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1 Introduction

The study of derived categories have been one of the central subjects in representation
theory. From Morita theoretic perspective, tilting complexes play an important role be-
cause the endomorphism algebras are derived equivalent to the original algebra. It is
well-known that derived equivalences preserve various homological properties. Thus it is
important to construct tilting complexes for a given algebra. As a method to construct
tilting complexes, the authors in [AI] introduced the notion of mutation. Roughly speak-
ing, mutation is an operation to construct a new tilting complex from a given one by
replacing a direct summand. In this report, we study the structure of mutations of tilting
complexes of Brauer graph algebras.

Notation. Throughout this report, $K$ is an algebraically closed field. All algebras are
assumed to be basic, indecomposable, and finite dimensional over $K$ . We will often use
$\Lambda$ to denote such an algebra. We always work with finitely generated right modules,
and use $mod \Lambda$ to denote the category of finitely generated right $\Lambda$-modules. We denote
by proj A the full subcategory of modA consisting of all finitely generated projective $\Lambda-$

modules. We sometimes write $\Lambda=kQ/I$ where $Q$ is a finite quivel$\cdot$ with relations $I.$

We denote by $P_{i}$ $($respectively, $S_{i})$ an indecomposable projective (respectively, simple)
$\Lambda$-module corresponding to a vertex $i$ of $Q.$

2 Tilting theory

In this section, we recall the notion of tilting complexes and mutation. Throughout this
section, we assume that $\Lambda$ is a symmetric algebra $(i.e.$ , there exists an isomorphism of $\Lambda-$

$\Lambda$-bimodules between A and $Hom_{K}(\Lambda, K We$ denote $by \mathcal{T}:=K^{b}($proj $A)$ the bounded
homotopy category of proj A with the shift functor [1] and by add $T$ the full subcategory
of $\mathcal{T}$ whose objects are direct summands of finite direct sums of $T\in \mathcal{T}$ . For a positive
integer $n$ , we call a complex $T=(T^{i}, d^{i})_{i\in \mathbb{Z}}\in \mathcal{T}$ an $n$-term complex if $T^{i}=0$ for all
integers $i\neq 0,$ $-1,$ $-2$ , . . . $,$ $-n+1$ . Each indecomposable complex is $is\cap\eta$orphic to an
indecomposable complex $T=(T^{i}, d^{i})_{i\in \mathbb{Z}}$ such that all differential maps $di$ are radical
maps in $\mathcal{T}$ . Without loss of generality, we may assume that the differential maps of $T$ are
radical maps.
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Definition 2.1. Let $T$ be a complex in $\mathcal{T}.$

(1) We say that $T$ is pretilting if it satisfies $Hom_{\mathcal{T}}(T, T[i])=0$ for all nonzero integers $i.$

(2) We say that $T$ is tilting if it is pretilting and $\mathcal{T}=$ thick $T$ , where thick $T$ is the
smallest full subcategory of $\mathcal{T}$ which contains $T$ and is closed under cones, $[\pm 1]$

direct summands and isomorphisms.

Example 2.2. An algebra $A$ is always a tilting complex in $K^{b}($proj A$)$ .

We denote by $tilt\Lambda$ the set of isomorphism classes of basic tilting complexes in $\mathcal{T},$

by $n$-tiltA the subset of tilt A consisting of $n$-term complexes, and by $n$-ptiltA the set of
isomorphism classes of indecomposable $n$-term pretilting complexes in $\mathcal{T}.$

In general, a Bongartz-type lemma does not hold for pretilting complexes. Namely, for
some pretilting complex $T$ in an algebra $A$ , there exists no complex $U$ such that $T\oplus U$

is a tilting complex. However, for two-term tilting complexes, we have the following
result. We denote by $|P|$ the number of nonisomorphic indecomposable direct summands
of $P\in \mathcal{T}.$

Lemma 2.3. [Ail, Proposition 2.16] Let $T$ be a two-term pretilting complex. Then there
exists a complex $U$ such that $T\oplus U$ is a two-term tilting complex. In particular, $T$ is a
two-term tilting complex if and only $if|T|=|\Lambda|$ . Moreover, 2-tilt $\Lambda$ is finite if and only if
2-ptilt $\Lambda$ is finite.

We collect some results which are necessary in this report. We denote by $K_{0}(\mathcal{T})$ the
Grothendieck group of $\mathcal{T}$ with the basis $[P_{1}],$ $[P_{2}]$ , . . . , $[P_{|\Lambda|}].$

Proposition 2.4. [AIR, Proposition 2.5 and 5.5] Let $T$ be a two-term pretilting complex.

(1) We have add $T^{0}\cap addT^{-1}=0.$

(2) The map $T\mapsto[T^{0}]-|T^{1}$ ] induces an injection from the set of $\dot{u}$omorphism classes
of two-term pretilting complexes in $\mathcal{T}$ to $K_{0}(\mathcal{T})$ .

We recall the definition of mutation. Let $U$ be an object in $\mathcal{T}$ and $f$ : $Xarrow U’$

a morphism in $\mathcal{T}$ . We say that $f$ is a left add $U$-approximation of $X$ if $U’$ belongs to
add $U$ and $Hom_{T}(f,$ $U$ for any $U”\in addU$ . Moreover, it is called minimal left add U-
approximation of $X$ if any morphism $g:U’arrow U’$ satisfying $gf=f$ is an isomorphism.
Dually, we define $a$ (minimal) right add $U$-approximation.

Let $T^{\backslash }$ be a basic tilting complex in $\mathcal{T}$ and decompose $T=X\oplus U$ . We take a triangle

$Xarrow^{f}U’arrow Y-X[1],$

where $f$ is a minimal left add $U$-approximation of $X$ : It is possible because $Hom_{T}(X, U)$

is finite dimensional. We call $\mu_{X}^{+}(T):=Y\oplus U$ a left mutation of $T$ with respect to $X.$

Dually, we define a right mutation $\mu_{\overline{X}}(T)$ . A mutation means a left or right mutation. In
addition, we say that it is irreducible if $X$ is indecomposable.

Proposition 2.5. [AI, Theorem 2.31] If $T$ is a basic tilting complex, then so is $\mu_{X}^{\pm}(T)$ .
We visualize the structure of mutations.
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Definition 2.6. (1) The tilting quiver $Q_{\Lambda}$ of $\Lambda$ is defined as follows:

$\bullet$ The vertex set is tilt $\Lambda.$

$\bullet$ We draw an arrow $Tarrow U$ if $U$ is a irreducible left mutation of $T.$

(2) A symmetric algebra is said to be tilting-connected if the tilting quiver is connected.

A class of tilting-connected symmetric algebras is very important because all tilting
complexes are obtained from $\Lambda$ by iterated mutations. We remark that examples of
symmetric algebras which are not tilting connected was given by Aihara-Grant-Iyama.
Thus we have a natural question.

Question 2.7. When is a symmetric algebra tilting-connecied?

It is difficult to check that a given symmetric algebra is tilting-connected or not. How-
ever, it is known that the following class of algebras is a reasonable class of tilting-
connected algebras.

Definition 2.8. We say that $\Lambda$ is tilting-discrete if for each positive integer $n$ , the set
$\zeta)-ti/t\Lambda$ is finite.

Proposition 2.9. [Ail, Corollary 3.9] If $\Lambda$ is tilting-discrete, then it $\iota’s$ titting-connected.

We give a criterion of tilting-discreteness for a given symmetric algebra. We say that
$\Lambda$ is locally tilting-dscrete if 2-tilt A is a finite set. A connected component of $Q_{\Lambda}$ is said
to be canonical if it contains $\Lambda.$

Proposition 2.10. [AAC, AM] Let $\Lambda$ be a symmetric algebra. If the endomorphism
algebra $End_{\mathcal{T}}(T)$ of each tilting comptex $T$ in the canonical component of $Q_{\Lambda}$ is locally
tilting-discrete, then $\Lambda$ \’is titting-discrete.

At the end of this section, we give a remark on tilting quivers.

Remark 2.11. [AI, $Ai1|$ The set $tik\Lambda$ has the structure of a partially ordered set: For
two objects $T,$ $U\in$ tilt $\Lambda$ , we write $M\geq N$ if $Hom_{T}(M,N[>0])=0$ . Then we have

$n$-tilt $\Lambda=\{T\in ti1t\Lambda|\Lambda\geq T\geq\Lambda[n-1$

Moreover, the tilting quiver coincides with the Hasse quiver of tilt $\Lambda.$

3 Brauer graph algebras

Our aim of this section is to give a graph theoretic interpretation of mutations of tilting
complexes for a Brauer graph algebra.

Throughout of this report, a graph is always assumed to be connected. A finite graph
is said to be locally embedded if for each vertex $v$ there exists a cyclic ordering of the edges
incident with $v$ , described by the counter-clockwise direction of the plane. A Brauer graph
is a locally embedded graph $G$ with a multiplicity function $m$ : $Varrow \mathbb{Z}_{>0}$ , where $V$ is the
vertex set of $G$ . A vertex $v$ is called exceptional if $m\langle v$) $=1.$

We recall the definition of Brauer graph algebras.
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Definition 3.1. Let $G=(G, m)$ be a Brauer graph.

(1) We define a finite quiver QG given by a Brauer graph as follows.

$\bullet$ There exists a one-to-one correspondence between the vertices of QG and the
edges of $G.$

$\bullet$ For two distinct vertices $i$ and $j$ in QG corresponding to edges $e_{i}$ and $e_{j}$ in $G,$

there is an arrow $iarrow j$ in QG if the edges $e_{j}$ is a direct successor of the edges
$e_{i}$ in the cyclic ordering around a common vertex in $G$ . If the valency of an
endpoint of $e_{i}$ is equal to one, there is an arrow $iarrow i$ in $Q_{G}.$

(2) We call the algebra $\Lambda_{G}=KQ_{G}/I_{G}$ the Brauer graph algebra of $G$ , where $I_{G}$ is the
ideal generated by the following relations:

$\bullet$ We call the cycle in QG associated with the cyclic ordering of edges around a
vertex a Brauer cycle. We denote by $C_{v,e}$ the Brauer cycle starting at the vertex
in QG corresponding to an edge $e$ incident with $v$ . Let $C_{v,e}^{m(v)}$ be the $m(v)$-th
power of $C_{v,e}$ . Then for an edge $e$ with the endpoints $u,$ $v$ in $G$, we have the
relation $C_{u,e}^{m(u)}-C_{v,e}^{m(v\rangle}.$

$\bullet$ All paths of length two where respective two arrows belong to different Brauer
cycles are relations.

(3) A Brauer graph algebra is called a Brauer graph algebra of type odd if $G$ includes at
most one odd-cycle and no even cycle. A Brauer graph algebra is called a generalized
Brauer tree algebra if $G$ is a tree. A generalized Brauer tree algebra is called a Brauer
tree algebra if there exists at most one exceptional vertex.

Example 3.2. Let $G$ be the Brauer graph

$abc\underline{1}\underline{2}$

with the multiplicity function $m(a)=1,$ $m(b)=2,$ $m(c)=3$. Then the Brauer algebra
$\Lambda_{G}=KQ_{G}/I_{G}$ is isomorphic to $KQ_{G}’/I_{G}’$ , where $Q_{G},$ $I_{G},$ $Q_{G}’,$ $I_{G}’$ are given by

$\cap^{1}\alpha\beta\cap\alpha_{2}$

$Q_{G}=1arrowarrow 2\gamma$ ’
$I_{G}=\langle\alpha_{1}-(\gamma\beta)^{2},$ $(\beta\gamma)^{2}-\alpha_{2}^{3},$ $\beta\alpha_{1},$

$\alpha_{1}\gamma,$
$\alpha_{2}\beta,$ $\gamma\alpha_{2}\rangle,$

$\vee$’

$\beta\cap\alpha_{2}$

$Q_{G}’=1arrowarrow 2\gamma, I_{G}’=\langle(\beta\gamma)^{2}-\alpha_{2}^{3}, \beta(\gamma\beta)^{2}, (\gamma\beta)^{2}\gamma, \alpha_{2}\beta, \gamma\alpha_{2}\rangle.$

We collect some results for Brauer graph algebras.

Proposition 3.3. (1) [Ro, An] Every Brauer graph algebra is a symmetric special bise-
rial algebra, and vice versa.

(2) A Brauer graph algebra is representation-finite if and only if it is a Brauer tree
algebra.
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It is well-known that each indecomposable nonprojective module of a special biserial
algebra is either a string module or a band module. If an indecomposable module $M$ is a
band module, then the corresponding minimal projective presentation $P_{M}$ is not pretilting.
Hence, for an indecomposable two-term complex $P\in T$ , if the 0-th cohomology $H^{0}(P)$

is band, then $P$ is not pretilting. In this report, since we are interested in (pre)tilting
complexes, we will not give any more details about band modules and concentrate only
in the string modules.

Definition 3.4. An indecomposable nonprojective $\Lambda_{G}$ -module $M$ is a string module if

its minimal projective presentation can be written in one of the following forms:

(1)

$P_{e_{l_{n-1:}^{\backslash :}}^{:}}^{\backslash }P_{e_{i_{2}}}’P_{e_{i_{1}}}::.\cdot::\sim:\sim^{d_{1,2}’}\sim_{d_{1,1}}\sim_{d_{m,n-1}\prime}d_{2.2}\sim_{P_{e_{\dot{J}2}}}P_{e_{j_{1}}}:::(1I)P_{e_{\dot{\circ}\sim^{d_{1,2}}}}’P_{e_{i_{1}}}:_{P_{e_{j_{\grave{m}-1}}}}:.\sim\backslash \cdot:.\cdot..\cdot\backslash :\prime d_{2,2}\prime:\prime:2\sim d\iota,\iota_{\bigvee_{P_{e}}^{P_{e_{J1}}}}\sim.j_{2}$

(Ill)

$P\backslash P_{e_{i_{1}^{\vee^{d_{1,1}}}}}ei_{2\backslash }^{\wedge\backslash }::.\cdot:_{P_{e_{j_{m-1}}}^{\backslash }}\sim\prime d_{m-1.n}d_{1,2\backslash }^{\bigwedge_{\nearrow r}^{\prime^{P_{e_{j_{1}}}}}}d_{2,1}P_{e_{j_{2}}}:.\cdot..$

$\prime\backslash \sim P_{e_{j_{m}}}$

$P_{\dot{e}_{{\}\sim}n}’d_{m-1},\fbox{Error::0x0000}$ $P_{e:_{n}\sim}::$

:

$P_{e_{i_{\hslash}}}arrow^{d_{m.n}} d_{m,n}\sim P_{e_{j_{m}}} d_{m,n}\sim P_{e_{jr\hslash}}$

where $d_{j,i}$ is a nonzero morphism in $mod \Lambda.$

Next, we recall the notion of flip of locally embedded graphs. For the definition of flip,
we refer to [Ai2, Ai3]. Roughly speaking, flip is an operation to construct a new locally

embedded graph from a given one by replacing an edge. For an edge $e$ of $G$ , we denote by
$\mu_{e}^{+}(G)$ the locally embedded graph obtained by the flip at $e$ . We give typical examples of
flip.

Example 3.5. Let $e$ be an edge of $G.$

(1)

$0$

$0\backslash / \backslash$

$0\backslash$

$oo\underline{e}$ $0$
flip at $e$

$\circ$

$O$

$G$

$0$

$0^{/}$

$\mu_{e}^{+}(G)$

(2) $o$

/

$/^{O}$

$oo\underline{e}$ $0$ $arrow^{fliate}$

$\backslash$

$G$ $0$
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(3)
$G$

$o$
$arrow^{fli_{P^{at} ^{e}}}$

$0$

$\bigcap_{o}^{e}$

$\mu_{e}^{+}(G)$

Dually, we define $\mu_{e}^{-}(G)$ by $\mu_{e}^{-}(G):=(\mu_{e}^{+}(G^{op}))^{op}$ , where $G^{op}$ is the opposite Brauer
graph $(i.e., its$ cyclic ordering $is$ described $by$ clockwise) .

In general, flip has the following properties.

Lemma 3.6. Let $G$ be a locally embedded graph and $e$ an edge of $G.$

(1) We have $\mu_{e}^{+}\mu_{e}^{-}(G)=G=\mu_{\overline{e}}\mu_{e}^{+}(G)$ .

(2) If $G$ includes at most one odd-cycle and no even-cycle, then so is $\mu_{e}^{\pm}(G)$ . In pantic-
$ular_{f}G$ is a tree if and only if so is $\mu_{e}^{\pm}(G)$ .

In the context of Brauer graph algebras, mutation of tilting complexes can be inter-
preted as flip of edges of a Brauer graph.

Theorem 3.7. [Ai3, Theorem 5.8] Let $G$ be a Brauer graph and $e$ an edge of G. Let
$P_{e}$ be an indecomposable projective $\Lambda_{G}$ -module $corre\mathcal{S}$ponding to $e$ . Then we have an
isomorphism

$End_{\mathcal{T}}(\mu_{P_{\epsilon}}^{\pm}(\Lambda_{G}))\simeq\Lambda_{\mu^{\pm}(G)}.$

4 Main result

In this section, we give a proof of the following theorem.

Theorem 4.1. [AAC] A Brauer graph algebra of type odd is tilting-discrete.

Let $G$ be a Brauer graph, and $\Lambda=\Lambda_{G}$ the Brauer graph algebra. To prove Theorem
4.1, we have only to show that $End_{T}(T)$ is locally tilting-discrete for each two-term tilting
complex $T$ in the canonical component of $Q_{\Lambda}$ by Proposition 2.10.

First, we give a combinatorial description of indecomposable two-term pretilting com-
plexes in A. In this report, we regard a walk of $G$ as a sequence of edges of G. A signed
walk of $G$ is a walk $(e_{1}, e_{2}, \ldots , e_{n})$ with a map $\epsilon$ : $\{e_{1}, e_{2}, . .., e_{n}\}arrow\{+1, -1\}$ such that
$\epsilon(e_{i+1})=-\epsilon(e_{i})$ for all $i\in 1$ , 2, $\cdots$ , $n-1$ . We denote by $SW(G)$ the set of signed walks
of $G$ (up to reflection).

Proposition 4.2. There is an injection

2-ptilt $\Lambdaarrow SW(G)$ .

Proof. For an indecomposable two-term pretilting complex $T=(T^{-1}arrow T^{0})$ , we define a
walk $W_{T}$ as follows: First, assume that $T^{-1}=0$ . Since $T$ is indecomposable, there is an
edge $e$ such that $T^{0}=P_{e}$ . Then $W_{T}$ $:=(e^{+})$ . Similarly, if $T^{0}=0$ , then there exists an
edge $e$ such that $T^{-1}=P_{e}$ , and hence $W_{T}:=(e^{-})$ . Next, assume that both $T^{0}\neq 0$ and
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$T^{-1}\neq 0$ hold. Since the 0-th cohomology $H^{0}(T)$ is a string module, $W_{T}$ is given by the
following tree types:

(I) $W_{T}$ $:=(e_{i_{1}}^{-}, e_{j_{1}}^{+}, . .., e_{i_{n-1}}^{-}, e_{j_{m}}^{+}, e_{i_{n}}^{-})$ if $H^{0}(7)$ is ot type (I),

(II) $W_{T}$ $:=(e_{i_{1},\rangle}^{-}e_{j_{1}}^{-}, \ldots, e_{j_{m-1}}^{+}e_{i_{n}}^{-}, e_{j_{m}}^{+})$ if $H^{0}(T)$ is of type (II),

(III) $W_{T}$ $:=(e_{j_{1}}^{+}, e_{i_{\lambda}}^{-}, \ldots, e_{j_{n-1}}^{+}, e_{i_{\hslash}}^{-}, e_{j_{m}}^{+})$ if $H^{0}(T)$ is of type $(III\rangle.$

Since $T^{0}$ and $T^{-1}$ have no nonzero direct summands in common by Proposition 2.4(1),
$W_{T}$ is a signed walk, and hence the map $T\succ-\rangle W_{T}$ is well-defined. Moreover, we can easily
check that it is an injection by Proposition 2.4(2). $\square$

If $SW(G)$ is finite, then 2 ptiltA is clearly finite by Proposition 4.2, and hence $\Lambda$ is
locally tilting-discrete by Lemma 2.3.

Lemma 4.3. If $G$ includes at most one odd-cycle and no $even-cycle_{f}$ then $SW(G)$ is finite.
Proof. Assume that $G$ is a locally embedded graph including at most one odd-cycle and
no even-cycle. By the definition of signature $\epsilon$ , the same edge never appear more than
once in a signed walk. Thus length of a signed walk is at most the number of edges of $G.$

Hence the assertion follows from that $G$ is finite. 口

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let $T$ be a two-term tilting complex in the canonical component
of $Q_{\Lambda}$ and $r$ $:=End_{T}(T)$ . Then there is a finite sequence of mutations between A and $T.$

By Lemma 3.6(2) and Proposition 3.7, if $\Lambda$ is a Brauer graph algebra of type odd, then
so is $\Gamma$ . Hence $\Gamma$ is locally tilting-discrete by Proposition 4.2 and Lemma 4.3. Thus the
assertion follows from that Proposition 2.10. $\square$
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