 =57 (uglwesne + Jun[[we)

for p € [2,00), ¢ = p/(p— 1) and s > n(1/q— 1/p).

o (effective dissipation) If tb(t) — oo as t — oo, then the solution satisfies the Lr-Le
estimate

(Ve )l < O+ BE)3G72)73 (flugllwerra + urllwes)

for p € [2,00), g=p/(p—1) and s > n(l/q — l/p).

e (overdamping) If b(t)~*, then the solution with (uo,u1) € L? x H™! converges to the
asymptotic state
Uoo(Z) = tlim u(t, z)

in L2. Moreover, this limit is non-zero for non-trivial initial data. In particular, in
general the L?-norm of the solution does not decay to zero as time tends to infinity.

Moreover, for the damping term satisfying b(t) ~ (1+t)™° (0 < B < 1), Yamazaki [30] studied
the asymptotic profile of solutions to the abstract damped wave equation ug + Au+b(t)u, = 0.
As a corollary of her result, we have the diffusion phenomena for (1.5):

lu(t) = v(®)llm < O+ )7 (luoll s + [[ta]l22),

where v is the solution of the corresponding heat. equation

b(t)v, — Av = 0, v(O,x) =up + b—z(%—) — U /0"" /\—(%%()‘;)3‘17’

Next, we consider the semilinear wave equation with time»dependent damping
uy — Au+ p(l+ t)—ﬂut = N(u), (u,u)(0,z) = e(uo,ur)(x).

When N(u) = |ul?, as in the case § = 0, there exists the critical exponent. Indeed, when
B € (—1,1), Nishihara [19] and Lin, Nishihara and Zhai [13] proved that the critical exponent
is given by 1+ 2/n. After that, D’Abbicco, Lucente and Reissig [3] (see also [2]) extended
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to more general effective damping term and initial data. When 8 = 1, the situation becomes
complicated. D’Abbicco [1] proved that if 4 > n+ 2 and p > 1 + 2/n, then there exists
a unique global solution for small initial data. D’Abbicco, Lucente and Reissig [4] studied
the special case u = 2 and proved that the critical exponent is max{1 + 2/n,po(n + 2)}
when n < 3, where po(n) is the positive root of (n — 1)p? — (n + 1)p — 2 = 0, that is the
Strauss critical exponent for the nonlinear wave equation. Furthermore, recently, Wakasa
[23] obtaincd the optimal cstimate of the lifespan of solutions in onc dimensional casc.

On the other hand, for the absorbing nonlinearity N(u) = —|u[P~'u, when 8 € (-1,1),
Nishihara and Zhai [21] obtained the global existence of solutions for any 1 < p < [:j?i'
Moreover, when n = 1 and p > 3, Nishihara [20] proved that the asymptotic profile of
solutions is given by the scaled Gaussian. However, there are no results about the asymptotic
profile for n > 2. In this note, we give the asymptotic profile of solutions in the case
N(u) = [ulP with supercritical condition p > 1 + 2/n and for small initial data. We also
extend the results of [13] and [3] to more general initial data and our result includes the case

B=—1.

2 Main result

First, we explain the notations used in the following. The letter C' indicates a generic
constant, which may change from line to line. For a function @ = af(s) defined on an
interval in R, we denote &(s) = o/(s) = %":e(s). For a function f : R™ — R, we denote by f
the Fourier transform of f, that is,

fio) = Cmyo [ eetsaan

Also, F~! stands for the inverse Fourier transform. Let LP and H*™ be the Lebesgue space
and the weighted Sobolev spaces, respectively, equipped with the norms defined by

1/p
e = ([ 1@ as) (15 p<00) 1Sl = essoup (o),
I lem = > 11 + |2])™02 f | 2.

jal<k
We put the following assumptions on the damping term, the initial data and the nonlin-
earity. The coefficient of the damping term b= b(¢) is a smooth function satisfying
CHa+nP <)y <C+e)8, () <CO+t) () (2.1)
with some C > 0 and 8 € [-1, 1). Next, the initial data (ug,u;) belong to H™ x H%™ with
m=1(n=1),m>n/2+1 (n 2> 2). Finally, the exponent of the nonlinearity p satisfies
n

2 2
l+—-<p< n=12), 1l+-<p< 2 3).
+-<p<oof b 1t -<ps—— (n23)
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Let G(t,z) = (4mt) ™ ?exp (U-—) be the Gaussian and let B(t) = fo (7)~'d7. The main
result of this note is the following:

Theorem 2.1 ([24]). Under the assumptions stated above, there exists go > 0 such that for
any € € (0,2¢), the equation (1.1) admits a unique global solution

u € C([0, 00); IIV™(R™)) N CY([0, 00); IIO™(R™)).
Moreover, the global solution u satisfies
lu(t, ) = @*G(1+ B(t), )2 < C(1+ B(t)) ™42 ||(uo, ws) | mr1mxrom,

where o* = lim;_, 0 fRn (t,x)dz, K > 0 is an arbitrary small number and A is

) n2(l-p6) n 2
_ _n nf _1-% 2.9
A mm{lm > 118 2(p 1 n)} (2.2)
(if B = —1, the term 2=2) 11;3’3 is omitted from the minimum,).

Remark 2.1. The number a* can be explicitly written. For ezample, when b= (1+1)7#, we
have

o = / (1o + ;) dz + B(1 ~ B) / (141)~@# / wdxdt + / |ulP dzdt
. n 0 R 0 R

(see Section 1 of [20] for general cases).

3 Idea of the proof: scaling variables and fractional
integrals

The purpose of this section is to explain the idea of the proof of our main theorem. The proof
is based on the method of Gallay and Raugel [6], in which the one-dimensional semilinear wave
equation with classical damping is considered. To generalize their method to higher dimen-
sional cases, we use the fractional derivative of the form F(s,y) = FY[|€]™™2~° (s, )](¥).
In order to explain this idea, for simplicity, we consider the linear heat equation

(3.1)

ug — Au = 0, t>0,$ER”,
'U,(O,.’L') = Uo(f), r € R™

Following [6], we apply the scaling variables (self-similar transformation)

T
1+¢

s=log(l+1t), y=
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and we put

u(t,z) = (1+t)™ v (log(l +1t), ﬁ) .

Then, the new unknown function v = v(s,y) satisfies

Vs — -g - Vyv - gv = Ayv. (3.2)

Next, we decompose v as
v(s,y) = apo(y) + f(s, 1),

where

a= [ e wl) = <4vr)*"/2exp( uty.

We note that « is independent of s and g satisfies [, wo(y)dy = 1 and Apy = —%-Vo—Fpo.
We prove that the asymptotic profile of v is given by aw,. To this end, it suffices to show
that f decays to zero as time goes to infinity. We easily see that f satisfies the equation

fo= 2 Vyf =S =0

and [p. f(s,y)dy = 0. We define

. / f(s,2)da (n=1)
FEis0] ) (22,

where 0 < § < 1. From the following Hardy-type inequality, we note that F' makes sense as
an L2-function

Lemma 3.1. We have ||[F||1z < C||fllgom if m=1(n=1), m>n/2+1 (n >2).

Proof The case n = 1 is proved in [8, Section 9.9] and we omit the proof. When n > 2, from
= [an f(5,9) dy = 0, we obtain

B (s, € de = / €172 (s, £)[2 d
Rn Rn
< [Vef()I2e / € dg + 11F(5) Bagersny
€11

This and A
IVef($)llee < Clilyl fller £ Cll fllgom

with m > n/2 + 1 imply the conclusion. |



The following interpolation inequality enables us to control the bad term || f|| .z appearing
in the energy estimate.

Lemma 3.2. For any n > 0, there exists a constant C > 0 such that
[£llzz < 9lIV fllza + CIVF| 2.

This lemma is easily proved by decompose the integral region in the Fourier space and
we omit the detail.
In what follows, we consider the case n > 2. By the definition of F', we have the equation

of F: ¢ )
A~ A~ 1 ’,—2: ~ - 2 A
FS+2 V§F+2(2+5) |E|°F.
By the energy method, we prove that || f(s)||z2 decays to zero. First, we obtain
Lemma 3.3. We have
d |1 2 9 2 2
— |5 | Fs9)ldy| =—5 | IF(sy)ifdy— | [VyF(sy)"dy.
ds |2 R" 2 Rn R"

Proof. We calculate

L3 [ reord - [

R
5 .
=5 [ 1P e - / 61 (s, )1 de.
Thus, the Plancherel theorem completes the proof. a

Similarly, we can obtain the following:

Lemma 3.4. We have

js[ / |17 d ]" /Rn!flgdy—/mnlvmzdy,

Lemmas 3.2 and 3.4 imply

;3[ / 1f*d ]<-/ Ifizdy—m/ v, F[zdy

From this, Lemma 3.3 and taking sufficiently large Co > 0; we obtain

&% [AR(COIFP +1/7) dy] = “5/;“(ColF!2 +f?) dy

147
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We multiply this by €% to obtain

di [e“"‘ / (ColFI2+ | f%) dy} <0.
S R

Integrating over [0, s, we have

/ (ColF(s, 9)* + |/ (5, 9)[?) dy < e / (ColF(0,9)* +1/(0,)%) dy.
R" R™

From Lemma 3.1 and that & < ||lug||gom, we deduce that the right-hand side of the above
inequality is estimated by Ce™°|lug||gom. Finally, by rewriting f by v — oy, we have

lv(s) = aollzz < Ce™*" ug]| rom.
Changing variables leads to
lu(t) = @G (L +t)l[z2 < C(1 + ) ™42 |[ug [ sro.m.

Therefore, the asymptotic profile of u is a constant multiple of the Gaussian.

4 Outline of the proof of Theorem 2.1

In this section, we turn back to our problem

Uge — Du + b(t)uy = |ul?, t>0,z€R",
u(0,z) = eup(z), u(0,z) = eur(z), T€R"

and give an outline of the proof of Theorem 2.1. For simplicity, we consider only the case
n > 2 and f € (~1,1), because the case 8 = —1 is treated in the same way. Similarly to the
previous section, we apply the scaling variables with the scaling function B(t):

s =log(1+ B(t)), y=(1+B(t) "z
We also put
u(t,@) = (1+ B(t)) ™ (log(1 + B(1)), (1 + B(t))™*z),
w(t,z) = b(t) (1 + B(t)) ™ 'w (log(1 + B(t)), (1 + B(t))/*z) .
Then, we obtain the first order system

n :
vs~-g-\7yv—-2—v=w,

e~ n+2 V(t) n
(wa -5, Vyw — 2 w) +w= A+ ————b(i)zw + e"f(”"(“%))ﬂv]”.
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By a standard argument, we can prove that the above system admits a unique solutions
(v,w) € C([0, S); H'™ x H®™) with some S > 0. Therefore, to obtain the global existence
of solutions, it suffices to show an a priori estimate of the solution. To obtain an a priori
estimate, we may assume that ||(v, w)|[gimxgom < 1.

Since b satisfies (2.1) and B(t) ~ (1 + t)—l_i”ﬁ, we have

b(;)z < CeTHY, 'fé?z' <O+ < CeHE.

Also, the supercritical condition p > 1+2/n implies that the nonlinear term e~2®=(1+3)3[y|r
decays exponentially. Therefore, letting s — oo formally, we obtain the equation (3.2) as the
limiting equation of the above system. Hence, we expect that the asymptotic behavior of the
solution is determined from the equation (3.2). In view of this, we decompose the solutions
v,w as

v(s,y) = a(s)eo(y) + f(s,),
w(s,y) = &(s)po(y) + a(s)Aywo(y) + 9(s,9),

where a(s) = [p.v(s,y)dy and @o(y) = (4m)™/? exp(-—mg). Note that in this case a(s)
depends on s. By the above system, we easily obtain

a(s) = /R X w(s, y) dy,

() = el - a9) + gras) + e 300D [y

b(t)?
A straightforward calculation shows that f and g satisfy the first order system
Y no_

hoy =gtz

e y n ) _

(0= 4 V=" 20) ro=Df 4
where

M) = (w2a<s> wa) +a(s) (39 Al 222 8))
+ E’.I_(_Qw + e~ 3lp-(+3 2DslylP + ————w +e (p-(1+%))8|vlp dy | eo(v).
b(t)? rn O t)2

By the deﬁnition of f and g, we easily see that fR,, f(s,y)dy = Jon 9(s,y) dy = 0. This and
the above system also imply that fmn h(s,y)dy = 0. Using this property, we prove that f, g
decay to zero as time goes to infinity. To this end, as in the previous section, we define

F(s,y) = FE™™ f(s,)1(w),  Gls,9) = FHIE™*7G(s, )| (w)
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and H(s,y) = F1[|€]"/2~%h(s,-)](y). We also define the following three energies:
1 - 1
‘Ep(s) = /,, = (1VF|2 + —‘it—)gc:?) + —F2 (t)2
_ 2 e ? n+4 .  €°°
B = [ 5 (19 ) + 2 (374 et i

B = [ P[5 (1vse+ %gﬂ 3 et du

Then, as in the previous section, we can obtain the following energy estimates for the above
energies.

Lemma 4.1. We have

d
-&-S-EO(S) + (SEo(S) + Lo = Ro,

where

Lo(s =-l—/ IVF?dy + |G|2dy,

I

Ro(s) 2“)2/ IGI? dy t)2/ (2F+G)Gdy+/n(F+G)de.

Lemma 4.2. We have P
B—;E’l(s) + (SEl(S) + Li(s) = Ry (S),

n=252 [ wirars [ -2 (5+3) [

n+4/n e n+3+6 e*
Ba(s) = = (5*5)50@)2 LTt T b(t)2/,,gdy

by (t) n+4 n+4
" bt L ("‘z“f ¥ g) oy + | (Tf *9) hay

Lemma 4.3. Let m > n/2. Then, for any & € (0,m —n/2), we have

where

diis-Ez(s) + (m -~ —g - n) Ey(s) + La(s) = Ra(s),



where

K k+1 m m
) =5 [y + S5 [ e Py [ oy

+2m : [yl *(y - Vy £)(f + g)dy,

m k+1 e™?
Ry(s) = ~ t)2 / ly|*" fgdy — —— T B0 e ly|*™g*dy

- zi:((t))z e ly!m(zf + g)gdy + /mn Qy[zm(f + g)hdy.

Let & > 0 be an arbitrary number. We define

e
2b(t)?
where )\ is defined as (2.2) and Cy, C; are chosen so that Cy > C; > 1. Taking § so that
A — k < 8, we have the following.

Eg(s) = CoEo(s) + CLE1(s) + Ea(s) + afs)? + e~ PR (s)?,

Lemma 4.4. We have

:%Ea(s) + (A= R)Ex(s) + Ls(s) = Raf),

where

Ly(s) = (5~ A+ #)(CoBo(s) + CiEx(s)) + (m = 5 = X) Ba(s)

+ CoLo(s) + C1Ly(s) + La(s) + &(s)?,
R3(8) = CQRO( ) + ClRl( ) -+ Rz(S)
A—rk+1e*

RO ——a(s)? + 2e" P Va(s)a(s) + e ~3-(43 (/Rn lvlP dy) a(s).

Finally, we define

-8

b(¢)?

Ey4(s) = Es(s) + —12-05(3)2 + a(s)a(s).

Then, we have the following estimate.

Lemma 4.5. We have
d
EEE’4(5) + (X — K)E4(s) + L3(s) = Ra(s),

where

'R4(S)

o)~ pha(e)als) + 802 ([ ) oo

151
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The remainder terms Rz, R, are estimated as
1
R3, Ry <L 5[13(8) + CC_A8E4(S)

for sufficiently large s > 0. In fact, for example, the term e~ 3(®=0+2)s ([ |u|P dy) a(s),
which is in Ry, is estimated as

‘ 1/2
e~ 3=+ 2 ( / |v1pdy) o(s) < Cem30-0s ( / (1+lyl)2'"lvl2”dy) o (s)|
R Rn
< CemF=0+Ds|[y|7 . [a(s)]-

Here we have used the Gagliardo-Nirenberg inequality (see [7, Section 6.6.1]) and we remark
that to apply this inequality, we need the restriction p < n/(n — 2) when n > 3. Noting
that we assume [[v]|g1m < 1, we have [[v][5m < [[llgim < ||fll#im + |a| and hence, the

right-hand side of the above inequality is bounded by
e 3= (|| |l m + a(s) ()] < Ce™>Ey(s)

and we obtain the desired estimate. The other terms can be estimated in a similar way.

Therefore, we have £ Fy(s) < Ce 2 E4(s) and hence, E4(s) < CEy(sp) with sufficiently
large s; > 0 and s > so. This a priori estimate shows the existence of the global solution,
provided that the amplitude of the initial data ¢ is sufficiently small. This a priori estimate
also implies '

dii';Ey,(S) + (A - K)Eg(S) + %Lg(S) < CC-’\SE,;(S[))‘

Multiplying both sides by e(*%)¢ and integrating over [so, 5], we have

1 8
P Ey(s) + —2-/ eP=99 L3(0) do < eP ™% E3(s0) + CEy(s0).

S0

This and Ls(s) > &(s)? imply that o* = lim, . a(s) exists and E3(s) < Ce= PR E,(s0).
In particular, we obtain

lo(s) — a*polZ2 < Ce™ = (Ju(0)[fnm + lw(0)IFr0.m).

From this, we reach the conclusion.
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