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1 Introduction

This article is a summary for ribbon‐clasp surface‐links defined in our paper [4], which

are generalization of ribbon surface‐links.

Throughout this article, we work in the PL or smooth category. An immersed surface‐
link or simply a surface‐link means a closed oriented surface immersed in \mathbb{R}^{4} such that

each multiple point is a transverse double point. In the PL category, we assume that

immersions are locally flat. When it is embedded, we also call it an embedded surface‐
link. Two surface‐links are said to be equivalent if they are ambient isotopic.

A surface‐link is trivial if it bounds a disjoint union of handlebodies embedded in \mathbb{R}^{4}.
In particular, a trivial 2‐link means the boundary of a disjoint union of 3‐balls embedded

in \mathbb{R}^{4} . A surface‐link is ribbon if it bounds a disjoint union of handlebodies immersed in \mathbb{R}^{4}
whose multiple point set consists of ribbon singularities. (Note that a ribbon surface‐link

is an embedded surface‐link.) A surface‐link is ribbon‐clasp if it bounds a disjoint union

of handlebodies immersed in \mathbb{R}^{4} whose multiple point set consists of ribbon singularities
and clasp singularities. We give definitions of a ribbon singularity and a clasp singularity
in Section 2. (For an immersion f : M\rightarrow \mathbb{R}^{4} of a compact 3‐manifold M

, the boundary
of the immersed 3‐manifold f(M) means the image f(\partial M) of the boundary \partial M of M. )

In this article, we show two characterizations of a ribbon‐clasp surface‐link. First, we

characterize it in terms of 1‐handle surgeries and finger moves (Theorem 3.2). Second, we

characterize it in terms of normal forms for immersed surface‐links (Theorem 4.4). We

introduce 1‐handle surgeries and finger moves in Section 3 and normal forms for immersed

surface‐links in Section 4.

2 Ribbon singularities and clasp singularities

In this section, we explain a ribbon singularity and a clasp singularity.
Let M be a compact 3‐manifold with non‐empty boundary and f : M\rightarrow \mathbb{R}^{4} an

immersion of M into \mathbb{R}^{4} . Let \triangle be a connected component of the multiple point set

\{x\in f(M)|\# f^{-1}(x)\geq 2\}\subset \mathbb{R}^{4}.
We say that \triangle is a ribbon singularity if \triangle is a 2‐disk in \mathbb{R}^{4} and the preimage of \triangle is the

disjoint union of embedded 2‐disks \triangle_{1} and \triangle_{2} in M such that \triangle_{1} is properly embedded

in M and \triangle_{2} is embedded in the interior of M . Figure 1 shows a local model of a ribbon

singularity in the motion picture method.
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Figure 1: A local model of a ribbon singularity

We say that \triangle is a clasp singularity if \triangle is a 2‐disk in \mathbb{R}^{4} and the preimage of \triangle is the

disjoint union of embedded 2‐disks \triangle_{1} and $\Delta$_{2} in M such that for each i\in\{1 ,
2 \}, \partial\triangle_{i} is

the union of two arcs $\alpha$_{i} and $\beta$_{i} , where $\alpha$_{i} is a properly embedded arc in M and $\beta$_{i} is a

simple arc in \partial M which connects endpoints of $\alpha$_{i} . Figures 2 and 3 show local models of

a clasp singularity in the motion picture method.

Figure 2: A local model of a clasp singularity
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Figure 3: Another local model of a clasp singularity

Example 2.1 A Montesinos twin is a surface‐link which is the boundary of a pair of

embedded 3‐disks B_{1} and B_{2} with a single clasp singularity between B_{1} and B_{2} . Figure
4 shows a Montesinos twin T=S_{1}\cup S_{2} , where S_{i}=\partial B_{i}(i\in\{1,2

A Montesinos twin has two double points with opposite signs. Note that the equivalence
class, as a surface‐link, of a Montesinos twin is unique.
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S_{1}\cup S_{2}

Figure 4: A Montesinos twin T=S_{1}\cup S_{2}

Definition 2.2 An M‐trivial 2‐link is a split union of a trivial 2‐link and some (or no)
Montesinos twins.

3 1‐handle surgeries and finger moves

Let F be a surface‐link. A chord attached to F means an unoriented simple arc  $\gamma$ in \mathbb{R}^{4}
such that  F\cap $\gamma$=\partial $\gamma$ , which misses the double points of  F . Two chords attached to F

are equivalent if they are ambient isotopic by an isotopy of \mathbb{R}^{4} keeping F setwise fixed.

A1‐handle attached to F means an embedded 3‐disk B in \mathbb{R}^{4} such that F\cap B is the

union of a pair of mutually disjoint 2‐disks in \partial B, F\cap B misses the double points of F,
and the orientation of F\cap B induced from \partial B is opposite to the orientation induced from

F . Put

\mathrm{h}(F;B) :=\mathrm{C}1(F\cup\partial B-F\cap B) ,

which we call the surface‐link obtained from F by a 1‐handle surgery along B. (Here,
Cl means the closure.) Two 1‐handles attached to F are said to be equivalent if they
are ambient isotopic by an isotopy of \mathbb{R}^{4} keeping F setwise fixed. It is known [1, 3] that

1‐handles attached to F are equivalent if and only if their cores are equivalent as chords

attached to F . For a chord  $\gamma$ attaching to  F
,

we denote by \mathrm{h}(F; $\gamma$) the surface‐link

obtained from F by a 1‐handle surgery along a 1‐handle whose core is  $\gamma$ . Figure 5 shows

a local model of a 1‐handle surgery along  $\gamma$.

Figure 5; A local model of a 1‐handle surgery along  $\gamma$

A finger move is the inverse operation of the Whitney trick; for details, see [2, 7]. We
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give an alternative definition of a finger move by using a Montesinos twin and 1‐handle

surgeries as follows.

Let  F be a surface‐link and U a 4‐disk in \mathbb{R}^{4} disjoint from F . Put a Montesinos twin

T=S_{1}\cup S_{2} in U and let B_{1} and B_{2} be embedded 3‐disks in U with a single clasp singularity
with S_{i}=\partial B_{i}(i\in\{1,2 Take a point p_{1}\in S_{1}-S_{1}\cap S_{2} , a point p_{2}\in S_{2}-S_{1}\cap S_{2} and

two distinct points q_{1}, q_{2} in F missing the double points of F . Let $\gamma$_{1} and $\gamma$_{2} be oriented

chords attached to F\cup T such that for i\in\{1 ,
2 \}, $\gamma$_{i} starts from p_{i} and terminates at q_{i}

and $\gamma$_{i}\cap(B_{1}\cup B_{2})= {pi}. Let F' be the surface‐link obtained from F\cup T by 1‐handle

surgeries along two 1‐handles whose cores are $\gamma$_{1} and $\gamma$_{2} . Let  $\gamma$ be a chord attached to  F

which is the concatenation of $\gamma$_{1}^{-1} , a simple arc from p_{1} to p_{2} in U and $\gamma$_{2} . We say that

F' is obtained from F by a finger move along  $\gamma$ , which we denote by \mathrm{f}(F; $\gamma$) . It is seen

that if  $\gamma$ and  $\gamma$' are equivalent chords attached to F then \mathrm{f}(F; $\gamma$) is equivalent to \mathrm{f}(F; $\gamma$
Figure 6 shows a local model of a finger move along  $\gamma$ , where two 1‐handles attached to

 F\cup T whose cores are $\gamma$_{1} and $\gamma$_{2} are omitted for simplicity.

Figure 6: A local model of a finger move along  $\gamma$

In terms of 1‐handle surgeries and finger moves, ribbon surface‐links and ribbon‐clasp
surface‐links are characterized as follows.

Theorem 3.1 ([6, 8]) A surface‐link is ribbon if and only if it is obtained from a trivial

2‐link by 1‐handle surgeries.

Theorem 3.2 ([4]) For a surface‐link  F
, the following conditions are equivalent.

(1) F is a ribbon‐clasp surface‐link.

(2) F is obtained from a ribbon surface‐link by finger moves.

(3) F is obtained from a trivial 2‐link by 1‐handle surgeries and finger moves,

(4) F is obtained from an M ‐trivial 2‐link by 1‐handle surgeries.

It is seen that Theorem 3.2 is a generalization of Theorem 3.1.
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4 Normal forms for surface‐links

4.1 Normal forms for embedded surface‐links

Let L be an oriented link in \mathbb{R}^{3}. A band attached to L means an oriented 2‐disk B in \mathbb{R}^{3}
such that L\cap B is the union of a pair of mutually disjoint arcs in \partial B and the orientations

of L\cap\partial B induced from \partial B and L are opposite. We say that a link L' is obtained from L

by a band surgery along B if L'=\mathrm{C}1(L\cup\partial B-L\cap\partial B) , see Figure 7. Let \mathcal{B}=B_{1}\cup\ldots\cup B_{ $\tau$ r $\iota$}

) (\rightarrow \rightarrow

\rightarrow

 $\Gamma$ \mathrm{V}L�L

Figure 7: A band surgery from L to L' along a band B

be mutually disjoint oriented 2‐disks in \mathbb{R}^{3} such that each B_{i} is a band attached to L. \mathrm{A}

band surgery from L to L' along \mathcal{B} is denoted by L\rightarrow BL' or simply L\rightarrow L'.

For a band surgery L\rightarrow BL' , the realizing surface is a compact oriented surface, say \mathrm{F},
properly embedded in \mathbb{R}^{3}\times[a, b] defined by:

F\cap \mathbb{R}^{3}\times\{t\}=\left\{\begin{array}{ll}
L'\times\{t\} & \mathrm{f}\mathrm{o}\mathrm{r} t\in((a+b)/2, b]\\
L\cup \mathcal{B}\times\{t\} & \mathrm{f}\mathrm{o}\mathrm{r} t=(a+b)/2\\
L\times\{t\} & \mathrm{f}\mathrm{o}\mathrm{r} t\in[a, (a+b)/2).
\end{array}\right.
This realizing surface is denoted by F(L\rightarrow BL')_{[a,b]}.

Let \mathcal{L} : L_{1}\rightarrow L_{2}\rightarrow\ldots\rightarrow L_{m} be a band surgery sequence. The realizing surface
F(\mathcal{L})_{[a,b]} of L in \mathbb{R}^{3}\times[a, b] with a division a=t_{1}<t_{2}<\ldots<t_{m}=b is the union of the

realizing surfaces F(L_{i}\rightarrow L_{i+1})_{[t_{i},t_{i+1}]} for i=1, m-1 , see the left of Figure 8. (Note
that the ambient isotopy class of the realizing surface F(\mathcal{L})_{[a,b]} does not depend on the

choice of a division.) If the links L_{1} and L_{m} are trivial links, then there exist disk systems
\mathcal{D} and \mathcal{D}' in \mathbb{R}^{3} with \partial D=L_{1} and \partial D'=L_{m} . Then we obtain a closed oriented surface

\overline{F}(\mathcal{L})_{[a,b]}:=\mathcal{D}\times\{a\}\cup F(\mathcal{L})_{[a,b]}\cup \mathcal{D}'\times\{b\}
in \mathbb{R}^{3}\times[a, b] , which we call the ctosed realizing surface of \mathcal{L} , see the right of Figure 8. Note

that by Horibe‐Yanagawa�s lemma shown in [5], the equivalence class of \overline{F}(L)_{[a,b]} does not

depend on choices of disk systems \mathcal{D} and \mathcal{D}' . We say that an embedded surface‐link is in

a normal form if it is a closed realizing surface \overline{F}(\mathcal{L})_{[a,b]} of a band surgery sequence \mathcal{L}.

Theorem 4.1 ([5]) Every embedded surface‐link with  $\mu$ components and  g total genus is

equivalent to the closed realizing surface of a band surgery sequence

O\rightarrow L_{-}\rightarrow L_{0}\rightarrow L_{+}\rightarrow O',

where O and O' are trivial links, L_{-} and L_{+} are  $\mu$ ‐component links and  L_{0} is a( $\mu$+g)-
component link.

A ribbon surface‐link is characterized in terms of normal forms as follows.
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Figure 8: The realizing surface F(L_{1^{-}}^{B}3L_{2^{-}}^{B}SL_{3})_{[-2,2]} , and the closed realizing surface \overline{F}(L_{1}\rightarrow^{B}L_{2^{-}}^{B}3
L_{3})_{[-2,2]}

Theorem 4.2 ([5]) An embedded surface‐link is ribbon if and only if it is equivalent to

the closed realizing surface of a band surgery sequence

O\rightarrow L\rightarrow O,

where O is a trivial link and the band surgery L\rightarrow O is the inverse of O\rightarrow L.

4.2 Normal forms for immersed surface‐links

Let L be a link and L' a link obtained from L by applying some crossing changes. There

is a homotopy (g_{s} : M^{1}\rightarrow \mathbb{R}^{3}|s\in[0,1]) of the source circles M^{1} of the link into \mathbb{R}^{3}
with g_{0}(M^{1})=L and g_{1}(M^{1})=L' such that each g_{s} , except s=1/2 ,

is an embedding
of M^{1} and at s=1/2 intersections occur. We call such a homotopy a crossing change
deformation. A crossing change deformation from L to L' is denoted by L\rightarrow L'.

For a crossing change deformation L\rightarrow L' by a homotopy (g_{s}|s\in[0,1 the realizing
surface is a compact oriented surface, say \mathrm{F}

, properly immersed in \mathbb{R}^{3}\times[a, b] defined by:

F\cap \mathbb{R}^{3}\times\{t\}=g_{s}(L)\times\{t\} for t\in[a, b],
where s=(t-a)/(b-a) . This realizing surface is denoted by F(L\rightarrow L')_{[a,b]}.

A link is called an H ‐trivial link with k Hopf links if it is a split union of a trivial link

and k Hopf links for some k\geq 0 . An H‐trivial link with k Hopf links can be transformed

into a trivial link by k crossing changes. We call a crossing change deformation determined

by the crossing changes a Hopf‐splitting deformation.
Let \mathcal{L} : L_{1}\rightarrow L_{2}\rightarrow\ldots\rightarrow L_{m} be a band surgery sequence with H‐trivial links L_{1} and

L_{m} . The realizing surface F(\mathcal{L})_{[a+ $\epsilon$,b-$\epsilon$']} in \mathbb{R}^{3}\times[a+ $\epsilon$,  b- $\epsilon$ for some small  $\epsilon$, $\epsilon$'>0 ,
is

extended to an oriented surface

F(\mathcal{L})_{[a,b]}^{\mathrm{x}}:=F(L_{1}'\rightarrow L_{1})_{[a,a+ $\epsilon$]}\cup F(\mathcal{L})_{1- $\xi$ j'}a+ $\epsilon$,b]\cup F(L_{m}\rightarrow L_{m}')_{[b-$\epsilon$',b]}
in \mathbb{R}^{3}\times[a, b] , where Lí \rightarrow Ll is the inverse operation of a Hopf‐splitting deformation and

 L_{m}\rightarrow L_{m}' is a Hopf‐splitting deformation. Since links Lí and L_{m}' are trivial links, there

exist disk systems \mathcal{D} and \mathcal{D}' in \mathbb{R}^{3} with \partial \mathcal{D}=L\'{i} and \partial \mathcal{D}'=L_{m}' . Then we obtain a closed

oriented surface

\overline{F}(\mathcal{L})_{[a,b]}^{\times}:=\mathcal{D}\times\{a\}\cup F(\mathcal{L})_{[a,b]}^{\times}\cup \mathcal{D}\times\{b\}
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Figure 9: The closed realizing surface \overline{F}(L_{1^{-3L_{2}-3L_{3})_{[-3,3]}^{\times}}}^{B\mathcal{B}}

in \mathbb{R}^{3}\times[a, b] , which we call the closed realizing surface of \mathcal{L} . See Figure 9. We say that

an immersed surface‐link is in a normal form if it is a closed realizing surface \overline{F}(\mathcal{L})_{[a,b]}^{\times} of

a band surgery sequence \mathcal{L}.

Theorem 4.3 ([4]) Every immersed surface‐link with  $\mu$ components and  g total genus is

equivalent to the closed realizing surface of a band surgery sequence

O\rightarrow L_{-}\rightarrow L_{0}\rightarrow L_{+}\rightarrow O',

where O and O' are H‐trivial links, L_{-} and L+ are  $\mu$ ‐component links and  L_{0} is a( $\mu$+g)-
component link.

A ribbon‐clasp surface‐link is characterized in terms of normal forms as follows.

Theorem 4.4 ([4]) An immersed surface‐link is ribbon‐clasp if and only if it is equivalent
to the closed realizing surface of a band surgery sequence

O\rightarrow L\rightarrow O,

where O is an H‐trivial link and the band surgery L\rightarrow O is the inverse of O\rightarrow L.

These theorems are generalization of Theorem 4.1 and Theorem 4.2.
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