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Abstract: A common feature of high-dimensional data is that the data dimension is high, however, the sample size
is relatively low. We call such data HDLSS data. In this paper, we consider a new one-sample test and two-sample
test for high-dimensional data under the strongly spiked eigenvalue (SSE) model. We focus on the asymptotic
properties of the first principal component to provide new test procedures. We consider HDLSS asymptotic theories
as the dimension grows for both the cases when the sample size is fixed and the sample size goes to infinity.
We int1oduce the noise-reduction $(NR\rangle$ methodology and $P^{Iovide}$ asymptotic properties of the largest-eigenvalue

estimation. We apply the NR method to the one-sample test and two-sample test. Finally, we give simulation
studies and discuss the performance of the new one-sample test procedure.
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1 Introduction

In this paper, we consider the one-sample test and the two-sample test for high-dimensional data. The
problem of testing mean vectors has been studied by alot of papers, however, it is still necessary to study
these problems under more suitable conditions for actual high-dimensional data.

Suppose we have two independent $d\cross n_{i}$ data matrices, $X_{i}=[x_{ij}, x_{in_{i}}],$ $i=1$ , 2, where
$x_{ij},$ $j=1,$ $n_{i}$ , are independent and identically distributed (i.i.$d.\rangle$ as a $d$-dimensional distribu-
tion with a mean vector $\mu_{i}$ and covariance matrix $\Sigma_{i}(\geq O)$ . We assume $n_{i}\geq 3,$ $i=1$ , 2. The
eigen-decomposition of $\Sigma_{i}$ is given by $\Sigma_{i}=H_{i}\Lambda_{i}H_{i}^{T}$ , where $\Lambda_{i}=$ diag$(\lambda_{1(i)}, \lambda_{d(i)})$ having
$\lambda_{1(i)}\geq\cdots\geq\lambda_{d(i)}(\geq 0)$ and $H_{i}=[h_{1(i)}, h_{d\langle i)}]$ is an orthogonal matnx of the corresponding eigen-

vectors. Let $X_{i}-[\mu_{i}, \mu_{i}]=H_{i}\Lambda 2Z_{i}$ for $i=1$ , 2. Then, $Z_{i}$ is a $d\cross n_{i}$ sphered data matrix from
a distribution with the zero mean and identity covariance matrix. Let $Z_{i}=[z_{1(i)}, z_{d(i\rangle}]^{T}$ and $z_{j(i)}=$

$(z_{j1(i)}, z_{jn(i\rangle}:)^{T},$ $j=1,$ $\ldots,$

$d$ , for $i=1,2$ . Note that $E(z_{jk(i)}z_{j’k(i\rangle})=0(j\neq j’)$ and $Var(z_{j(i\rangle})=$

$I_{n_{1}}$ , where $I_{n_{l}}$ is the $n_{i}$ -dimensional identity matnx. Let $z_{oj(i)}=z_{j(i)}-$
$(\overline{z}_{j(i\rangle}, \overline{z}_{j(i)})^{T},$ $j=$

$1,$ $d;i=1$ , 2, where $\overline{z}_{j(i)}=n_{i}^{-1}\sum_{k^{:}=1}^{n}z_{jk(i)}$ . Also, note that if $X_{i}$ is Gaussian, $z_{jk(i)}s$ are i.i.$d.$

as the standard nonnal distribution, $N(O, 1)$ . We assume that $\lim\sup_{darrow\infty}E(z_{jk(i\rangle}^{4})<\infty$ for all $i,j,$ $k,$

and $P( \lim_{darrow\infty}||z_{01(i)}||\neq 0)=1$ for $i=1$ , 2. As necessary, we consider the following assumption for
$z_{1k(i)}.k=1,$ $n_{i}$ :

(A-i) $z_{1k(i)},$ $k=1,$ $n_{i}$ , are iid. as $N(O, 1)$ for $i=1$ , 2.

We define $\overline{x}_{in}:=\sum_{j=1}^{n_{{\}}}x_{ij}/n_{i}$ and $S_{in}:= \sum_{j=1}^{n_{1}}(x_{ij}-\overline{x}_{in}.)(x_{ij}-\overline{x}_{in}:)^{T}/(n_{i}-1)$ for $i=1$ , 2.

Let us write the eigen-decomposition of $S_{in}$: as $S_{in_{i}}= \sum_{j=1}^{d}\hat{\lambda}_{j(i)}\hat{h}_{j(i)}\hat{h}_{j(i)}^{T}$ , where $\hat{h}_{j(i)}$ denotes a unit

eigenvector corresponding $t\circ\hat{\lambda}_{j(i\rangle}.$

数理解析研究所講究録

第 1999巻 2016年 28-35 28



A famous method to test for mean vectors is Hotelling’s $T^{2}$ test, however, one cannot use $t1\iota e$ test
statistic in the HDLSS context such as $n_{i}/darrow 0,$ $i=1$ , 2. In order to overcome such situations,
Dempster 17, 8] and Srivastava [12] considered the two-sample test when the populations $\pi_{1}$ and $\pi_{2}$ are
Gaussian. When $\pi_{1}$ and $\pi_{2}$ are non-Gaussian, Bai and Saranadasa [4] and Cai et al. [5] considered the
test under the homoscedasticity, $\Sigma_{1}=\Sigma_{2}$ , and Chen and Qin $\lceil 6$] and Aoshima and Yata [1, 2] considered
the test under the heteroscedasticity, $\Sigma$

) $\neq\Sigma_{2}$ . We note that those two-sample tests were constructed
under the eigenvalue condition as follows:

$\frac{\lambda_{1(i)}^{2}}{tt(\Sigma_{i}^{2})}arrow 0$ as $darrow\infty$ for $i=1$ , 2. (I.1)

Aoshima and yata $[3J$ called (1.1) the non-strongly spiked eigenvalue $(NSSE\rangle$ model”. On the other
hand, Aoshima and Yata [3] considered the “strongly spiked eigenvalue $(SSB\rangle$ model” as follows:

$\lim_{darrow}\inf_{\infty}\{\frac{\lambda_{1(i\rangle}^{2}}{tr(\Sigma_{i}^{2})}\}>0$ for $i=1$ or 2. (12)

For the SSE model, Katayama et al. [IO] considered a one-sample test when $x_{ij}s$ are Gaussian. Ishii et
al. $[9J$ considered the one-sample test for non-Gaussian cases. Ma et al. [11] considered a two-sample
test for the factor model. Aoshima and Yata [3] gave two-sample tests by considering eigenstructures
when $darrow\infty$ and $n_{i}arrow\infty,$ $i=1$ , 2. In this paper, we disscuss a one-sample test and a $twoarrow$smple test
for the SSE model when $darrow\infty$ while ni $s$ are fixed.

In Section 2, we introduce the noise-reduction (NR) methodology and provide asymptotic distribu-
tion of the largest-eigenvalue estimation in the HDLSS context. Then, we apply the NR method to the
one-sample test for the SSE model in Section 3. In Section4, we consider the two-sample test for the
SSE model and give a new test procedure in the HDLSS context. In Section 5, we give simulation studies
and discuss the performance of the new test procedure.

2 Asymptotic Properties of the Largest Eigenvalue

In this section, we povide asymptotic $propel\theta es$ of the largest eigenvalue. We introduce a method
for eigenvalue estimation called the noise-reduction $(NR)$ methodology that was proposed by Yata and
Aoshima [14]. See Sections 2 and 3 in Yata and Aoshima [14] for the details. When we apply the NR
methodology, the NR estimator of $\lambda_{j(i)}$ is given by

$\tilde{\lambda}_{j(i)}=\hat{\lambda}_{j(i)}-\frac{tr(S_{in_{i}}\rangle-\sum_{k=1}^{j}\hat{\lambda}_{k(i)}}{n_{\dot{t}}-1-j} (j=1, \ldots, n_{i}-2)$ .

Note that $\tilde{\lambda}_{j(i\rangle}\geq 0$ for $j=1,$ $\ldots,$
$n_{i}-2$ . Yata and Aoshima [14, 15] showed that $\tilde{\lambda}_{j(i)}$ has several

consistency prope ties when $darrow\infty$ and $n_{i}arrow\infty$ . In this paper, we focus on the largest eigenvalue,
$\tilde{\lambda}_{1(i)}$ , that has the most important information in data analyses. We assume the following conditions for
the largest eigenvalue:

(A-ii) $\frac{tr(\Sigma_{i}^{2})-\lambda_{1(i)}^{2}}{\lambda_{1(i\rangle}^{2}}=\frac{\sum_{j--2}^{d}\lambda_{j(i)}^{2}}{\lambda_{1(i)}^{2}}=o(1)$ as $darrow\infty$ for $i=1,2$;

(A$\cdot$ i\"u $\rangle$ $\frac{\sum_{r,s\geq 2}^{d}\lambda_{r(i\rangle}\lambda_{\epsilon(i\rangle}E\{(z_{rk(\dot{z}\rangle}^{2}-1\rangle(z_{sk(i)}^{2}-1)\}}{\lambda_{1(i\rangle}^{2}}=o(1)$ as $darrow\infty$ for $i=1,2.$
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Note that (A-ii) is one of the SSE model (1.2). We also note that (A-ii) implies the condition that
$\lambda_{2(i)}/\lambda_{1(i)}arrow 0$ as $darrow\infty$ . Note that ($A$-iii) is naturally satisfied when $X_{i}$ is Gaussian and (A-ii) is met.

Remark 2.1. For a spiked model such as

$\lambda_{j}$ $=a_{ij}d^{\alpha_{ij}}(j=1, \ldots, m_{i})$ and $\lambda_{j(i\rangle}=c_{ij}(j=m_{i}+1_{\}}\ldots, d)$

with positive and fixed constants, $a_{ij}s,$ $c_{ij}s$ and $\alpha_{ij}s$ , and a positive and fixed integer $m_{i}$ , (A-ii) holds
under the conditions that $\alpha_{i1}>1/2$ and $\alpha_{i1}>\alpha_{i2}$ . See Yata and Aoshima [14] for the details.

Remark 2.2. For several statistical inferences of high-dimensional data, Bai and SaIanadasa [4], Chen
and Qin [6] and Aoshima and Yata [2] assumed a general factor model as follows:

$x_{ij}=\Gamma_{i}w_{ij}+\mu_{i}$

for $j=1,$ $\rangle n_{i}$ , where $\Gamma_{i}$ is a $d\cross r_{i}$ matrix for some $r_{i}>0$ such that $\Gamma_{i}\Gamma_{i}^{T}=\Sigma_{i}$ , and $w_{ij},$ $j=1,$ $n_{4},$

are ii.$d$ . random vectors having $E(w_{ij})=0$ and Vu$(w_{ij})=I_{r_{*}}.$ . As for $w_{ij}=(w_{1j(i)}, \ldots,w_{rj(l)})^{T},$

$a1^{S}i_{nYa\iota aandAos}k_{ma[1^{i}}^{(1)\epsilon j(j],onecanc1aimthat(A-iii)ho1dsunder(A-ii)inthefactormodel.Also,we}$

note that the factor model naturally holds when $X_{i}$ is Gaussian.

Then, Ishii $et$ al. [9] gave the following theorem.

Theorem 2.1 $([9J$). Under (A-ii) and (A-iii), it holds that as $darrow\infty$

$\frac{\tilde{\lambda}_{1(i)}}{\lambda_{1(i)}}=\{\begin{array}{ll}||z_{01(i)}||^{2}/(n_{i}-1)+o_{p}(1\rangle when n_{i} isfixed,1+o_{p}(1) when n_{i}arrow\infty\end{array}$

for $i=1$ , 2. Under (A-i) to (A-iii), it holds that as $darrow\infty$ when $n_{i}$ isfiixed

$(r4-1) \frac{\tilde{\lambda}_{1(i)}}{\lambda_{1(i)}}\Rightarrow\chi_{n.-1}^{2}$ for $i=1$ , 2.

3 One-Sample Test for SSE Model

In this section, we consider the one-sample test in the high-dimensional context. We consider the fol-
lowing test:

$H_{0}:\mu_{i}=0$ vs. $H_{1}:\mu_{i}\neq 0$ , (3.1)

Bai and Saranadasa [4] proposed a test statistic:

$T_{BS}=n_{i}||\overline{x}_{in_{i}}||^{2}-tr(S_{in_{i}})$ . (3.2)

Srivastava and Du [13] proposed a test statistic:

$T_{\mathcal{S}}=n_{i}\overline{x} D_{i:)}^{-1_{\overline{X}_{in}}}$ (3.3)

where $D_{i}=diag(s_{11(i)}, s_{dd(i)})$ and $s_{jj(i)},$ $j=1,$ $d$ are the diagonal elements of $S_{in_{1}}$ . They gave
the asymptotic normality of $T_{BS}$ or $T_{S}$ under $H_{0}$ in $(3.1\rangle$ for the NSSE model (1.1). On the other hand,
Katayama et al. [10] gave the asymptotic distribution of $T_{BS}$ and $T_{S}$ for the SSE model (12) when $X_{i}$

is Gaussian.
Now, we consider a new one-sample test for the SSEmodel by using the asymptotic properties of the

largest eigenvalue. By considering $T_{BS}$ in (32) under (A-ii), we have the following result.
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Lemma3.1. Under (A-ii), it holds as $darrow\infty$ that

$\frac{||\overline{x}_{in_{n}}-\mu_{i}||^{2}-tr(S_{in_{i}})/n_{i}}{\lambda_{1(i)}}=\frac{\overline{z}_{1(i)}^{2}-||z_{01(i)}/\sqrt{n_{i}-1}||^{2}}{n_{i}}+o_{p}(n_{i}^{-1})$ ,

either when $n_{i}$ isfixed or $n_{i}arrow\infty.$

By using the NR method, we consider the following test statistic:

$F_{1}= \frac{n_{i}||\overline{x}_{in_{i}}||^{2}-tr(S_{in_{i}})}{\tilde{\lambda}_{1(i)}}+1.$

Note that $E(\tilde{\lambda}_{1(i\rangle}(F_{1}-1)/n_{i})=||\mu_{i}||^{2}$ . Then, by combining Theorem 2.1 and Lemma 3.1, Ishii et al.
[9] gave the following result.

TheoreIn 3.1 ([9]). Under (A-i) to (A-iii), it holds as $darrow\infty$ that

$F_{1}\Rightarrow\{\begin{array}{ll}F_{1,n_{s}-1} when n_{i} isfixed,\chi_{1}^{2} when n_{i}arrow\infty,\end{array}$

under $H_{0}$ in $(3.J)$ , where $F_{\nu_{1},\nu_{2}}$ denotes a random variable distributed as $F$ distribution with degrees of
freedom, $\nu x$ and $l$ノ 2; and $\chi_{\nu}^{2}$ denotes a random variable distributed as $\chi^{2}$ distribution with $v$ degrees of
freedom.

For a given $\alpha\in(0,1/2)$ we test (3.1) by

rejecting $H_{0}\Leftrightarrow F_{\lambda}>F_{1,n_{t}-1}(\alpha)$ , (3.4)

where $F_{v_{1},v_{2}}(\alpha)$ denotes the upper $\alpha$ point of $F$ distribution with degrees of freedom, $\nu_{1}$ and $v_{2}$ . Note
that $F_{1,n_{i}-1}(\alpha)arrow\chi_{1}^{2}(\alpha)$ as $n_{i}arrow\infty$ , where $\chi_{v}^{2}(\alpha)$ denotes the upper a point of $\chi^{2}$ distribution with $y$

$\deg_{I}\cdot ees$ of freedom. Then, under (A-i $\rangle$ to ($A$-iii), it holds as $darrow\infty$ that

size $=\alpha+o(1)$

either when $n_{i}$ is fixed or $n_{i}arrow\infty.$

4 Tvvo-Sample Test for SSE Model

In this section, we consider the two-sample test in the high-dimensional context. Now, we consider the
following test:

$H_{0}:\mu_{1}=\mu_{2}$ vs. $H_{1}:\mu_{1}\neq\mu_{2}$ . (4.1)

We assume the following assumption:

(A-iv$\rangle$ $\frac{\lambda_{1(1\rangle}}{\lambda_{i(2\rangle}}=1+o(1)$ and $h_{1(1)}^{T}h_{1(2)}=1+o(1)$ as $darrow\infty.$

Remark 4.1. Note that (A-iv) is not a general condition for high-dimensional data, so that it is necessary
to check. See Lemma 4.1 in Ishii et al. [9] for checking the condition in actual data analyses.
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Let

$T_{n}=|| \overline{x}_{1n1}-\overline{x}_{2n2}||^{2}-\sum_{i=1}^{2}く r(S_{in_{2}})/n_{i}.$

Note that $E(T_{n})=||\mu_{1}-\mu_{2}||^{2}$ and

$Var(T_{n})=\sum_{i=1}^{2}\frac{tr(\Sigma_{1}^{2})}{n_{i}(n_{i}-1)}+4\frac{tr(\Sigma_{1}\Sigma_{2})}{n_{1}n_{2}}+4\sum_{i=1}^{2}\frac{(\mu_{1}-\mu_{2})^{\tau_{\Sigma_{i}}}(\mu_{1}-\mu_{2})}{n_{i}}.$

By using Theorem 1 in Chen and Qin $\zeta 6$] or Theorem 4 in Aoshima and Yata [2], we can claim that as
$darrow\infty$ and $n_{i}arrow\infty,$ $i=1$ , 2

$\frac{T_{n}}{Var(T_{n})^{1/2}}\Rightarrow N(0,1)$

under $H_{0}$ in (4.1), (1.1) and some regularity conditions.
We consider an asymptotic distribution of $T_{n}$ under the SSE models. We have the following results.

Lemma 4.1. Under (A-ii) and (A-iv), it holds that

$\frac{T_{n}}{\lambda_{1(1)}}=(\overline{z}_{1(1)}-\overline{z}_{1(2)})^{2}-\sum_{i=1}^{2}\frac{||z_{o1(i)}/\sqrt{n_{i}-1}||^{2}}{n_{i}}+o_{p}(1)$ under $H_{0}$ in (4.1)

as $darrow\infty$ either when $n_{i}s$ arefixed or $n_{i}arrow\infty.$

Let $\nu=n_{1}+n_{2}-2$ . From Theorem 2.1, we have the following result.

Lemma 4.2. Under (A-i) to (A-iv), it holds as $darrow\infty$ when $n_{i}s$ arefixed that

$\frac{\sum_{i=1}^{2}(n_{i}-1)\tilde{\lambda}_{1(i)}}{\lambda_{1(1\rangle}}\Rightarrow\chi_{\nu}^{2}.$

Under (A-ii) to (A-iv), it holds as $darrow\infty$ and $varrow\infty$ that

$\frac{\sum_{i=1}^{2}(n_{i}-1)\tilde{\lambda}_{1(i)}}{\nu\lambda_{1(1)}}=1+o_{p}(1)$ .

Let

$F_{2}=u_{n} \frac{T_{n}+\sum_{i=1}^{2}\tilde{\lambda}_{1(i)}/n_{i}}{\sum_{i=1}^{2}(n_{t}-1)\tilde{\lambda}_{1(i\rangle}},$

where $u_{n}=\nu(1/n_{1}+1/n_{2})^{-x}$ . Then, by combining Lemmas 4.1 with 42, we have the following
theorem.

Theorem 4.1. Under (A-i) to (A-iv), it holds as $darrow\infty$ that

$F_{2}\Rightarrow\{\begin{array}{ll}F_{1,v} when v isfixed,\chi_{1}^{2} when \nuarrow\infty\end{array}$

under $H_{0}$ in (4.1).
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For a given $\alpha\in(0,1/2)$ we test $(4.1\rangle$ by

rejecting $H_{0}\Leftrightarrow F_{2}>F_{1,\nu}(\alpha)$ , $(4.2\rangle$

Then, under (A-i) to (A-iv), it holds that

size $=\alpha+o(1)$

as $darrow\infty$ either when $\nu$ is fixed or $varrow\infty.$

5 Simulation Studies

In order to compare the performances of the one-sample test procedures, we used computer simulations.
We $co\mathfrak{n}s\dot{:}der$ the test (3.1). $\ln$ this simulation, we compared the test procedure (3.4) to $T_{BS}$ in (3.2) and
the test procedures given by Katayama et al. [10]. We set $\alpha=0.05$ and $\Sigma_{i}=(I_{d}+d^{-1}1_{d}1_{d}^{T})/2$ , where
$1_{d}=$ $(1, 1)^{T}$ . For such a situation, Katayama et al. [10} gave the follwoing test procedures:

rejecting
$H_{0} \Leftrightarrow\frac{T_{BS}}{\sqrt{\ddagger\overline{j\zeta\langle\Sigma^{2})}}}+\lambda>\chi_{1}^{2}(\alpha)$

, $(5.1\rangle$

rejecting
$H_{0} \Leftrightarrow\frac{T_{\mathcal{S}}-d(n_{i}-1)/(n_{i}-3)}{\sqrt{t\overline{r(R_{i}^{2})}}}+1>\chi_{1}^{2}(\alpha)$

, $(52\rangle$

where $t\overline{r(\Sigma_{i}^{2})}$ and $t\overline{r(R_{i}^{2}\rangle}$ are the consistent estimators of $\alpha(\Sigma_{i}^{2})$ and $\alpha\langle R_{i}^{2}$), $R_{i}$ is the population correla-
tion matrix, given in Katyama et al. [10]. We considered the case $X_{i}$ is Gaussian. Note that $($A-i $\rangle$ to (A-
$iii\rangle$ hold. We considered two cases (1) $d=2^{k}(k=3, \ldots 11)$ and $n_{i}=10$ ; and $\langle$Ir) $d=2^{k}(k=4, 11)$

and $n_{i}=\lceil d^{1/2}\rceil$ , where $\lceil x\rceil$ denotes the smallest integer $\geq x$ . In order to check the size, we set (a)

$\mu_{i}=0$ for each case. As for the power, we set (b) $\mu_{i}=(1, 1, 0, \ldots,0)$ whose first $d/2$ elements are 1
for (I); and first $\lceil 3.8d/n_{i}1$ elements are 1 for (1I).

The findings were obtained by averaging the outcomes from 2000 $(=R, say)$ replications. We
defined $P_{r}=1$ (or O) when $H_{0}$ in $\langle 3.1\rangle$ was falsely rejected (or not) for $r=1$ , 2000 in (a) and
defined $a=\sum_{r=1}^{R}P_{r}/R^{\cdot}to$ estimate the size. We also defined $P_{r}=1$ (or $0$) when $H_{1}$ in (3.1) was
falsely rejected (or not) for $r=1$ , 2000 in (b) and defined $1- \overline{\beta}=1-\sum_{r=1}^{R}P_{r}/R$ to estimate the
power. Note that their standard deviations are less than 0.011. In Fig. 1, we plotted a in the left panels
and $1-\overline{\beta}$ in the right panels for (1) and $(II\rangle.$

Throughout, the original test procedure $T_{BS}$ in (32) does not give a good performance in terms of
the size. It is probably because $T_{BS}$ does not hold the asymptotic normality when (1.1) is not met. On the
other hand, the tests (5. i) and (52) do not give good performances in terms of the size when $n_{i}$ is small.
We observed that the power of $\langle$3.2), $(5.1\rangle$ and (5.2) gave better performances compared to that of (3.4)
in (I). This is because (3.2), (5.1) and $(5.2\rangle$ cannot control the size. In the case of (II), the size of (5.1)
and (5.2) become close to a slowly as both the $d$ and $n_{i}$ are large. Contrary to that, (3.4) showed a quite
good perfolmance in terms of the size even when $n_{i}$ is small. It should be noted that high-dimensional
data often have SSE model and the sample size is quite small. Thus, we conclude that if one can assume
(A-ii), we recommend to use the new test procedure (3.4).
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(I) $d=2^{k}(k=3, \ldots 11)$ and $n_{i}=10.$

(II) $d=2^{k}(k=4, \ldots 11)$ and $n;=\lceil d^{1/2}\rceil$ , where $\lceil x\rceil$ denotes the smallest integer $\geq x.$

Figure 1. We compared the test procedure (3.4) to (32), (5.1) and (5.2). We set $\alpha=0.05$ and $X_{i}$ is
Gaussian. The values of a are denoted by the dashed lines in the left panels and $1-\overline{\beta}$ are denoted by
the dashed lines in the right panels.
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