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This note is based on the papers [9] and [1],1 In [2] and [3], a homol‐

ogy theory for model theory is developed. In particular, given a strong
type p(x) over A=\mathrm{a}\mathrm{c}1^{\mathrm{e}\mathrm{q}}(A) in a rosy theory T

,
the notion of the nth

homology group H_{n}(p) depending on an independence relation is in‐

troduced. Although the homology groups are defined analogously as in

singular homology theory, the (n+1)\mathrm{t}\mathrm{h} homology group for n>0 in

the context is to do with the nth homology group in algebraic topology.
For example as in [2],[7], H_{2}(p) is to do with (the abelianization of)
the fundamental group in topology. This implies that H_{1}(p) is detect‐

ing somewhat endemic properties of p existing only in model theory
context.

Indeed, in every known example, H_{n}(p) for n\geq 2 is a profinite
abelian group. In [4], it is proved to be so when T is stable under

a canonical condition, and conversely every profinite abelian group
can arise in this form. On the other hand, in [9], it is shown that

|H_{1}(p)|\geq 2^{ $\omega$} unless trivial, and non‐profinite examples are exhibited.

Moreover, the canonical epimorphism from the Lascar group of T to

H_{1}(p) is constructed. This motives our current work and in the paper

[1], we (Jan Dobrowolski, Byunghan Kim and Junguk Lee) show that

H_{1}(p) is to do with the abelianization of the Lascar group of \overline{p}(\overline{x}) ,
where

\overline{p}(\overline{x})=\mathrm{t}\mathrm{p}(\mathrm{a}\mathrm{c}1^{\mathrm{e}\mathrm{q}}(aA)/A) with a\models p . More precisely, H_{1}(p)=G/K
where G is the group of automorphisms of \overline{p}(\mathcal{M}^{\mathrm{e}\mathrm{q}}) ,

and K is the group
of automorphisms of \overline{p} fixing each orbit in \overline{p}(\mathcal{M}^{\mathrm{e}\mathrm{q}}) under the action of

the derived subgroup of G . Surprisingly this conclusion is independent
from the choice of an independence relation satisfying finite character,
symmetry, transitivity and extension. Hence in fact H_{1}(p) perfectly
makes sense in any theory with the full independence (i.e. any two

sets are assumed to be independent over any set), and is again G/K.
An appropriate notion of the localized Lascar group \mathrm{G}\mathrm{a}1_{\mathrm{L}}(p) is also
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suggested in [1], which is independent from the choice of a monster

model, and by the same manner as in [9] mentioned above, the canon‐

ical epimorphism from \mathrm{G}\mathrm{a}1_{\mathrm{L}}(p) to H_{1}(p) is constructed, so K can be

considered as the kernel of this epimorphism.

1. INTRODUCTION

Throughout this note we work in a large saturated model \mathcal{M}(=\mathcal{M}^{\mathrm{e}\mathrm{q}})
of a complete theory T

, and use standard notations. For example,
unless said otherwise, a, b

,
. . . , A, B

,
. . . are small but possibly infinite

tuples and sets from \mathcal{M} ,
and a\equiv Ab, a\equiv^{s}bA, a\equiv^{L}bA mean \mathrm{t}\mathrm{p}(a/A)=

\mathrm{t}\mathrm{p}(b/A) , \mathrm{s}\mathrm{t}\mathrm{p}(a/A)=\mathrm{s}\mathrm{t}\mathrm{p}(b/A) , Lstp (a/A)= Lstp (b/A) , respectively.
For general theory of model theory or the Lascar groups, we refer to

[5] or [10], For the homology theory for model theory, see [2],[3]. In

particular, H_{1}(p) is studied in [6],[8]. In this section, we summarize

some of those below.

Remark 1.1. For the rest, we fix a ternary automorphism‐invariant
relation |^{*}

among small sets of \mathcal{M} satisfying
finite character: for any sets A, B, C , we have A|_{C}^{*}B iff a\rangle \mathrm{L}_{C}^{*}b
for any finite tuples a\in A and b\in B ;

normality: for any sets A, B, C ,
we have A\backslash \mathrm{L}_{C}^{*}B iff A $\lambda$_{c^{BC;}}^{*}

symmetry: for any sets A, B, C , we have A\backslash \mathrm{L}_{C}^{*}B iff B\backslash \mathrm{L}_{C}^{*}A ;

transitivity: A\backslash \mathrm{L}_{B}^{*}D iff A\backslash \mathrm{L}_{B}^{*}C and A\rangle \mathrm{L}_{c^{D}}^{*} , for any sets A

and B\subseteq C\subseteq D ; and

extension: for any sets A and B\subseteq C , there is A'\equiv B A such

that A\mathrm{L}_{B}^{*}C holds.

If A $\lambda$_{B}^{*}C holds then as usual we say A is *‐independent from B

over C . Notice that there is at least one such relation for any theory.
Namely the full (or trivial) independence relation: For any sets A, B, C,
put A\rangle \mathrm{L}_{B}^{*}C . Of course there is a non‐trivial such relation when T is

simple or rosy, given by forking or thorn‐forking, respectively.

Now we fix a strong type p(x) of possibly infinite arity over B=

\mathrm{a}\mathrm{c}1(B) (so p(x) simply is a complete type over B with free variables in

x) ,
and recall to define the 1st homology group of p.

Notation 1.2. Let s be an arbitrary finite set of natural numbers.

Given any subset X\subseteq \mathcal{P}(s) , we may view X as a category where for

any u, v\in X, \mathrm{M}\mathrm{o}\mathrm{r}(u, v) consists of a single morphism $\iota$_{u,v} if u\subseteq v ,
and

\mathrm{M}\mathrm{o}\mathrm{r}(u, v)=\emptyset otherwise. If  f:X\rightarrow C is any functor into some category
C then for any u, v\in X with u\subseteq v , we let f_{v}^{u} denote the morphism
f($\iota$_{u,v})\in \mathrm{M}\mathrm{o}\mathrm{r}_{C}(f(u), f(v)) . We shall call X\subseteq \mathcal{P}(s) a primitive category
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if X is non‐empty and downward closed, i.e., for any u, v\in \mathcal{P}(s) ,
if

u\subseteq v and v\in X then u\in X . (Note that all primitive categories have

the empty set \emptyset\subset $\omega$ as an object.)
We use now  C_{B} to denote the category whose objects are all the small

subsets of \mathcal{M} containing B
, and whose morphisms are elementary maps

over B . For a functor f : X\rightarrow C_{B} and objects u\subseteq v of X, f_{v}^{u}(u)
denotes the set f_{v}^{u}(f(u))(\subseteq f(v)) .

Definition 1.3. By \mathrm{a}* ‐independent functor in p , we mean a functor

f from some primitive category X into C_{B} satisfying the following:

(1) If \{i\}\subset $\omega$ is an object in  X
,

then f(\{i\}) is of the form acl(Cb)
where b\models p, C=\mathrm{a}\mathrm{c}1(C)=f_{\{i\}}^{\emptyset}(\emptyset)\supseteq B ,

and b|.{}_{B}C.

(2) Whenever  u(\neq\emptyset)\subset $\omega$ is an object in  X
,

we have

f(u)= acl (\displaystyle \bigcup_{i\in u}f_{u}^{\{i\}}(\{i\}))
and \{f_{u}^{\{i\}}(\{i\})|i\in u\} is independent over f_{u}^{\emptyset}(\emptyset) .

We let \mathcal{A}_{p}^{*} denote the family of \mathrm{a}\mathrm{l}1* ‐independent functors in p.

\mathrm{A} *‐independent functor f is called a * ‐independent n ‐simplex (or
n-*‐simplex) in p if f(\emptyset)=B and \mathrm{d}\mathrm{o}\mathrm{m}(f)=\mathcal{P}(s) with  s\subset $\omega$ and

|s|=n+1 . We call s the support of f and denote it by \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(f) .

In the rest we may call a *‐independent n‐simplex in p just as an

n ‐simplex of p ,
as far as no confusion arises. We are ready to define

the 1st homology group H_{1}^{*}(p) of p depending on our choice of the

independence \mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\backslash }\mathrm{L}^{*}

Definition 1.4. Let n\geq 0 . We define:

S_{n}(\mathcal{A}_{p}^{*}) := { f\in \mathcal{A}_{p}^{*}|f is an n‐simplex of p }

C_{n}(\mathcal{A}_{p}^{*}) := the free abelian group generated by S_{n}(\mathcal{A}_{p}^{*}) .

An element of C_{n}(\mathcal{A}_{p}^{*}) is called an n ‐chain of p . The support of a chain

c , denoted by \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(c) ,
is the union of the supports of all the simplices

that appear in c with a non‐zero coefficient. Now for n\geq 1 and each

i=0 ,
. . .

, n , we define a group homomorphism

\partial_{n}^{i}:C_{n}(A_{p}^{*})\rightarrow C_{n-1}(\mathcal{A}_{p}^{*})
by putting, for any n‐simplex f:\mathcal{P}(s)\rightarrow C in S_{n}(\mathcal{A}_{p}^{*}) where s=\{s_{0}<
. . . <s_{n}\}\subset $\omega$,

\partial_{n}^{i}(f):=f\mathrm{r}\mathcal{P}(s\backslash \{s_{i}\})
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and then extending linearly to all n‐chains in C_{n}(\mathcal{A}_{p}^{*}) . Then we define

the boundary map

\partial_{n}:C_{n}(\mathcal{A}_{p}^{*})\rightarrow C_{n-1}(\mathcal{A}_{p}^{*})
by

\displaystyle \partial_{n}(c):=\sum_{0\leq i\leq n}(-1)^{i}\partial_{n}^{i}(c) .

We shall often refer to \partial_{n}(c) as the boundary of c . Next, we define:

Z_{n}(\mathcal{A}_{p}^{*}):=\mathrm{K}\mathrm{e}\mathrm{r}\partial_{n}
B_{n}(\mathcal{A}_{p}^{*}):={\rm Im}\partial_{n+1}.

The elements of Z_{n}(\mathcal{A}_{p}^{*}) and B_{n}(\mathcal{A}_{p}^{*}) are called n ‐cycles and n ‐boundaries

in p , respectively. It is straightforward to check that \partial_{n}0\partial_{n+1}=0.
Hence we can now define the group

H_{n}^{*}(p):=Z_{n}(\mathcal{A}_{p}^{*})/B_{n}(\mathcal{A}_{P}^{*})
called the n\mathrm{t}\mathrm{h}* ‐homology group of p.

Notation 1.5. (1) For c\in Z_{n}(\mathcal{A}_{p}^{*}) , [c] denotes the homology class

of c in H_{n}^{*}(p) .

(2) When n is clear from the context, we shall often omit n in \partial_{n}^{i}
and in \partial_{n} , writing simply as \partial^{i} and \partial.

Definition 1.6. A1‐chain c\in C_{1}(\mathcal{A}_{p}^{*}) is called a 1-* ‐shell (or just,
1‐shell) in p if it is of the form

c=f_{0}-fi+f_{2}

where f_{i} �s are 1‐simplices of p satisfying

\partial^{i}f_{j}=\partial^{j-1}f_{i} whenever 0\leq i<j\leq 2.

Hence, for \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(c)=\{n_{0}<n_{1}<n_{2}\} and k\in\{0 ,
1

,
2 \} ,

it follows

supp ( f_{k})=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(c)\backslash \{n_{k}\}.

Notice that the boundary of any 2‐simplex is a 1‐shell.

Remark 1.7. If c is a 1‐shell, then in H_{1}^{*}(p) , by the argument in [9],
we have [-c]=[c] where c is another 1‐shell with \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(c')=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(c)
(See Fact 1.11 below).

Now in [3], the notion of an amenable collection of functors into a

category is introduced, and it is transparent to see that \mathcal{A}_{p}^{*} forms such

a collection of functors into C_{B} . Therefore the following corresponding
fact holds.

Fact 1.8. [3]

H_{1}^{*}(p)= { [c]|c is a 1-* ‐shell with \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(c)=\{0 , 1, 2}}.
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So if any 1‐shell is the boundary of some 2‐chain then H_{1}^{*}(p)=0^{2}
We now begin to summarize some of important observations from [9]

regarding H_{1}(p) , originally given for rosy theories with thorn‐independence.
But those perfectly make sense in our context of an arbitrary theory
with \backslash \mathrm{L}^{*} For the rest of this paper we suppress B to \emptyset by naming it.

In particular  C denotes C_{B} . Moreover we put \overline{p}(\overline{x}) :=\mathrm{t}\mathrm{p}(\mathrm{a}\mathrm{c}\mathrm{l}(a)) where

a\models p.

Definition 1.9. (1) We introduce some notation which will be used

throughout. Let f:\mathcal{P}(s)\rightarrow C be an n-*‐simplex in p . For u\subset s

with u=\{i_{0}<\ldots<i_{k}\} , we shall write f(u)= [ao. . . a_{k}]_{u},
where a_{j}\models\overline{p}, f(u)=\mathrm{a}\mathrm{c}1(a_{0}\ldots a_{k}) ,

and a_{j}=f_{\mathrm{u}}^{\{i_{\dot{}}\}}(\{i_{j}\}) . So,
\{a_{0}, . . . , a_{k}\} is *‐independent.

(2) Let s=f_{12}-f_{02}+f_{01} be a 1-*‐shell in p such that supp ( f_{ij})=
\{i, j\} for 0\leq i<j\leq 2 . Clearly there is a quadruple (a_{0}, a_{1}, a_{2} , a_{3})
of realizations \overline{p} such that f_{01}(\{0,1\})\equiv[a_{0}a_{1}]_{\{0,1\}},  f_{12}(\{1,2\})\equiv
[a_{1}a_{2}]_{\{1,2\}} , and f_{02}(\{0,2\})\equiv[a_{3}a_{2}]_{\{0,2\}} . We call this quadruple
a representation of s . For any such representation of s

,
call a_{0}

an initial point, a_{3} a terminal point, and (a_{0}, a_{3}) an endpoint
pair of the representation.

In [9], it was proved (using only the finite character, symmetry, tran‐

sitivity and extension of thorn‐independence in a rosy theory) that each

homology class and the 1st homology group structure are determined

by (the types of) the endpoints pairs of representations. Therefore the

same proof induces the following in our context of H_{1}^{*}(p) .

Fact 1.10. [9]
(1) For any pair (a, b) of realizations of \overline{p} , there is a 1-* ‐shell s of

p with the support \{0 , 1, 2 \} such that (a, b) is the endpoint pair
of some representation of s.

(2) Let s_{0} and s_{1} be 1-* ‐shells in p with the support \{0 , 1, 2 \} . Let

(a_{0}, a_{0}) and (a_{1}, a_{1}) be the endpoint pairs of s_{0} and, s_{1} respec‐

tively.
(a) If a_{0}a_{0}\equiv a_{1}a_{1f} then [s_{0}]=[s_{1}] (in H_{1}^{*}(p)) .

(b) If a_{0}=a_{1} , then for any 1-* ‐shell s with the support \{0 , 1, 2 \}
having a representation whose endpoint pair is (a_{0}, a_{1}) , it

follows [s]=[s_{0}]+[s_{1}] in H_{1}^{*}(p) .

2Notice that in this note, when we define *‐independent functor� in Definition

1.3, we take only algebraic closures in \mathcal{M}^{\mathrm{e}\mathrm{q}} (not bounded closures), thus it is not

clear H_{1}^{*}(p)=0 with usual nonforking independence in a simple theory. Indeed we

state this as an open question in Question 2.5.
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Using Fact 1.10, we define an equivalence relation \sim on the set of

pairs of realizations \overline{p} as follows: For a, a�, b, b`\models\overline{p}, (a, b)\sim(a, b) if

two pairs (a, b) and (a, b) are endpoint pairs of 1‐shells s and s such

that [s]=[s]\in H_{1}^{*}(p) . We write \mathcal{E}^{*}=\overline{p}(\mathcal{M})\times\overline{p}(\mathcal{M})/\sim . We denote

the class of (a, b)\in\overline{p}(\mathcal{M})\mathrm{x}\overline{p}(\mathcal{M}) by [a, b] . By 1.10, if ab\equiv ab�, then

[a, b]=[a, b] . Now define a binary operation +_{\mathcal{E}^{*}} on \mathcal{E}^{*} as follows: For

[a, b], [b, c']\in \mathcal{E}^{*}, [a, b]+\mathcal{E}^{*}[b, c]=[a, c] where bc\equiv bc.

Fact 1.11. [9] The pair (\mathcal{E}^{*}, +_{\mathcal{E}^{*}}) forms a commutative group which

is isomorphic to H_{1}^{*}(p) . More specifically, for a, b, c\models p and  $\sigma$\in

\mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{M}) ,
it follows that

[a, b]+[b, c]=[a, c],\cdot
\mathrm{o}[a, a] is the identity element_{f}.

-[a, b]=[b, a],\cdot
 $\sigma$([a, b]) :=[ $\sigma$(a),  $\sigma$(b)]=[a, b]_{f}. and

f : \mathcal{E}^{*}\rightarrow H_{1}^{*}(p) sending [a, b]\mapsto[s] , where (a, b) is an endpoint
pair of s , is a group isomorphism.

From now on, we identify \mathcal{E}^{*} and H_{1}^{*}(p) . Notice that indeed the group
structure of \mathcal{E}^{*} depends only on the types of (a, b) �s with [a, b]\in \mathcal{E}^{*}

Now by exactly the same proof of [6, Theorem 2.4], which only uses

the finite character, symmetry, transitivity, and extension of thorn‐

forking, we can obtain the following fact for our independence $\lambda$^{*} in

an arbitrary theory T.

Fact 1.12. For a, a\models\overline{p} , if a\equiv^{L}a_{2} then [a, a]=0 in \mathcal{E}^{*}=H_{1}^{*}(p) .

Using Fact 1,11 and 1.12, we obtain the following canonical epimor‐
phism by the same manner as described in [9].

Fact 1.13. There is a canonical epimorphism

$\psi$_{\overline{p}}^{*}:\mathrm{A}\mathrm{u}\mathrm{t}(\overline{p}(\mathcal{M}))\rightarrow H_{1}^{*}(p)
sending each  $\sigma$\in \mathrm{A}\mathrm{u}\mathrm{t}(\overline{p}(\mathcal{M})) to [a,  $\sigma$(a)] for some/any realization a of

\overline{p}.

Remark 1.14. Note that \mathrm{A}\mathrm{u}\mathrm{t}(\overline{p}(\mathcal{M}))/\mathrm{K}\mathrm{e}\mathrm{r}($\psi$_{\overline{p}}^{*}) is isomorphic to H_{1}^{*}(p) ,

which is independent from the choice of the monster model. Since

H_{1}^{*}(p) is abelian, \mathrm{K}\mathrm{e}\mathrm{r}($\psi$_{\overline{p}}^{*}) contains the derived subgroup of \mathrm{A}\mathrm{u}\mathrm{t}(\overline{p}(\mathcal{M})) .

We shall figure out what \mathrm{K}\mathrm{e}\mathrm{r}($\psi$_{\overline{p}}^{*}) is, and it will turn out that even the

kernel (so H_{1}^{*}(p) too) is independent from the choice of $\lambda$^{*}

In [1], the notions of certain localized Lascar Galois groups are in‐

troduced as follows.
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Definition 1.15. (1) For a cardinal  $\lambda$>0, \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}^{ $\lambda$}\mathrm{f}\mathrm{i}\mathrm{x}(p(\mathcal{M})) :=

\{ $\sigma$ \mathrm{r}p(\mathcal{M}) :  $\sigma$\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{M}) such that

for any a_{i}\models p and \overline{a}=(a_{i})_{i< $\lambda$} , \overline{a}\equiv^{L} $\sigma$(\overline{a}) };
and

(2) \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{x}(p(\mathcal{M})) :=\{ $\sigma$ \mathrm{r}p(\mathcal{M}) :  $\sigma$\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{M}) such that

\overline{a}\equiv^{L} $\sigma$(\overline{a}) where \overline{a} is some enumeration of p(\mathcal{M}) }.

It is straightforward to see that the groups

Autffix ( p(\mathcal{M}))\leq \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}^{ $\lambda$}\mathrm{f}\mathrm{i}\mathrm{x}(p(\mathcal{M}))
are normal subgroups of Aut (p(\mathcal{M})) .

Definition 1.16. (1) \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x}, $\lambda$}(p(\mathcal{M})):=\mathrm{A}\mathrm{u}\mathrm{t}(p(\mathcal{M}))/\mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}^{ $\lambda$}\mathrm{f}\mathrm{i}\mathrm{x}(p(\mathcal{M})) ;

and

(2) \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x}}(p(\mathcal{M})) :=\mathrm{A}\mathrm{u}\mathrm{t}(p(\mathcal{M}))/ Autffix (p(\mathcal{M})) .

Remark 1.17. In [1], it is observed that Autffix ( p(\mathcal{M}))=\mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}^{ $\omega$}\mathrm{f}\mathrm{i}\mathrm{x}(p(\mathcal{M})) .

So \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x}}(p(\mathcal{M}))=\mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x}, $\omega$}(p(\mathcal{M})) . In addition, \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x}}(p) on p is shown

to be independent from the choice of a monster model of T (only de‐

pending on p). Then due to Fact 1.12, \displaystyle \mathrm{K}\mathrm{e}\mathrm{r}( $\psi$\frac{*}{p}) contains Autffix ( \overline{p}(\mathcal{M})) .

Hence this induces a canonical epimorphism  $\Psi$\displaystyle \frac{*}{p} : \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x}}(\overline{p})\rightarrow H_{1}^{*}(p)
as well. Therefore H_{1}^{*}(p) can be considered as a quotient group of the

Lascar group \mathrm{G}\mathrm{a}1_{L}^{\mathrm{f}\mathrm{i}\mathrm{x}}(\overline{p}) .

2. THE FIRST HOMOLOGY GROUPS OF STRONG TYPES IN

ARBITRARY THEORIES

The goal of this section is to identify what \displaystyle \mathrm{K}\mathrm{e}\mathrm{r}( $\psi$\frac{*}{p}) is. In [6][8], the

2‐chains in p with 1‐shell boundaries are classified when T is rosy with

thorn‐independence. However again the only properties used for thorn‐

forking there are finite character, symmetry, transitivity, and extension.

Therefore the following same conclusion can be obtained in our context

\mathrm{o}\mathrm{f}* ‐independence in any T.

Fact 2.1. A 1-* ‐shell s in p is the boundary of a 2‐chain if and only
if there is a representation (a, b, c, a) of s such that for some n\geq 0
there is a finite sequence (d_{i})_{0\leq i\leq 2n+2} of realizations of \overline{p} satisfying the

following conditions:

(1) d_{0}=a, d_{2n+1}=c and d_{2n+2}=a ;

(2) \{d_{j}, d_{j+1}, b\}is* ‐independent for each 0\leq j\leq 2n+1 ; and

(3) there is a bijection

 $\sigma$ : \{0, 1, . . . , n\}\rightarrow\{0, 1, . . . , n\}
such that d_{2i}d_{2i+1}\equiv d_{2 $\sigma$(i)+2}d_{2 $\sigma$(i)+1} for 0\leq i\leq n.
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Using Fact 2.1, we can identify \mathrm{K}\mathrm{e}\mathrm{r}($\psi$_{\overline{p}}^{*}) as follows.

Theorem 2.2. For each h\in K:=\mathrm{K}\mathrm{e}\mathrm{r}($\psi$_{\overline{p}}^{*}) and a \models\overline{p} ) there is

an automorphism h � in the derived subgroup G of G :=\mathrm{A}\mathrm{u}\mathrm{t}(\overline{p}(\mathcal{M}))
such that h(a)=h(a) . Thus K(\geq G) is the normal subgroup of G

of automorphisms fixing all orbits of realizations in \overline{p}(\mathcal{M}) under the

action of G�, and H_{1}^{*}(p)=G/K.

Remark 2.3. Due to above Theorem 2.2, H_{1}^{*}(p) , which of course does

not depend on the choice of a monster model, is all the same regardless
of our choice of independence |^{*} satisfying finite character, symmetry,
transitivity and extension. Hence we can write it simply as H_{1}(p) .

In particular if we choose \rangle \mathrm{L}^{*} to be the full independence, then obvi‐

ously that \{x_{1}, . . . , x_{n}\} is *‐independent over B is B‐type‐definable in

\overline{p}(x_{1})\wedge\ldots\wedge\overline{p}(x_{n}) . This is the only property (in addition to the four

independence axioms) used in [9] to conclude that |H_{1}(p)|=1 or \geq 2^{ $\omega$}

(for rosy theories). Hence we get the same conclusion in the context of

arbitrary theories. By the same token, the orbit equivalence relation

\equiv^{H_{1}} on \overline{p}(\mathcal{M}) under the action of K (equivalently G�) in Theorem 2.2

(i.e., for a, b\models\overline{p}, a\equiv^{H_{1}}b iff there is f\in K (or \in G�) such that

b=f(a) iff [a, b]=0\in H_{1}(p)) is an F_{ $\sigma$} ‐relation, as pointed out in [9],
i.e., there are countably many B‐type‐definable reflexive, symmetric
relations R_{i}(x, y) such that

\overline{p}(x)\wedge\overline{p}(y)\models x\equiv^{H_{1}}y\leftrightarrow i< $\omega$\vee R_{i}(x, y) .

Now the following corollary says that, in any theory, H_{1}(p) being
non‐trivial or \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x}}(p) (or, \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x},1}(p) ) being non‐abelian are two cirte‐

ria for \overline{p} not being Lascar type.

Corollary 2.4. (T any theory.) The following are equivalent.

(1) \overline{p}(\overline{x}) is a Lascar type.

(2) H_{1}(p)=0 and \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x},1}(\overline{p}) is abelian.

(3) Both H_{1}(p) and \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x},1}(p) are trivial.

In particular if H_{1}(p) is trivial and \mathrm{G}\mathrm{a}1_{\mathrm{L}}^{\mathrm{f}\mathrm{i}\mathrm{x}}(p) is abelian, then \overline{p} is a

Lascar type.

Question 2.5. In a simple theory T ,
is always H_{1}(p)=0?
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