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Abstract

In [3] , we defined quantum 2‐tori  T_{q}^{2} for q not a root of unity, and

showed its first‐order theory is superstable. One of key theorems in

[3] is Theorem 13. In this note we give some details of the proof of

superstability which is an application of Lang‐type property.
1

1 Introduction

One of typical examples of structures with superstable theorems is

(\mathbb{Z}, +, 0) , where \mathbb{Z} is the set of all integers. The structure is also a

typical example of one‐based group.

Recall first the notion of descending chain condition for groups

which decides the stability spectrum of groups.

Definition 1 (Definition 5.1, p.92 [1]) i) A group G satisfies the

 $\omega$ ‐stable descending chain condition if there is no infinitely prop‐

erly descending chain of definable subgroups of  G.

ii) A group G satisfies the superstable descending chain condition if

there is no infinitely properly descending chain of definable sub‐

groups of G such that each subgroup has infinite index in its

predecessor.
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iii) A group G satisfies the stable descending chain condition if there

is no infinitely properly descending chain of definable subgroups
of G such that each defined by an instance of a single formula

 $\phi$(x;y

Recall also the key property of a one‐based group;

Proposition 2 (Proposition 4.2.7 [8] p. 204) A group G is one‐

based if and only if for every n and every definable subset X\subset G^{n}, X

is a finite boolean combination of cosets of \mathrm{a}\mathrm{c}\mathrm{l}(\emptyset) ‐definable subgroups
of G.

From these definitions it is easy to see that (\mathbb{Z}, +, 0) is superstable,
but not  $\omega$‐stable, and one‐Uased.

Now consider the following situation: let \mathbb{F} be an algebraically
closed field of characteristic zero and  $\Gamma$ be a multiplicative subgroup
of \mathbb{F} generated by a transcendental element of \mathbb{F} such that (\mathbb{Z}, +, 0)\simeq
( $\Gamma$, \cdot, 1) . Our objective in this note is to show the superstability of

Th (\mathbb{F}, +, \cdot, 0,1,  $\Gamma$) that plays a key role in [3] showing the superstability
of line bundles.

2 Superstability of Th (\mathbb{F}, +01 $\Gamma$)
From now on, \mathbb{F} is an algebraicaaly closed field of characteristic zero,

q\in \mathbb{F} and  $\Gamma$ be a multiplicative subgroup of \mathbb{F} generated by q , i.e.,

 $\Gamma$=q^{\mathbb{Z}} . Following the arguments in [3], we show that the first‐order

theory of (\mathbb{F}, +, \cdot, 0,1,  $\Gamma$) is axiomatizable and superstable. Key idea

is that the predicate  $\Gamma$(x) describes the property of the set q^{\mathbb{Z}} as \mathrm{a}

multiplicative subgroup with the following Lang‐type property.

Definition 3 (Definition 2.3 [6]) Let K be an algebraically closed

field, and A a commutative algebraic group over K and  $\Gamma$ a subgroup
of A. We say that (K, A,  $\Gamma$) is of Lang‐type if for every  n< $\omega$ and

every subvariety  X (over K) of A^{n}=A\times\cdots \mathrm{x}A (n times), X\cap$\Gamma$^{n}

is a finite union of cosets of subgroups of $\Gamma$^{n}.

The Lang‐type property is a generalization of one‐based group G ; we

consider the stability theoretic property of (\mathbb{F}, +, \cdot, G) where G is one‐

based. The Lang‐type property gives us

Proposition 4 (Proposition 2.6 [6]) Let K be an algebraically closed

field, A a commutative algebraic group over K
, and  $\Gamma$ a subgroup of
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A. Then (K, A,  $\Gamma$) is of Lang‐type if and only if Th (K, +, \cdot,  $\Gamma$, a)_{a\in K}
is stable and  $\Gamma$(x) is one‐Uased.

Here  $\Gamma$(x) is one‐based means that for every n and every definable

subset X\subset$\Gamma$^{n}, X is a finite boolean combination of cosets of definable

subgroups of $\Gamma$^{n}.

With the above Definition 3 and Proposition 4 in mind, we axiom‐

atize the properties of (\mathbb{F}, +, \cdot,  $\Gamma$) as follows;

Axioms for (\mathbb{F}, +, \cdot,  $\Gamma$)
A. 1  $\Gamma$ satisfies the first order theory of a cyclic group with generator

 q,

A. 2 (Lang‐type) for every n and every variety X of (\mathbb{F}^{*})^{n}, X\cap$\Gamma$^{n} is

a finite union of cosets of definable subgroups of $\Gamma$^{n}.

Let T_{\mathbb{F}, $\Gamma$} denote the set of all logical consequences of the axioms

for  $\Gamma$ and \mathrm{A}\mathrm{C}\mathrm{F}_{0} the axioms for the algebraically closed fields of char‐

acteristic zero.

Lemma 5 The Lang‐type property of (\mathrm{F}, +, \cdot,  $\Gamma$) is witnessed by its

first‐order theory.

Proof: We may suppose X is irreducible. Each such variety  X\subset

(\mathbb{F}^{*})^{n} is definable by an irreducible polynomial f(x_{1}, \cdots, x_{n}) over \mathbb{F}^{*}

Definable cosets of $\Gamma$^{n} are of the form \overline{ $\gamma$}$\Gamma$^{n}=$\gamma$_{1} $\Gamma$\times\cdots\times$\gamma$_{n} $\Gamma$ where

 $\gamma$_{1}, \cdots, $\gamma$_{n}\in $\Gamma$(\mathbb{F}) . Hence the sentence X\cap$\Gamma$^{n} is a finite union of
cosets of definable subgroups�� is expressed as

(f(x_{1}, \cdots, x_{n})=0)\wedge $\Gamma$(x_{1})\wedge\cdots\wedge $\Gamma$(x_{n}) \ovalbox{\tt\small REJECT}
$\varphi$_{i}(x_{1}, \cdots, x_{n}) .

Where each $\varphi$_{i}(x_{1}, \cdots, x_{n}) defines a coset. Crucial point here is that

the number N_{f} of the bound of cosets is computable for each polyno‐
mial f . For this note first that for any k\in \mathbb{N} the number of cosets of

q^{k\mathbb{Z}} in q^{\mathbb{Z}} is k . Suppose

f(x_{1}, \displaystyle \cdots, x_{n})=\sum_{i=0}^{\deg(f)}\overline{a}_{i}\overline{x}_{i}^{m_{1}},
where each m_{i} is a multi index. Let M_{i} be the sum of multi index

m_{i} . Then the bound N_{f} of number of cosets is \displaystyle \deg(f)\cdot\sum_{i=0}^{\deg(f)}M_{i}.
Therefore the Lang‐type property is first‐order. \blacksquare
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Proposition 6  T_{\mathbb{F}, $\Gamma$} is complete. Hence T_{\mathrm{F}, $\Gamma$}=\mathrm{T}\mathrm{h}(\mathbb{F}, +, \cdot ,  $\Gamma$) .

Proof: Consider a saturated model (\mathbb{F}, +, \cdot,  $\Gamma$, q) of T_{\mathbb{F}, $\Gamma$} . Set  $\Gamma$(\mathbb{F})=
\{x\in \mathbb{F} : \mathbb{F}\models $\Gamma$(x)\} . Let q be an element of \mathbb{F} interpreting the

constant. By the axioms for  $\Gamma$, q^{\mathbb{Z}}\subset $\Gamma$(\mathbb{F})\subset \mathbb{F}.
Consider a complete type t_{0}(x) generated by the following set of

formulas,

t(x)=\{ $\Gamma$(x), \exists y(x=qy), \exists y(x=q^{2}y), \}.

By saturation there exists $\gamma$_{0}\in $\Gamma$(\mathbb{F}) realizing t_{0}(x) . Clearly, $\gamma$_{0}\not\in q^{\mathbb{Z}}.
Suppose elements $\gamma$_{0}, \cdots, $\gamma$_{i}\in $\Gamma$(\mathbb{F}) have been defined. Let t_{i+1}(x) be

a complete type generated by the type t(x) and the set

\{x\neq$\gamma$_{0^{0}}^{n}, \cdots, x\neq$\gamma$_{i}^{n_{i}}:n_{0}, \cdots, n_{i}\in \mathbb{Z}\}.

From saturation, we have $\gamma$_{i+1}\in $\Gamma$(\mathbb{F}) such that

$\gamma$_{i+1}\displaystyle \not\in\bigcup_{l=0}^{i}$\gamma$_{l}^{\mathbb{Z}}.
In this way by saturation as before we see that there exist $\gamma$_{0}, $\gamma$_{1}, \cdots, $\gamma$_{i},
. . . \in $\Gamma$(\mathbb{F})(i<|\mathbb{F}|) such that

 $\Gamma$(\mathbb{F})=q^{\mathbb{Z}}\cup\cup$\gamma$_{i}^{\mathbb{Z}}
i<|\mathrm{F}|

Now take two saturated models (\mathbb{F}, +, \cdot,  $\Gamma$, q) and (\mathbb{F}, +, \cdot,  $\Gamma$, q) of

T_{\mathbb{F}, $\Gamma$} of the same cardinality. There is an isomorphism i from \mathbb{F} to

\mathbb{F}^{1} sending q to q . By the above formula for  $\Gamma$(\mathbb{F}) and the back‐and‐

forth argument we can extend i to have that  $\Gamma$(\mathbb{F})\simeq $\Gamma$(\mathbb{F}) . Hence

(\mathbb{F}, +, \cdot,  $\Gamma$, q) and (\mathbb{F}, +, \cdot,  $\Gamma$, q) are isomorphic as saturated models of

T_{\mathbb{F}, $\Gamma$} . This completes the proof of the completeness of the theory T_{\mathbb{F}, $\Gamma$}.
\blacksquare

For the final step of proof we need:

Theorem 7 (Theorem  1[12] Sec. 5) Let  $\Omega$ be a multiplicative
subgroup of \mathbb{F}\backslash \{0\} generated by a transcendental element q . Then

Th (\mathbb{F}, +, \cdot,  $\Omega$) is superstable. Here \mathbb{F} is an algebraically closed field of
characteristic zero.
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Outline of proof: We know that Th (\mathbb{F}, +, \cdot) is strongly‐minimal,
hence  $\omega$‐stable. We need to show that the cardinality of the complete
types in the language \{+, \cdot,  $\Gamma$\} is the same as in the language \{+,  $\Gamma$\}.
A key lemma for this is the following theorem of H. Mann [5].

Definition 8 (Definition 1, [9]) Let c_{1}x_{1}+\cdots+c_{n}x_{n}=1 be a lin‐

ear equation with integer co‐efficients. Call its solution \langle u_{1} , \cdots, u_{n} }
primitive if there is no equation with integer co‐efficients c_{1}, \cdots, c_{n}

with|c|<|c| , compairing lexicographically, having the solution \{u_{1}, \cdots , u_{n}\}.

Theorem 9 (Theorem 1 (H. Mann), [9]) For any linear equation
with integer co‐efficients there is no more than finitely many primitive
solutions in complex roots of unity.

Mann�s theorem gives us that for any elementary extensions \mathbb{F}_{1} of

(\mathbb{F}, +, \cdot ,  $\Omega$(\mathbb{F})) and a subset X of \mathbb{F}_{1} there is a subset X of  $\Omega$(\mathbb{F}_{1}) such

that |X|=|X|+\aleph_{0} and any quantifier‐free relation with parameters
X between elements of  $\Omega$(\mathbb{F}_{1}) is equivalent to a quantifier‐free relation

in the group language with parameters X�.

It follows that the cardinality of the complete types in the language
\{+, \cdot,  $\Gamma$\} is the same as in the language \{+,  $\Gamma$\} . Hence Th (\mathbb{F}, +, \cdot,  $\Omega$)
is superstable. \blacksquare (Theorem 7)

We now proceed to the proof of:

Theorem 10  T_{\mathbb{F}, $\Gamma$} is superstable.

Proof: Notice first that the multiplication of \mathbb{F} is an algebraic group

and (\mathbb{F}, \cdot,  $\Gamma$) is of the Lang‐type by A. 2 above. Thus by Proposition
2.6 of [6], we see that T_{\mathrm{F}, $\Gamma$} is at least stable. T_{\mathrm{F}, $\Gamma$} is in fact superstable
since

1. the stability spectrum of T_{\mathbb{F}, $\Gamma$} is the same as that of T_{ $\Gamma$(\mathbb{F})},
the theory of restriction of (\mathbb{F}, +, \cdot,  $\Gamma$) to  $\Gamma$(\mathbb{F}) . Let C\subset \mathbb{F} . Observe

first that there is only one complete 1‐type over C in T_{\mathrm{F}, $\Gamma$} , which is

realized by elements in \mathbb{F}-\mathrm{a}\mathrm{c}1_{\mathrm{F}}( $\Gamma$(\mathbb{F})\cup C) where \mathrm{a}\mathrm{c}1_{\mathrm{F}} is the field‐

theoretic algebraic closure. Hence the cardinality of complete 1‐types
in T_{\mathbb{F}, $\Gamma$} is bounded by the cardinality of the complete 1‐types in T_{ $\Gamma$(\mathbb{F})}.
Thus they have the same stability spectrum.

2. T_{ $\Gamma$(\mathrm{F})} is superstable. For q transcendental, this is Theorem 7

above. If q is not a root of unity, we have the same conclusion since

q^{\mathbb{Z}} is an infinite cyclic group, If q is a root of unity, combined with

Proposition 4, we still have the same conclusion. \blacksquare
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Remark 11 Let  $\Gamma$ be the group of complex roots of unity,  i.e_{f} $\Gamma$=
\{x\in \mathbb{C}|\exists nx^{n}=1\} . Then Th (\mathbb{C}, +, \cdot,  $\Gamma$) is  $\omega$ ‐stable. See Theorem

2 in [9] and concluding remarks on p. 105 of  l12J . Note that in this

case ( $\Gamma$, \cdot, 1) is  $\omega$ ‐stable.
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