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1 Introduction and main results

We study the global bifurcation diagram of the solutions of the supercritical semilinear
elliptic Dirichlet problem

Au+Af(u) =0 in B,
u>0 in B, (1)
u=0 on 0B,

where B = {z € R" : |z| < 1} with N > 3 and X is a nonnegative constant. In (1) we
assume that f has the form

fu) = u? +g(u), (2)

where p > pg := (N +2)/(N — 2) and g(u) is a lower order term.

By the symmetry result of Gidas-Ni-Nirenberg [9], every regular positive solution u
is radially symmetric and ||ul|;.. = %(0). It is known that all regular positive solutions
can be described as a smooth graph of a := ||ul| .« (see, e.g., [14]). Therefore, the
solution set becomes a curve and it is described as {(A(a), uq) taso With |[ug|re = a.
Since A(a) determines the structure of the positive solutions, we mainly study the
graph of A\(a).

There are several results about bifurcation diagrams of supercritical elliptic equa-
tions. Joseph-Lundgren [11] studied the Dirichlet problem

Au+A(u+1?=0 in B,
u>0 in B, (3)
u=20 on OB.



Define the exponent p;;, by

4

1+ , N > 11,
piL = N—-4—-2/N-1 -
00, 2< N <10,

which is called the Joseph-Lundgren exponent introduced in [11]. It was shown by [11]
that there exists A* > 0 and the following holds: When ps < p < py1, A(@) oscillates
infinitely many times around A\* and converges to A* as o — oo, and when p > pyr,
A(«) is strictly increasing and converges to A* as @ — oo. Note that, by a special
change of variables, the problem (3) can be transformed into an autonomous first order
system.

The study of the problem

Au+du+u? =0 in B,
u>0 in B, (4)
u=20 on OB

was initiated by Brezis-Nirenberg [1] in the critical case p = pg. Later, the supercritical
case p > pg was studied by Budd-Norbury [3], Budd [4], Merle-Peletier [13], Dolbeault-
Flores [8], and Guo-Wei [10]. Note that (4) is transformed into (1) with f(u) = u + u?
by changing u — A7Ty. The singular solution of (4) was constructed in [13]. According
to [3, 8, 10], the bifurcation curve has infinitely many turning points if pg < p < pyr.
In [10] the nonexistence of a turning point for large solutions was proved for a certain
range on p(> pyr). In general we cannot expect a change of variables that transforms
the equation into an autonomous first order system. In [10] they used the intersection
number between the regular and singular solution and their Morse indices. In [5, 6, 7]
Dancer studied infinitely many turning points for various analytic nonlinear terms,
using the analyticity. For other bifurcation diagrams of supercritical problems see
[12, 15, 16].

We mainly study the bifurcation curve in the case p > pjr, using the intersection
number. Let us introduce a collection of hypotheses of f(u) in (1).

(£1) f € CY([0,00)) and f(u) > 0 for u > 0.
(£2) f has the form (2), where g(u) satisfies
lg(w)| < Cour™® and |g'(u)| < CouP%"1 for u > ug
with some constants ug > 0, 6 > 0, and Cy > 0.

(£.3) f(u) is convex for u > 0.
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Let C denote the set of all the regular solution of (1). Assume that (f.1) and (£.2) hold.
Then it is known by [14] that C becomes a curve and is described as

C={(\(a),u(r,a)): 0<a<oo} withu(0,a)=a.

Since f(0) > 0, C emanates from (0, 0).

By a singular solution u of (1), we mean that u(r) is a classical solution of (1) for
0 < r <1 and satisfies u(r) — oo as r — 0. Define Hj .4 = {u(z) € Hj(B); u(z) =
u(|z|)}. Let p > ps, and assume that (f.1) and (f.2) hold. It was shown by [14] that
there exists a singular solution (X\*,u*) of (1) such that u* € Hj,,4 and satisfies

u*(r) = AWV ) (14 0(r") asr |0, (5)

where § > 0 is the constant in (£.2),

1
2 2 2 =1

We show the uniqueness of the singular solution (\*,u*) and the asymptotic behavior

of u(r,a) as a — oo.

Theorem 1. Let p > pg. Suppose that (f.1) and (£.2) hold.

(i) There exists a unique X\* > 0 such that the problem (1) with A = A* has a
singular solution u*. The solution u* is a unique singular solution of (1) with A = \*.
Furthermore, u* € Hy .4 and satisfies (5) with (6).

(1) Let (M), u(r,a)) be a solution of (1) with u(0,a) = a > 0. Then, as a — oo,

Ma) = X and u(r,a) = u*(r) in CL.((0,1]), (7)
where (A\*,u*) is the singular solution in (1).

Remark. The asymptotic properties (7) was shown by Merle-Peletier [13] for the
problem (4). We will give a slight simpler proof.

Following the idea by [14], we define three types of bifurcation diagrams according
to the intersection number of A(«) and A\* for & > 0. Let I C R be an interval, and
let f € C(I). We define the zero-number of f in I by

Zi(f) = sup{ne N: thereare aq,...,on41 €I, 01 <+ < apy1
such that f(a;)f(ciy1) <0for 1 <i<n}

if f changes sign in I, and Z;(f) = 0 otherwise. By 7|C] we denote the number of the
turning points of C.
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Definition. Put m = Zg o)(A(-) — A*).

(i) We say that C is of Type I if m = co. As a consequence, if C is of Type I, then
(1) has infinitely many regular solutions for A = A* and 7[C] = cc.

(ii) We say that C is of Type II if m = 0.

(iii) We say that C is of Type II1 if 1 < m < co. As a consequence, if (1) has at least
one and finitely many regular solutions for A = A*, then C is of Type III.

Since f(0) > 0, we have A(a) — 0 as @ — 0. Then the diagram C is of type II if
A(a) < A* for all @ > 0. Furthermore, we obtain the following.

Proposition 1. Assume that (f1)-(f.3) hold. Then C is of type II if and only if
Ma) is strictly increasing and M(a) T A* as a — oo.

As a consequence, C is of type II if and only if (1) has a unique regular solution for
each A € (0, X*) and no regular solution for A > A*. In particular, 7[C] = 0. For the
problem (3), the diagram C is of Type I if ps < p < pyz, and Type II if p > p;z, and
Type III does not appear.

Brezis-Vézques [2] studied the problem (1) in a general domain when f is C%,
nondecreasing, convex functions defined on [0, 0o) with

f(0)>0 and lim Lu)=oo.

u—oo U

It is well known that there exists a finite positive number ), called the extremal value,
such that

(i) for 0 < A < A, there exists a minimal classical solution uy € C%(B) of (1),
(ii) for A = X, there exists a weak solution @ of (1),
(iif) for A > X, there exists no weak solution of (1).

The solution %, called the extremal solution, is obtained as the increasing limit of wu,
as A T X, and it may be either classical or singular. In the problem (1), if the extremal
solution is singular, then X = \*, and by (iii), the curve C is of Type II. Let (\* u*)
be the singular solution of (1). It was shown by [2] that, if u* € H}(B), and if u* is
stable in the sense where

/ (V]2 — A F/(u*)¢%) da > 0 for all ¢ € CL(B),
B

then (A*,u*) is the extremal solution, and hence the curve C is of Type II.
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A partial result about the classification of the bifurcation diagrams was obtained
in [14] in terms of Morse index. By m(u*) we define

m(u*) = sup{dimX : X C Hj,4(B), H[¢] <0forall ¢€ X \{0}},

where

16 = [ (Vo =37 w)¢)d.
We call m(u*) the Morse index of u*.
Theorem A. [14, Theorems A and B] Suppose that N > 3 and (£.1)-(f.2) hold.
(i) If ps < p < pjrL, then the curve C is of Type I and m(u*) = co.
(ii) If p > ps1, then 0 < m(u*) < oco.

In this note, we consider the case p > p; and N > 11, and investigate the structure
of solution curve of (1) by means of the zero number of the solutions to

N —
¢+ —rldf +A (W) =0 for0<r<i, (8)

where (A*,u*(r)) be the singular solution of (1). We denote by z(¢) the the number
of the zeros of ¢(r) for 0 < r < 1. We see that, for any solution ¢ of (8), z(¢) = oo if
ps <P <pyL, and 0 < z(¢) < oo if p > py,. We show the following.

Theorem 2. Suppose that (£.1)—(£.3) hold. Then the following (i)—(iil) are equiva-
lent each other.

(i) The diagram C is of type II.

(i) For any ¢ € Cf.q(B),
[vopas = [ g
B B
(i) There exists a solution ¢ of (8) satisfying z(¢) = 0.

We consider the case where (8) has a solution ¢ satisfying 1 < z(¢) < oco. We will
see that if p > py, then there exists a unique solution ¢*(r) € C%(0,1] of

*\// N-1 5\ / * Pl ¥\ 1k
{(¢)+T(¢)+Af(u)¢ =0, 0<r<1, o)

r’¢*(r) > 1 as r |0,
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where

yolma)W=2) 2 \/(N—2)2_ 2 (N—Q—i).

2 N -2 4 p—1 p—1

Note that ¢, € (0,1) if p > pyr and ¢, = 0 if p = pyr. By the Strum comparison
theorem, we have |2(¢1) — z(¢2)| < 1 for any solutions ¢; and ¢, of (8). We see that,
for any nontrivial solution ¢ of (8), z(¢*) < z(¢). Then, Theorem 2 implies that the
curve C is of Type II if and only if 2(¢*) = 0.

We impose the condition on f:

(£.3)" f(u) is convex for u > ug for some ug > 0.

Theorem 3. Let N > 11 and p > pyr. Suppose that (£.1), (£2) and (£3)" hold.
Let ¢* be the unique solution of the problem (9). Assume that z(¢*) > 1. Then
T[C] > z(¢*) and (1) has at least z(¢*) regular solution(s) for X = \*. Assume, in
addition, that ¢*(1) # 0. Then u is nondegenerate if ||ul| . is large, and hence, there
exist constants M > M > 0 such that the curve {(A(a),u(r,a)); a > M} has no
turning point and M\(a) # X* for a > M.

Remark. Note that z(¢*) < co in the case N > 11 and p > py;.

Corollary 1. In addition to the hypotheses on N, p and f in Theorem 3, assume
that f is analytic on (—n, 00) for some n > 0. Let ¢* be the unique solution of the
problem (9). If z(¢*) > 1 and ¢*(1) # 0, then the curve C is of Type IIL.

We see that, if (£.1), (£f2) and (£.3)’ hold, then m(u*) = z(¢*). We are led to the
following conjecture.

Conjecture. [14, Conjecture 1.4] The bifurcation curve C has exactly m(u*)
turning point(s) for a certain class of nonlinear terms, i.e., 7[C] = m(u*).

Combining Theorem A and Theorems 2 and 3, we can classify bifurcation diagrams
as Table 1 shows.

Table 1 tells us that the structure of the regular solutions of (1) is encoded in the
singular solution. From the viewpoint of the Morse index of the singular solution,
a Type III bifurcation diagram is an intermediate case between Type I and Type II
bifurcation diagrams.
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Table 1: Classification of bifurcation diagrams for supercritical elliptic equations with
power growth.

2 Sufficient conditions for Types II and III

We will show some sufficient conditions for Types II and III.

Theorem 4. Let N > 11 and p > pyr. Suppose that f satisfies (£.1)—(£.3). Assume
in (2) that g(u) > 0 foru >0 and

g (u) < CauP™'  foru >0, (10)
where ,
(NZ2) _ pAp—l

Ca=——

Then the curve C is of Type II.

Remark. (i) We see that C4 > 0if p > pyr and C4 = 0 if p = pyr. Thus, in the
case p = pyr,, the condition (10) leads that ¢’(u) < 0 for u > 0.

(ii) Let p > pyr. Since we assume (f.2), the inequality (10) is satisfied for sufficiently
large u automatically. Thus the condition (10) require that inequality holds for u €
[0, uo) with some up > 0.

For a > 0, define f,(u) = f(u+ a) for u > 0. Let us consider the problem

Au+ Afo(u)=0, =z€ B,
u >0, z € B, (11)
u =0, r € 0B.

We obtain the following.

Theorem 5. Let N > 11 and p > pjr. Assume that f satisfies (£.1), (£.2) and
(£.3)’. Then there exists ag > 0 such that, for all a > ag, the curve C of the problem

(11) 4s of Type IL.

To show examples of Type III bifurcation diagram, we impose the condition on f:
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L I< m(u ) <0 Corollary 1 (m(u*) < T[C] < OO)
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(£1) f € CY0,00), f(u) > 0 for u > 0, and f(0) = 0.
Define F(u) by
F(u) = / ft)dt foru > 0.
0
We obtain the following.

Theorem 6. Suppose that p > p;r, and (£.1)°, (£2), (£.3) hold and f(u) is analytic
for u> 0. Assume that g(u) in (2) satisfies

g(u) = u? + O(u?™®) asu —0
and
g (u) = qui™ + O(uI™%) asu—0
with some constants q € (ps,psr) and dg > 0. Assume, in addition, that
(¢+1DF(u) <uf(u) foru=0.

Then there ezists a sequence {a,}2, such that a; > ag > -+ > a, > --- > 0 and the
following holds: If ani1 < a < a, for some n > 1, then the problem (11) has a Type
IIT bifurcation diagram and n < T[C] < oo hold.

A typical example of f in Theorem 6 is given by
fu)=vP +u? withps <q<pj <p. (12)

By changing the variables v +— au and A — al™PX, we see that (11) with (12) is
equivalent to the problem
Au+A{(u+1)? +b(u+1)7} =0 in B,

u>0 in B, (13)
u=0 on 0B,

where b := a?7P. We obtain the following:

Corollary 2. Let {a,}32, be as in Theorem 6. If al™® < b < al’f for somen > 1,
then the problem (13) has Type III bifurcation diagram and n < T[C] < oo.

We can intuitively understand Corollary 2 in the following way: If b > 0 is small,
then (13) is close to (3) with p > p,z, and hence, C is of Type II. When b is large,
the term b(u + 1)? with pg < g < py1, is dominant for a relatively small solution u and
C has turning point(s). However, if u is large, then (u + 1)? with p > p;; becomes
dominant and v is nondegenerate. Hence, this is an intermediate case. Moreover, the
lower bound of 7[C] can be controlled by b = a??.
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