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1 Introduction

Proofs are not given here. See [5] for the details. First we recall the following
famous theorems of Ramsey:

\bullet Finite Ramsey Theorem (FRT)

\forall x, y, z\in $\omega$\exists z\in $\omega$[z\rightarrow(x)_{z}^{y}].

\bullet Infinite Ramsey Theorem (IRT)

\forall x, y\in $\omega$[ $\omega$\rightarrow( $\omega$)_{y}^{x}].

To explain structural Ramsey theory, we introduce the notation \left(\begin{array}{l}
B\\
A
\end{array}\right),
where A and B are first order structures.

\left(\begin{array}{l}
B\\
A
\end{array}\right)= the set of all copies of A in B.

Then, FRT for y=2(\forall x, y, z\in $\omega$\exists z\in $\omega$[z\rightarrow(x)_{z}^{2}]) is equivalent to the

following statement:

(^{*}) For all complete finite graphs A and  z\in $\omega$ there is a complete finite

graph  D such that if f : [D]^{2}\rightarrow z is a finite coloring of the edges in D

then there is A'\in\left(\begin{array}{l}
D\\
A
\end{array}\right) for which f([A']^{2}) is a singleton.

In addition to this, IRT for x=2(\forall y\in $\omega$[ $\omega$\rightarrow( $\omega$)_{y}^{2}]) is equivalent to

(^{**}) For every infinite complete graph G and a finite edge coloring f : [G]^{2}\rightarrow
 y there is an infinite complete subgraph H\subset G such that f([H]^{2}) is a

singleton.

数理解析研究所講究録
第2002巻 2016年 34-38

34



So the classical Ramsey theorem (finite version or infinite version) trivially
provides results on edge colorings of complete graphs. Structural Ramsey
theory studies Ramsey type results on more general structures other than

complete graphs.

2 Ramsey Class

Let L be a relational language and K a class of finite L‐structures. We

assume K satisfies the conditions of Fra
\cdot

issé so that  K has the Fra
\cdot

issé limit

\mathcal{M}.

Definition 1 (Ramsey Class). K is a Ramsey class if

\bullet \forall A, B\in K, \forall n\in $\omega$, \exists C\in K s.t. for every n‐coloring

f:\left(\begin{array}{l}
C\\
A
\end{array}\right)\rightarrow n
there is B'\in\left(\begin{array}{l}
C\\
B
\end{array}\right) for which \left(\begin{array}{l}
B'\\
A
\end{array}\right) is monochromatic.

Example 2. In a sense, a Ramsey class is a class in which FRT holds. The

following classes are examples of Ramsey classes.

\bullet  K_{1}= the class of linearly ordered finite sets. The limit \mathcal{M} is isomorphic
to \mathbb{Q}.

\bullet  K_{2}= the class of linearly ordered finite (hyper)graphs. \mathcal{M} is the

ordered random graph.

\bullet  K_{3}= the class of linearly ordered triangle‐free finite graphs.

The fact that K_{1} is a Ramsey class follows from FRT. Proofs for K_{2} and K3
are found in [1], [2] or [3].

Now we consider infinite versions of the above examples. We want to

prove statements like: For all  n\in $\omega$ and  A\in K,

\mathcal{M}\rightarrow(\mathcal{M})_{n}^{A},

where \mathcal{M} is the limit of K . In words, this arrow statement states that if every

substructure of M
, isomorphic to A , is painted in one of the colors \{0 ,

. . . , n-

35



1}, then there is a substructure M'\cong M such that every substructure of M',
isomorphic to A

,
is pained in the same color. For K=K_{1} (linear orders), this

type of infinite version is true. In fact, it is a paraphrase of IRT. However,
this version is not true in general, even if K is Ramsey.

Example 3. Let K be the class of all finite linearly ordered graphs. (This
K is K_{2} in the example 2.) Then the limit \mathcal{M} is a linearly ordered random

graph. Let \{a_{i}:i\in $\omega$\} be an enumeration of \mathcal{M} and let c:E(\mathcal{M})\rightarrow 2 be

an edge coloring defined by: for edges \{a_{i}, a_{j}\},

c(\{a_{i}, a_{j}\})=\left\{\begin{array}{l}
1 a_{i}<^{\mathcal{M}}a_{j} \mathrm{a}\mathrm{n}\mathrm{d} i<j,\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
Then \mathcal{M} has no infinite substructure D\cong \mathcal{M} that is homogeneous for c.

To see this, let D\subset \mathcal{M} be infinite. Then there must be  i<j<k\in $\omega$
such that  a_{i}, a_{j}, a_{k}\in D and \mathcal{M}\models a_{i}<a_{k}<a_{j} . Then c(\{a_{i}, \mathrm{a} \}) =1 while

c(\{a_{k}, a_{j}\})=0.

Remark 4 (An easy argument using compactness). The following weak ver‐

sion of RT clearly holds.

\bullet Let  K be a Ramsey class. Let M be the Fra
\cdot

issé limit of  K . Then for

each A, B\in K and each finite coloring f : \left(\begin{array}{l}
M\\
\mathcal{A}
\end{array}\right)\rightarrow n , there is B'\in\left(\begin{array}{l}
M\\
B
\end{array}\right)
such that \left(\begin{array}{l}
B'\\
A
\end{array}\right) is monochromatic.

3 Infinite Version

We work on k‐partite graphs, where k is finite. Let  L=\{R(*, *)\}\cup
\{U_{i}(*)\}_{i<k}. A k‐partite graph is an L‐structure M such that

1. the universe of M is the disjoint union of U_{i}^{M}(i<k) ;

2. R^{M} is the set of all edges in M ;

3. there is no edge between two elements in the same part.  M\models
\displaystyle \bigwedge_{i<k}\forall x, y(U_{i}(x)\wedge U_{i}(y)\rightarrow\neg R(x, y
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U_{0} U_{1} U_{2} . . . U_{k-2}U_{k-1}

Let K be the class of all finite k‐partite graphs. It has the limit \mathcal{M} ,
called

a k‐partite random graph.

Theorem 5. Let \mathcal{M} be a k ‐partite (triangle‐free) random graph and f be a

finite coloring on the edges. There is a k‐partite‐induced subgraph N\cong \mathcal{M}

such that f is partwise almost constant on N in the following sense: For

each a\in N there is a finite subset X\subset N such that

ax\cong_{L}ay\Rightarrow f(ax)=f(ay) .

From this we can easily deduce the following famous results:

Corollary 6 (Nešetřil‐ Rödl). Let K be the set of all totally ordered finite
graphs. For any B\in K there is C\in K such that for any finite edge‐coloring
c on C there is B'\in\left(\begin{array}{l}
C\\
B
\end{array}\right) such that c is constant on B.

Corollary 7 (Nešetřil). Let K be the set of all totally ordered triangle‐
free finite graphs. For any B\in K there is C\in K such that for any finite
edge‐coloring c on C there is B'\in\left(\begin{array}{l}
C\\
B
\end{array}\right) such that c is constant on B.
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