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1 Introduction

A surface‐link is a closed surface smoothly embedded in Euclidean 4‐space \mathbb{R}^{4}. A surface‐
knot is a one component surface‐link. A2‐sphere link is sometimes called a 2‐link. A2‐link

of one component is called a 2‐knot. Two surface‐links \mathcal{L} and \mathcal{L}' in \mathbb{R}^{4} are equivalent if

they are ambient isotopic, that is, there is an orientation preserving homeomorphism
h : \mathbb{R}^{4}\rightarrow \mathbb{R}^{4} such that h(\mathcal{L})=\mathcal{L}' or, equivalently, there exists a smooth family of

diffeomorphisms f_{s} : \mathbb{R}^{4}\rightarrow \mathbb{R}^{4}(s\in[0,1]) such that f_{0}=\mathrm{i}\mathrm{d}_{\mathbb{R}^{4}} ,
the identity of \mathbb{R}^{4}

,
and

f_{1}(\mathcal{L})=\mathcal{L}' . If each component \mathcal{K}_{i} of a surface‐link \mathcal{L}=\mathcal{K}_{1}\cup\cdots\cup \mathcal{K}_{ $\mu$}( $\mu$\geq 1) is oriented,
then \mathcal{L} is called an oriented surface‐link. Two oriented surface‐links \mathcal{L} and \mathcal{L}' are equivalent
if the restriction h|_{\mathcal{L}} : \mathcal{L}\rightarrow \mathcal{L}' of h is also orientation preserving.

A marked graph diagram is a link diagram in \mathbb{R}^{2} possibly with some 4‐valent vertices

in which each 4‐valent vertex has a marker indicated by a small segment ��—�� S. J.

Lomonaco, Jr. [15] and K. Yoshikawa [18] introduced a method of presenting surface‐links

using marked graph diagrams. Indeed, every surface‐link is presented by a marked graph
diagram (cf. [15, 18]) and such a presentation diagram is unique up to Yoshikawa moves

(see Theorem 2.3). By using marked graph diagram presentation for surface‐links, some

properties and invariants of surface‐links were studied in [1, 2, 4, 6, 8, 9, 12, 13, 14, 16, 18].
In this short survey paper, we give a brief introduction to marked graph diagram presen‐

tation of surface‐links and a method of constructing ideal coset invariants for surface‐links

introduced in [4, 14] by means of a polynomial invariant \ll\cdot\gg for marked graphs in \mathbb{R}^{3}
defined by using a state‐sum model with classical link invariants as its state evaluation.

Section 2 presents marked graph diagram presentation of surface‐links. Section 3 deals

with the polynomial invariant \ll\cdot\gg for marked graphs in \mathbb{R}^{3} . Section 4 discusses ideal

coset invariants derived from the polynomial \ll\cdot\gg . An extended version of this paper

will be appear in elsewhere.

2 Marked graph diagrams of surface‐links

A marked graph is a spatial graph  G in \mathbb{R}^{3} such that G is a finite regular graph possibly
with 4‐valent vertices, say v_{1}, v_{2} ,

. . .

, v_{n} ; each v_{i} is a rigid vertex, i.e., we fix a sufficiently
small rectangular neighborhood N_{i}\cong\{(x, y)\in \mathbb{R}^{2}|-1\leq x, y\leq 1\} , where v_{i} corresponds
to the origin and the edges incident to v_{i} are represented by x^{2}=y^{2} ; each v_{i} has a marker,
which is the interval on N_{i} given by \displaystyle \{(x, 0)\in \mathbb{R}^{2}|-\frac{1}{2}\leq x\leq\frac{1}{2}\} . Two marked graphs are
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equivalent if they are ambient isotopic in \mathbb{R}^{3} with keeping rectangular neighborhoods and

markers.

An orientation of a marked graph G is a choice of an orientation for each edge of G

in such a way that every vertex in G looks like \geq $\xi$ or \ovalbox{\tt\small REJECT} . A marked graph is said

to be orientable if it admits an orientation. Otherwise, it is said to be nonorientable. By
an oriented marked graph we mean an orientable marked graph with a fixed orientation.

Two oriented marked graphs are equivalent if they are ambient isotopic in \mathbb{R}^{3} with keeping
rectangular neighborhoods, orientation and markers. An oriented marked graph G in \mathbb{R}^{3}

can be described as usual by a diagram D in \mathbb{R}^{2}
, which is an oriented link diagram in \mathbb{R}^{2}

possibly with some marked 4‐valent vertices whose incident four edges have orientations

illustrated as above, and is called an oriented marked graph diagram of G (cf. Figure 1).

Figure 1: Oriented marked graph diagrams and a nonorientable marked graph diagram

Two oriented marked graph diagrams in \mathbb{R}^{2} represent equivalent oriented marked

graphs in \mathbb{R}^{3} if and only if they are transformed into each other by a finite sequence

of oriented mark preserving rigid vertex 4‐regular spatial graph moves (simply, oriented

mark preserving RV4 moves) \mathrm{r}_{1}, $\Gamma$_{1}', $\Gamma$_{2}, $\Gamma$_{3}, $\Gamma$_{4}, $\Gamma$_{4}' and $\Gamma$_{5} shown in Figure 2, which consists

Yoshikawa moves of type I (see Theorem 2.3).

$\Gamma$_{1} :

 $\Gamma$ í :

 $\Gamma$_{2} :

$\Gamma$_{3} :

$\Gamma$_{4} :

$\Gamma$_{4}' : \backslash *_{-}t
$\Gamma$_{5} :

\supset
\vec{-} \supset
\vec{-} \mathfrak{D}\mathrm{C}

\leftarrow^{\rightarrow}

\leftarrow^{\vec{}}

\leftarrow^{\vec{}} /*-\searrow \mathrm{t}_{\rangle}
Figure 2: Oriented mark preserving RV4 moves
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An unoriented marked graph diagram or, simply, a marked graph diagram is a nonori‐

entable or an orientable but not oriented marked graph diagram in \mathbb{R}^{2} . Two marked

graph diagrams in \mathbb{R}^{2} represent equivalent marked graphs in \mathbb{R}^{3} if and only if they are

transformed into each other by a finite sequence of the moves $\Omega$_{1}, $\Omega$_{2}, $\Omega$_{3}, $\Omega$_{4}, $\Omega$_{4}' and $\Omega$_{5)}
where $\Omega$_{i} stands for the move $\Gamma$_{i} without orientation.

For an (oriented) marked graph diagram D
, let L_{-}(D) and L_{+}(D) be the (oriented)

link diagrams obtained from D by replacing each marked vertex \timeswith) (and ,

respectively, as illustrated in Figure 3. We call L_{-}(D) and L_{+}(D) the negative resolution

and the positive resolution of \mathrm{D}
, respectively. An (oriented) marked graph diagram D is

admissible if both resolutions L_{-}(D) and L_{+}(D) are trivial link diagrams.

Figure 3: Marked graph diagrams and their resolutions

Let D be a given admissible marked graph diagram with marked vertices v_{1} ,
. . . , v_{n}.

Define a surface F(D)\subset \mathbb{R}^{3}\times[-1, 1] by

(\mathbb{R}_{t}^{3}, F(D)\cap \mathbb{R}_{t}^{3})=\left\{\begin{array}{ll}
(\mathbb{R}^{3}, L_{+}(D)) & \mathrm{f}\mathrm{o}\mathrm{r} 0<t\leq 1,\\
(\mathbb{R}^{3}, L_{-}(D)\cup(\bigcup_{i=1}^{n}B_{i})) & \mathrm{f}\mathrm{o}\mathrm{r} t=0,\\
(\mathbb{R}^{3}, L_{-}(D)) & \mathrm{f}\mathrm{o}\mathrm{r} -1\leq t<0,
\end{array}\right.
where \mathbb{R}_{t}^{3} :=\{(x_{1}, x_{2}, X3, x_{4})\in \mathbb{R}^{4}|x_{4}=t\} and B_{i}(1\leq i\leq n) is a band attached to

L_{-}(D) at each marked vertex v_{i} as illustrated in Figure 4. We call F(D) the proper

surface associated with D.

\rightarrow \displaystyle \frac{\mathrm{B}_{\mathrm{i}}}{} \mathrm{L}-(\mathrm{D})\cup\{\mathrm{B}_{\mathrm{i}}\}

Figure 4: A band attached to L_{-}(D) at v_{i}

When D is oriented, L_{-}(D) and L_{+}(D) have the orientations induced from the ori‐

entation of D (cf. Figure 3), We assume that the proper surface F(D) is oriented so

that the induced orientation on L_{+}(D)=\partial F(D)\cap \mathbb{R}_{1}^{3} matches the orientation of L_{+}(D) .
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Since D is admissible, we can obtain a surface‐link from F(D) by attaching trivial disks in

\mathbb{R}^{3}\times[1, \infty) and another trivial disks in \mathbb{R}^{3}\times(-\infty , 1]. We denote the resulting (oriented)
surface‐link by \mathcal{L}(D) , and call it the (oriented) surface‐link associated with D . It is well

known that the isotopy type of \mathcal{L}(D) does not depend on the choices of trivial disks (cf.
[5, 7 Figure 5 shows a schematic picture of the surface‐link \mathcal{L}(D) associated with a

marked graph diagram D.

\mathrm{D}

\mathrm{L}_{-}(\mathrm{D})

\mathcal{L}(D)

Figure 5: A surface‐link \mathcal{L}(D) associated with a marked graph diagram D

Definition 2.1. Let \mathcal{L} be an (oriented) surface‐link in \mathbb{R}^{4} . We say that \mathcal{L} is presented
by an (oriented) marked graph diagram D if \mathcal{L} is ambient isotopic to the (oriented)
surface‐link \mathcal{L}(D) in \mathbb{R}^{4}.

Let D be an admissible (oriented) marked graph diagram. By definition, \mathcal{L}(D) is

presented by D.

From now on, we show that any (oriented) surface‐link is presented by an admissible

(oriented) marked graph diagram. It is well known [7] that any surface‐link \mathcal{L} in \mathbb{R}^{4}=
\mathbb{R}^{3}\times \mathbb{R} can be deformed into a surface‐link L' ,

called a hyperbolic splitting of \mathcal{L} , by an

ambient isotopy of \mathbb{R}^{4} in such a way that the projection p:\mathcal{L}'\rightarrow \mathbb{R} satisfies the followings:

all critical points are non‐degenerate,

all the index 0 critical points (minimal points) are in \mathbb{R}_{-1}^{3},
all the index 1 critical points (saddle points) are in \mathbb{R}_{0}^{3},
all the index 2 critical points (maximal points) are in \mathbb{R}_{1}^{3}.

Let \mathcal{L} be a surface‐link and let \mathcal{L}' be a hyperbolic splitting of \mathcal{L} . Then the cross‐section

\mathcal{L}Ó =\mathcal{L}
�

\cap \mathbb{R}_{0}^{3} at t=0

is a spatial 4‐valent regular graph in \mathbb{R}_{0}^{3} . We give a marker at each 4‐valent vertex (saddle
point) that indicates how the saddle point opens up above as illustrated in Figure 6.

When \mathcal{L} is an oriented surface‐link, we choose an orientation for each edge of \mathcal{L} Ó so

that it coincides with the induced orientation on the boundary of \mathcal{L}'\cap \mathbb{R}^{3}\times(-\infty, 0] by
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\times
Figure 6: A marker at a 4‐valent vertex

the orientation of \mathcal{L}' inherited from the orientation of \mathcal{L} . The resulting (oriented) marked

graph G := \mathcal{L} Ó is called an (oriented) marked graph presenting \mathcal{L} . A diagram D of the

(oriented) marked graph G is clearly admissible, and is called an (oriented) marked graph
diagram or (oriented) ch‐diagram presenting \mathcal{L} . In conclusion, we state the followings.

Theorem 2.2 ([7]). (1) Let D be an admissible (oriented) marked graph diagram. Then

there is an (oriented) surface‐link \mathcal{L} presented by D.

(2) Let \mathcal{L} be an (oriented) surface‐link. Then there is an admissible (oriented) marked

graph diagram D presenting \mathcal{L}.

Theorem 2.3 ([9, 10, 17 (1) Two oriented marked graph diagrams present the same

oriented surface‐link if and only if they are transformed into each other by a finite sequence
of oriented mark preserving RV4 moves in Figure 2, called oriented Yoshikawa moves of
type I

, and oriented Yoshikawa moves of type II in Figure 7.

$\Gamma$_{6} : \underline{\rightarrow} \supset
$\Gamma$_{6}' : \leftarrow^{\vec{}} \supset

$\Gamma$_{7} : \vec{-}

$\Gamma$_{8} :

Figure 7: Oriented Yoshikawa moves of type II

(2) Two unoriented marked graph diagrams present the same unoriented surface‐link

if and only if they are transformed into each other by a finite sequence of unoriented mark

preserving RV4 moves $\Omega$_{1}, $\Omega$_{2}, $\Omega$_{3}, $\Omega$_{4}, $\Omega$_{4}', $\Omega$_{5} ,
called unoriented Yoshikawa moves of type

I
, and unoriented Yoshikawa moves of type II $\Omega$_{6}, $\Omega$_{6)}'$\Omega$_{7} and $\Omega$_{8} ,

where $\Omega$_{i} stands for the

move $\Gamma$_{i} without orientation.
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3 Polynomial invariants for marked graphs in \mathbb{R}^{3} via classical

link invariants

Let R be a commutative ring with the additive identity 0 and the multiplicative identity
1 and let

[ ] : {classical knots and links in \mathbb{R}^{3} } \rightarrow R

be a regular or an ambient isotopy invariant such that for a unit  $\alpha$\in R and an element

 $\delta$\in R,

[_{/}^{\backslash }<)]= $\alpha$[)],
[K\mathrm{O}]= $\delta$[K] , (3.2)

[_{/}^{\backslash } . (3.1)

where K\mathrm{O} denotes any addition of a disjoint circle \mathrm{O} to a classical knot or link diagram
K.

For a given marked graph diagram D
,

let [[D]](x, y) ( [[\mathrm{D}]] for short) be a polynomial
in R[x, y] defined by the following two rules:

(L1) [[D]]=[D] if D is a link diagram,

(L2) [[\rangle\langle]]=[\left\{\begin{array}{l}
\\

\end{array}\right\}]x+[[)(]]y.
When D is an oriented marked graph diagram and [ ] is an invariant for oriented

links, then [[D]] is defined by the rules:

(L1) [[D]]=[D] if D is an oriented link diagram,

(L2) [[\S $\xi$]]=[\left\{\begin{array}{l}
\aleph-\nearrow\\
\nearrow\approx
\end{array}\right\}]x+[[) $\zeta$]]y)
(L3) =[\left\{\begin{array}{l}
\backslash \rightarrow\\
)=
\end{array}\right\}]_{X}+[[2\backslash \uparrow]]y.

Let D=D_{1}\cup\cdots\cup D_{m} be an oriented link diagram and let w(D_{i}) be the usual writhe

of the component D_{i} . The self‐writhe sw(D) of D is defined to be the sum

sw(D)=\displaystyle \sum_{i=1}^{m}w(D_{i}) .

Now let D be a marked graph diagram. We choose an arbitrary orientation for each

component of L_{+}(D) and L_{-}(D) . When D is oriented, we choose orientations for L_{+}(D)
and L_{-}(D) induced from the orientation of D . We define the self‐writhe sw(D) of D by

sw(D)=\displaystyle \frac{sw(L_{+}(D))+sw(L_{-}(D))}{2},
where sw(L_{+}(D)) and sw(L_{-}(D)) are independent of the choice of orientations because

the writhe of each component of L_{+}(D) and L_{-}(D) is independent of the choice of orien‐

tation for the component.
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It is noted that the self‐writhe sw(D) is invariant under Yoshikawa moves except the
move $\Omega$_{1} . For $\Omega$_{1} and its mirror move, we have

Definition 3.1. Let D be an (oriented) marked graph diagram. We define \ll D\gg(x, y)
( \ll D\gg for short) to be the polynomial in variables  x and y with coefficients in R given
by

\ll D\gg=$\alpha$^{-sw(D)}[[D]](x, y)\in R[x, y].
Let D be an (oriented) marked diagram. A state of D is an assignment of T_{\infty} or T_{0} to

each marked vertex in D . Let S(D) be the set of all states of D . For each state  $\sigma$\in \mathcal{S}(D) ,

let D_{ $\sigma$} denote the (oriented) link diagram obtained from D by replacing marked vertices

of D with two trivial 2‐tangles according to the assignment T_{\infty} or T_{0} by the state  $\sigma$ :

\rangle\langle T_{\infty}\rightarrow, \rangle\langle T_{0}\rightarrow)(\cdot
 3_{T_{\infty}} $\xi$\rightarrow\approx\mapsto, \S_{T_{0}} $\xi$\rightarrow \mathrm{j} $\zeta$,

\geq\leq T_{\infty}\rightarrow\infty\mapsto �  3_{T_{0}}\leq\rightarrow)\uparrow.
Then \ll D\gg has the following state‐sum formula:

\displaystyle \ll D\gg=$\alpha$^{-sw(D)}\sum_{ $\sigma$\in \mathcal{S}(D)}[D_{ $\sigma$}]x^{ $\sigma$(\infty)}y^{ $\sigma$(0)},
where  $\sigma$(\infty) and  $\sigma$(0) denote the numbers of the assignment T_{\infty} and T_{0} of the state  $\sigma$,

respectively.

Theorem 3.2 ([14]). Let G be an (oriented) marked graph in \mathbb{R}^{3} and let D be an

(oriented) marked graph diagram of G . For any given regular or ambient isotopy invariant

[ ] : {classical (oriented) links in \mathbb{R}^{3} } \rightarrow R

satisfying the properties (3.1) and (3.2), the polynomial \ll D\gg is an invariant for

(oriented) Yoshikawa moves of type I, and therefore it is an invariant of the (oriented)
marked graph  G in \mathbb{R}^{3}.

4 Ideal coset invariants for surface‐links

An oriented n ‐tangle diagram (n\geq 1) is an oriented link diagram T in the rectangle
I^{2}=[0, 1]\times[0 ,

1 ] in \mathbb{R}^{2} such that T transversely intersect with (0,1)\times\{0\} and (0,1)\times\{1\}
in n distinct points, respectively, called the endpoints of T.
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Let T_{3}^{\mathrm{o}\mathrm{r}\mathrm{i}} and T_{4}^{\mathrm{o}\mathrm{r}\mathrm{i}} denote the set of all oriented 3‐ and 4‐tangle diagrams such that the

orientations of the arcs of the tangles intersecting the boundary of I^{2} coincide with the

orientations as shown in (a) and (b) of Figure 8, respectively.

(a) (b)

Figure 8: Boundaries of 3, 4‐tangle diagrams

For U\in T_{3}^{\mathrm{o}\mathrm{r}\mathrm{i}} and V\in T_{4}^{\mathrm{o}\mathrm{r}\mathrm{i}} , let R(U) , R^{*}(U) , S(V) and S^{*}(V) denote the oriented link

diagrams obtained from the tangles U and V by closing as shown in Figures 9 and 10.

Figure 9: Closing operations R and R^{*} of a 3‐tangle U

\mathrm{S}(\mathrm{V}) \mathrm{S}^{*}(\mathrm{V})

Figure 10: Closing operations S and S^{*} of a 4‐tangle V

Let T_{3} and T_{4} denote the set of all 3‐ and 4‐tangle diagrams without orientations,
respectively. For U\in T_{3} and V\in T_{4} ,

let R(U) , R^{*}(U) , S(V) and S^{*}(V) be the link

diagrams obtained by the same way as above forgetting orientations.
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Definition 4.1 ([4]). For any given regular or ambient isotopy invariant

[ ] : {classical (oriented) links in \mathbb{R}^{3} } \rightarrow R

satisfying the properties (3.1) and (3.2), the [ ] obstruction ideal (or simply, [ ] ideal) I

is defined to be the ideal of R[x, y] generated by the polynomials in R[x, y] :

P_{1}= $\delta$ x+y-1,

P_{2}=x+ $\delta$ y-1,

P_{U}=([R(U)]-[R^{*}(U)])xy, U\in T_{3}(T_{3}^{\mathrm{o}\mathrm{r}\mathrm{i}}) ,

P_{V}=([S(V)]-[S^{*}(V)])xy, V\in T_{3}(T_{4}^{\mathrm{o}\mathrm{r}\mathrm{i}}) .

Theorem 4.2 ([4]). The map

: {(oriented) marked graph diagrams} \rightarrow R[x, y]/I
defined by

\overline{[]}(D)=\overline{[D]}:=\ll D\gg+I
for any (oriented) marked graph diagram D is an invariant for (oriented) surface‐links.

Remark 4.3. Let F be an extension field of R . By Hilbert Basis Theorem, the [ ] ideal

I is completely determined by a finite number of polynomials in F[x, y] , say p_{1}, p_{2} ,
. . .

, p_{r},

i.e., I=<p_{1}, p_{2} ,
. . .

, p_{r}>.

In the rest of the paper, we give the ideals of Kauffman bracket for unoriented links

and Kuperberg�s quantum A_{2} bracket for tangled trivalent graphs [11] and corresponding
ideal coset invariants for unoriented surface‐links and oriented surface‐links, respectively.
For more details, we refer to [3, 4, 14].

Let K be a knot or link diagram. The Kauffman bracket of K is a Laurent polynomial
\langle K\}=\{K\rangle(A)\in R=\mathbb{Z}[A, A^{-1}] defined by the following rules:

(B1) \langle \mathrm{O})=1,

(B2) \{\mathrm{O}K'\rangle= $\delta$\langle K'\rangle , where  $\delta$=-A^{2}-A^{-2},

(B3) \{/\backslash _{\backslash }\rangle=A\langle)(\rangle+A^{-1}\langle\rangle,
where \mathrm{O}K' denotes any addition of a disjoint circle \mathrm{O} to a knot or link diagram K'.

Note that the Kauffman bracket polynomial is invariant under Reidemeister moves except
the move $\Omega$_{1} and for  $\alpha$=-A^{3}

,
we have

\langle\grave{/}0\rangle= $\alpha$\langle)\rangle, \langle\infty_{/}\rangle=$\alpha$^{-1}\langle)\rangle.
Then the polynomial \ll D\gg=\ll D\gg(A, x, y) in Definition 3.1 is given by

\ll D\gg=(-A^{3})^{-sw(D)}[[D]](A, x, y)

=(-A^{3})^{-sw(D)}\displaystyle \sum_{ $\sigma$\in \mathcal{S}(D)}x^{ $\sigma$(\infty)}y^{ $\sigma$(0)}\langle D_{ $\sigma$}\rangle.
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Theorem 4.4. The Kauffman bracket ideal I is the ideal of \mathbb{Z}[A, A^{-1}, x, y] generated by

(-A^{2}-A^{-2})x+y-1,
x+(-A^{2}-A^{-2})y-1,
(A^{8}+A^{4}+1)xy.

Moreover, the map : {marked graph diagrams} \rightarrow \mathbb{Z}[A, A^{-1}, x, y]/I defined by

\overline{\langle D\}}=\ll D\gg+I for any marked graph diagram D is an invariant for unoriented

surface‐links.

For any given oriented marked graph diagram D , let \ll D\gg denote the polynomial
in \mathbb{Z}[a, a^{-1}, x, y] defined by the following recursive rules:

(1) \ll $\Theta$\gg=1.
(2) If D and D' are two oriented marked graph diagrams related by oriented Yoshikawa

moves $\Gamma$_{1} ,
 $\Gamma$ í,  $\Gamma$_{2}, $\Gamma$_{3}, $\Gamma$_{4}, $\Gamma$_{4}' , and $\Gamma$_{5}, then \ll D\gg=\ll D'\gg.

(3) \ll D\sqcup $\Theta$\gg=(a^{-6}+1+a^{6})\ll D\gg.
(4) \ll\S $\xi$\gg=x\ll\nearrow\approx\aleph_{-}/\gg+y\ll) $\zeta$\gg.
(5) a^{-9}\ll\nearrow^{\nwarrow\backslash }\gg-a^{9}\ll\backslash _{/}^{\nearrow}\gg=(a^{-3}-a^{3})\ll\backslash ,1\gg.

Theorem 4.5. Let I be the ideal of \mathbb{Z}[a, a^{-1}, x, y] generated by

(a^{-6}+1+a^{6})x+y-1,
x+(a^{-6}+1+a^{6})y-1,
(a^{12}+1)(a^{6}+1)^{2}xy.

Then the map \overline{\{\rangle}_{A_{2}} : {oriented marked graph diagrams} \rightarrow \mathbb{Z}[a, a^{-1}, x, y]/I defined

by \overline{\langle D\rangle}_{A_{2}}=\ll D\gg+I for any oriented marked graph diagram D is an invariant for

oriented surface‐links.

We remark that the ideal I of \mathbb{Z}[a, a^{-1}, x, y] in Theorem 4.5 is actually the ideal of Ku‐

perberg�s quantum A_{2} bracket for oriented links and the map \overline{\{\rangle}_{A_{2}} is the corresponding
ideal coset invariant for oriented surface‐links (cf. [3, 11 We close this section with the

following:

Question 4.6. Is there a classical link invariant [ ] such that the [ ] ideal is trivial?
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