Structure of positive solutions for semilinear elliptic equations with supercritical growth

Yasuhito Miyamoto

Graduate School of Mathematical Sciences, The University of Tokyo

and

Yūki Naito

Department of Mathematics, Ehime University

1 Introduction and main results

We study the global bifurcation diagram of the solutions of the supercritical semilinear elliptic Dirichlet problem

$$\begin{cases} \Delta u + \lambda f(u) = 0 & \text{in } B, \\ u > 0 & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$
(1)

where $B = \{x \in \mathbf{R}^N : |x| < 1\}$ with $N \ge 3$ and λ is a nonnegative constant. In (1) we assume that f has the form

$$f(u) = u^p + g(u), \tag{2}$$

where $p > p_S := (N+2)/(N-2)$ and g(u) is a lower order term.

By the symmetry result of Gidas-Ni-Nirenberg [9], every regular positive solution u is radially symmetric and $||u||_{L^{\infty}} = u(0)$. It is known that all regular positive solutions can be described as a smooth graph of $\alpha := ||u||_{L^{\infty}}$ (see, e.g., [14]). Therefore, the solution set becomes a curve and it is described as $\{(\lambda(\alpha), u_{\alpha})\}_{\alpha>0}$ with $||u_{\alpha}||_{L^{\infty}} = \alpha$. Since $\lambda(\alpha)$ determines the structure of the positive solutions, we mainly study the graph of $\lambda(\alpha)$.

There are several results about bifurcation diagrams of supercritical elliptic equations. Joseph-Lundgren [11] studied the Dirichlet problem

$$\begin{cases} \Delta u + \lambda (u+1)^p = 0 & \text{in } B, \\ u > 0 & \text{in } B, \\ u = 0 & \text{on } \partial B. \end{cases}$$
(3)

Define the exponent p_{JL} by

$$p_{JL} := \begin{cases} 1 + \frac{4}{N - 4 - 2\sqrt{N - 1}}, & N \ge 11, \\ \infty, & 2 \le N \le 10 \end{cases}$$

which is called the Joseph-Lundgren exponent introduced in [11]. It was shown by [11] that there exists $\lambda^* > 0$ and the following holds: When $p_S , <math>\lambda(\alpha)$ oscillates infinitely many times around λ^* and converges to λ^* as $\alpha \to \infty$, and when $p \ge p_{JL}$, $\lambda(\alpha)$ is strictly increasing and converges to λ^* as $\alpha \to \infty$. Note that, by a special change of variables, the problem (3) can be transformed into an autonomous first order system.

The study of the problem

$$\begin{cases} \Delta u + \lambda u + u^p = 0 & \text{in } B, \\ u > 0 & \text{in } B, \\ u = 0 & \text{on } \partial B \end{cases}$$
(4)

was initiated by Brezis-Nirenberg [1] in the critical case $p = p_S$. Later, the supercritical case $p > p_S$ was studied by Budd-Norbury [3], Budd [4], Merle-Peletier [13], Dolbeault-Flores [8], and Guo-Wei [10]. Note that (4) is transformed into (1) with $f(u) = u + u^p$ by changing $u \mapsto \lambda^{\frac{1}{p-1}u}$. The singular solution of (4) was constructed in [13]. According to [3, 8, 10], the bifurcation curve has infinitely many turning points if $p_S .$ In [10] the nonexistence of a turning point for large solutions was proved for a certain $range on <math>p(> p_{JL})$. In general we cannot expect a change of variables that transforms the equation into an autonomous first order system. In [10] they used the intersection number between the regular and singular solution and their Morse indices. In [5, 6, 7] Dancer studied infinitely many turning points for various analytic nonlinear terms, using the analyticity. For other bifurcation diagrams of supercritical problems see [12, 15, 16].

We mainly study the bifurcation curve in the case $p \ge p_{JL}$, using the intersection number. Let us introduce a collection of hypotheses of f(u) in (1).

(f.1) $f \in C^1([0,\infty))$ and f(u) > 0 for $u \ge 0$.

(f.2) f has the form (2), where g(u) satisfies

$$|g(u)| \leq C_0 u^{p-\delta}$$
 and $|g'(u)| \leq C_0 u^{p-\delta-1}$ for $u \geq u_0$

with some constants $u_0 \ge 0$, $\delta > 0$, and $C_0 > 0$.

(f.3) f(u) is convex for $u \ge 0$.

Let C denote the set of all the regular solution of (1). Assume that (f.1) and (f.2) hold. Then it is known by [14] that C becomes a curve and is described as

$$\mathcal{C} = \{(\lambda(\alpha), u(r, \alpha)): 0 < \alpha < \infty\} \text{ with } u(0, \alpha) = \alpha$$

Since f(0) > 0, C emanates from (0, 0).

By a singular solution u of (1), we mean that u(r) is a classical solution of (1) for $0 < r \le 1$ and satisfies $u(r) \to \infty$ as $r \to 0$. Define $H^1_{0,rad} = \{u(x) \in H^1_0(B); u(x) = u(|x|)\}$. Let $p > p_S$, and assume that (f.1) and (f.2) hold. It was shown by [14] that there exists a singular solution (λ^*, u^*) of (1) such that $u^* \in H^1_{0,rad}$ and satisfies

$$u^*(r) = A(\sqrt{\lambda^*}r)^{-\theta}(1+O(r^{\delta\theta})) \quad \text{as } r \downarrow 0, \tag{5}$$

where $\delta > 0$ is the constant in (f.2),

$$\theta = \frac{2}{p-1} \quad \text{and} \quad A := \left\{ \frac{2}{p-1} \left(N - 2 - \frac{2}{p-1} \right) \right\}^{\frac{1}{p-1}}.$$
(6)

We show the uniqueness of the singular solution (λ^*, u^*) and the asymptotic behavior of $u(r, \alpha)$ as $\alpha \to \infty$.

Theorem 1. Let $p > p_S$. Suppose that (f.1) and (f.2) hold.

(i) There exists a unique $\lambda^* > 0$ such that the problem (1) with $\lambda = \lambda^*$ has a singular solution u^* . The solution u^* is a unique singular solution of (1) with $\lambda = \lambda^*$. Furthermore, $u^* \in H^1_{0,rad}$ and satisfies (5) with (6).

(ii) Let $(\lambda(\alpha), u(r, \alpha))$ be a solution of (1) with $u(0, \alpha) = \alpha > 0$. Then, as $\alpha \to \infty$,

$$\lambda(\alpha) \to \lambda^* \quad and \quad u(r,\alpha) \to u^*(r) \quad in \ C^2_{loc}((0,1]),$$
(7)

where (λ^*, u^*) is the singular solution in (i).

Remark. The asymptotic properties (7) was shown by Merle-Peletier [13] for the problem (4). We will give a slight simpler proof.

Following the idea by [14], we define three types of bifurcation diagrams according to the intersection number of $\lambda(\alpha)$ and λ^* for $\alpha > 0$. Let $I \subset \mathbf{R}$ be an interval, and let $f \in C(I)$. We define the zero-number of f in I by

$$\mathcal{Z}_{I}(f) = \sup\{n \in \mathbf{N} : \text{ there are } \alpha_{1}, \dots, \alpha_{n+1} \in I, \ \alpha_{1} < \dots < \alpha_{n+1} \\ \text{ such that } f(\alpha_{i})f(\alpha_{i+1}) < 0 \text{ for } 1 \le i \le n\}$$

if f changes sign in I, and $\mathcal{Z}_I(f) = 0$ otherwise. By $\mathcal{T}[\mathcal{C}]$ we denote the number of the turning points of \mathcal{C} .

Definition. Put $m = \mathcal{Z}_{(0,\infty)}(\lambda(\cdot) - \lambda^*)$.

- (i) We say that C is of Type I if $m = \infty$. As a consequence, if C is of Type I, then (1) has infinitely many regular solutions for $\lambda = \lambda^*$ and $\mathcal{T}[C] = \infty$.
- (ii) We say that C is of Type II if m = 0.
- (iii) We say that C is of Type III if $1 \le m < \infty$. As a consequence, if (1) has at least one and finitely many regular solutions for $\lambda = \lambda^*$, then C is of Type III.

Since f(0) > 0, we have $\lambda(\alpha) \to 0$ as $\alpha \to 0$. Then the diagram \mathcal{C} is of type II if $\lambda(\alpha) \leq \lambda^*$ for all $\alpha > 0$. Furthermore, we obtain the following.

Proposition 1. Assume that (f.1)-(f.3) hold. Then C is of type II if and only if $\lambda(\alpha)$ is strictly increasing and $\lambda(\alpha) \uparrow \lambda^*$ as $\alpha \to \infty$.

As a consequence, C is of type II if and only if (1) has a unique regular solution for each $\lambda \in (0, \lambda^*)$ and no regular solution for $\lambda \geq \lambda^*$. In particular, $\mathcal{T}[\mathcal{C}] = 0$. For the problem (3), the diagram C is of Type I if $p_S , and Type II if <math>p \geq p_{JL}$, and Type III does not appear.

Brezis-Vázques [2] studied the problem (1) in a general domain when f is C^1 , nondecreasing, convex functions defined on $[0, \infty)$ with

$$f(0) > 0$$
 and $\lim_{u \to \infty} \frac{f(u)}{u} = \infty.$

It is well known that there exists a finite positive number $\overline{\lambda}$, called the extremal value, such that

- (i) for $0 < \lambda < \overline{\lambda}$, there exists a minimal classical solution $u_{\lambda} \in C^2(\overline{B})$ of (1),
- (ii) for $\lambda = \overline{\lambda}$, there exists a weak solution \overline{u} of (1),
- (iii) for $\lambda > \overline{\lambda}$, there exists no weak solution of (1).

The solution \overline{u} , called the extremal solution, is obtained as the increasing limit of u_{λ} as $\lambda \uparrow \overline{\lambda}$, and it may be either classical or singular. In the problem (1), if the extremal solution is singular, then $\overline{\lambda} = \lambda^*$, and by (iii), the curve \mathcal{C} is of Type II. Let (λ^*, u^*) be the singular solution of (1). It was shown by [2] that, if $u^* \in H_0^1(B)$, and if u^* is stable in the sense where

$$\int_{B} \left(|\nabla \phi|^2 - \lambda^* f'(u^*) \phi^2 \right) dx \ge 0 \quad \text{for all } \phi \in C^1_0(B),$$

then (λ^*, u^*) is the extremal solution, and hence the curve \mathcal{C} is of Type II.

A partial result about the classification of the bifurcation diagrams was obtained in [14] in terms of Morse index. By $m(u^*)$ we define

$$m(u^*) = \sup\{\dim X: X \subset H^1_{0,\mathrm{rad}}(B), \ H[\phi] < 0 \text{ for all } \phi \in X \setminus \{0\}\},\$$

where

$$H[\phi] = \int_B (|\nabla \phi|^2 - \lambda^* f'(u^*)\phi^2) dx$$

We call $m(u^*)$ the Morse index of u^* .

Theorem A. [14, Theorems A and B] Suppose that $N \ge 3$ and (f.1)–(f.2) hold.

- (i) If $p_S , then the curve <math>C$ is of Type I and $m(u^*) = \infty$.
- (ii) If $p > p_{JL}$, then $0 \le m(u^*) < \infty$.

In this note, we consider the case $p \ge p_{JL}$ and $N \ge 11$, and investigate the structure of solution curve of (1) by means of the zero number of the solutions to

$$\phi'' + \frac{N-1}{r}\phi' + \lambda^* f'(u^*)\phi = 0 \quad \text{for } 0 < r < 1,$$
(8)

where $(\lambda^*, u^*(r))$ be the singular solution of (1). We denote by $z(\phi)$ the the number of the zeros of $\phi(r)$ for 0 < r < 1. We see that, for any solution ϕ of (8), $z(\phi) = \infty$ if $p_S , and <math>0 \le z(\phi) < \infty$ if $p \ge p_{JL}$. We show the following.

Theorem 2. Suppose that (f.1)-(f.3) hold. Then the following (i)-(iii) are equivalent each other.

- (i) The diagram C is of type II.
- (ii) For any $\phi \in C^1_{0,\mathrm{rad}}(B)$,

$$\int_{B} |\nabla \phi|^2 dx \ge \lambda^* \int_{B} f'(u^*) \phi^2 dx.$$

(iii) There exists a solution ϕ of (8) satisfying $z(\phi) = 0$.

We consider the case where (8) has a solution ϕ satisfying $1 \leq z(\phi) < \infty$. We will see that if $p \geq p_{JL}$, then there exists a unique solution $\phi^*(r) \in C^2(0, 1]$ of

$$\begin{cases} (\phi^*)'' + \frac{N-1}{r}(\phi^*)' + \lambda^* f'(u^*)\phi^* = 0, \quad 0 < r < 1, \\ r^\nu \phi^*(r) \to 1 \quad \text{as} \quad r \downarrow 0, \end{cases}$$
(9)

where

$$\nu = \frac{(1 - \varepsilon_p)(N - 2)}{2}$$
 and $\varepsilon_p = \frac{2}{N - 2}\sqrt{\frac{(N - 2)^2}{4} - \frac{2p}{p - 1}\left(N - 2 - \frac{2}{p - 1}\right)}$.

Note that $\varepsilon_p \in (0,1)$ if $p > p_{JL}$ and $\varepsilon_p = 0$ if $p = p_{JL}$. By the Strum comparison theorem, we have $|z(\phi_1) - z(\phi_2)| \le 1$ for any solutions ϕ_1 and ϕ_2 of (8). We see that, for any nontrivial solution ϕ of (8), $z(\phi^*) \le z(\phi)$. Then, Theorem 2 implies that the curve C is of Type II if and only if $z(\phi^*) = 0$.

We impose the condition on f:

(f.3)' f(u) is convex for $u \ge u_0$ for some $u_0 \ge 0$.

Theorem 3. Let $N \ge 11$ and $p \ge p_{JL}$. Suppose that (f.1), (f.2) and (f.3)' hold. Let ϕ^* be the unique solution of the problem (9). Assume that $z(\phi^*) \ge 1$. Then $\mathcal{T}[\mathcal{C}] \ge z(\phi^*)$ and (1) has at least $z(\phi^*)$ regular solution(s) for $\lambda = \lambda^*$. Assume, in addition, that $\phi^*(1) \ne 0$. Then u is nondegenerate if $||u||_{L^{\infty}}$ is large, and hence, there exist constants $M \ge \tilde{M} > 0$ such that the curve $\{(\lambda(\alpha), u(r, \alpha)); \alpha > \tilde{M}\}$ has no turning point and $\lambda(\alpha) \ne \lambda^*$ for $\alpha > M$.

Remark. Note that $z(\phi^*) < \infty$ in the case $N \ge 11$ and $p \ge p_{JL}$.

Corollary 1. In addition to the hypotheses on N, p and f in Theorem 3, assume that f is analytic on $(-\eta, \infty)$ for some $\eta > 0$. Let ϕ^* be the unique solution of the problem (9). If $z(\phi^*) \ge 1$ and $\phi^*(1) \ne 0$, then the curve C is of Type III.

We see that, if (f.1), (f.2) and (f.3)' hold, then $m(u^*) = z(\phi^*)$. We are led to the following conjecture.

Conjecture. [14, Conjecture 1.4] The bifurcation curve \mathcal{C} has exactly $m(u^*)$ turning point(s) for a certain class of nonlinear terms, i.e., $\mathcal{T}[\mathcal{C}] = m(u^*)$.

Combining Theorem A and Theorems 2 and 3, we can classify bifurcation diagrams as Table 1 shows.

Table 1 tells us that the structure of the regular solutions of (1) is encoded in the singular solution. From the viewpoint of the Morse index of the singular solution, a Type III bifurcation diagram is an intermediate case between Type I and Type II bifurcation diagrams.

$$p_{S}
$$p \ge p_{JL} \xrightarrow{\text{Theorem A (ii)}} \begin{cases} m(u^{*}) = 0 & \Longrightarrow & \text{Type II} \\ m(u^{*}) = 0 & \Longrightarrow & (\mathcal{T}[\mathcal{C}] = 0) \end{cases}$$

$$f(\mathcal{T}[\mathcal{C}] = 0) \quad \text{Type III} \\ 1 \le m(u^{*}) < \infty \quad \overrightarrow{\text{Corollary 1}} \quad (m(u^{*}) \le \mathcal{T}[\mathcal{C}] < \infty) \end{cases}$$$$

Table 1: Classification of bifurcation diagrams for supercritical elliptic equations with power growth.

2 Sufficient conditions for Types II and III

We will show some sufficient conditions for Types II and III.

Theorem 4. Let $N \ge 11$ and $p \ge p_{JL}$. Suppose that f satisfies (f.1)–(f.3). Assume in (2) that $g(u) \ge 0$ for $u \ge 0$ and

$$g'(u) \le C_A u^{p-1} \quad for \ u \ge 0, \tag{10}$$

where

$$C_A = \frac{\frac{(N-2)^2}{4} - pA^{p-1}}{A^{p-1}}.$$

Then the curve C is of Type II.

Remark. (i) We see that $C_A > 0$ if $p > p_{JL}$ and $C_A = 0$ if $p = p_{JL}$. Thus, in the case $p = p_{JL}$, the condition (10) leads that $g'(u) \le 0$ for $u \ge 0$.

(ii) Let $p > p_{JL}$. Since we assume (f.2), the inequality (10) is satisfied for sufficiently large u automatically. Thus the condition (10) require that inequality holds for $u \in [0, u_0]$ with some $u_0 > 0$.

For $a \ge 0$, define $f_a(u) = f(u+a)$ for $u \ge 0$. Let us consider the problem

$$\begin{cases}
\Delta u + \lambda f_a(u) = 0, & x \in B, \\
u > 0, & x \in B, \\
u = 0, & x \in \partial B.
\end{cases}$$
(11)

We obtain the following.

Theorem 5. Let $N \ge 11$ and $p \ge p_{JL}$. Assume that f satisfies (f.1), (f.2) and (f.3)'. Then there exists $a_0 \ge 0$ such that, for all $a \ge a_0$, the curve C of the problem (11) is of Type II.

To show examples of Type III bifurcation diagram, we impose the condition on f:

(f.1)' $f \in C^1[0,\infty), f(u) > 0$ for u > 0, and f(0) = 0.

Define F(u) by

$$F(u) = \int_0^u f(t)dt \quad \text{for } u \ge 0.$$

We obtain the following.

Theorem 6. Suppose that $p \ge p_{JL}$ and (f.1)', (f.2), (f.3) hold and f(u) is analytic for u > 0. Assume that g(u) in (2) satisfies

$$g(u) = u^q + O(u^{q+\delta_0}) \quad as \ u \to 0$$

and

$$g'(u) = qu^{q-1} + O(u^{q-1+\delta_0}) \quad as \ u \to 0$$

with some constants $q \in (p_S, p_{JL})$ and $\delta_0 > 0$. Assume, in addition, that

$$(q+1)F(u) \le uf(u) \quad for \ u \ge 0.$$

Then there exists a sequence $\{a_n\}_{n=1}^{\infty}$ such that $a_1 > a_2 > \cdots > a_n > \cdots > 0$ and the following holds: If $a_{n+1} < a < a_n$ for some $n \ge 1$, then the problem (11) has a Type III bifurcation diagram and $n \le \mathcal{T}[\mathcal{C}] < \infty$ hold.

A typical example of f in Theorem 6 is given by

$$f(u) = u^p + u^q \quad \text{with } p_S < q < p_{JL} \le p.$$

$$(12)$$

By changing the variables $u \mapsto au$ and $\lambda \mapsto a^{1-p}\lambda$, we see that (11) with (12) is equivalent to the problem

$$\begin{cases} \Delta u + \lambda \left\{ (u+1)^p + b(u+1)^q \right\} = 0 & \text{in } B, \\ u > 0 & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$
(13)

where $b := a^{q-p}$. We obtain the following:

Corollary 2. Let $\{a_n\}_{n=1}^{\infty}$ be as in Theorem 6. If $a_n^{q-p} < b < a_{n+1}^{q-p}$ for some $n \ge 1$, then the problem (13) has Type III bifurcation diagram and $n \le \mathcal{T}[\mathcal{C}] < \infty$.

We can intuitively understand Corollary 2 in the following way: If b > 0 is small, then (13) is close to (3) with $p \ge p_{JL}$, and hence, C is of Type II. When b is large, the term $b(u+1)^q$ with $p_S < q < p_{JL}$ is dominant for a relatively small solution u and C has turning point(s). However, if u is large, then $(u+1)^p$ with $p \ge p_{JL}$ becomes dominant and u is nondegenerate. Hence, this is an intermediate case. Moreover, the lower bound of $\mathcal{T}[C]$ can be controlled by $b = a^{q-p}$.

References

- H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.
- H. Brezis and J. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443–469.
- [3] C. Budd, C and J. Norbury, Semilinear elliptic equations and supercritical growth, J. Differential Equations 68 (1987), 169–197.
- [4] C. Budd, Applications of Shil'nikov's theory to semilinear elliptic equations, SIAM J. Math. Anal. 20 (1989), 1069–1080.
- [5] E. Dancer, Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl. 178 (2000), 225–233
- [6] E. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math. 620 (2008), 213–233.
- [7] E. Dancer, Some bifurcation results for rapidly growing nonlinearities Discrete Contin. Dyn. Syst. 33 (2013), 153-161.
- [8] J. Dolbeault and I. Flores, Geometry of phase space and solutions of semilinear elliptic equations in a ball, Trans. Amer. Math. Soc. 359 (2007), 4073–4087.
- [9] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.
- [10] Z. Guo and J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent, Trans. Amer. Math. Soc. 363 (2011), 4777–4799.
- [11] D. Joseph and S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269.
- [12] A. Kosaka and Y. Miyamoto, The Emden-Fowler equation on a spherical cap of \mathbf{S}^N , preprint.
- [13] F. Merle and L. Peletier, Positive solutions of elliptic equations involving supercritical growth, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 49–62.
- [14] Y. Miyamoto, Structure of the positive solutions for supercritical elliptic equations in a ball, J. Math. Pures Appl. 102 (2014), 672–701.

- [15] Y. Miyamoto, Classification of bifurcation diagrams for elliptic equations with exponential growth in a ball, Ann. Mat. Pura Appl. **194** (2015), 931–952.
- [16] Y. Miyamoto, Structure of the positive radial solutions for the supercritical Neumann problem $\varepsilon^2 \Delta u - u + u^p = 0$ in a ball, J. Math. Sci. Univ. Tokyo **22** (2015), 685–739.

Yasuhito Miyamoto Graduate School of Mathematical Sciences, The University of Tokyo Tokyo 153-8914, Japan E-mail address: miyamoto@ms.u-tokyo.ac.jp

Yūki Naito Department of Mathematics, Ehime University Matsuyama 790-8577, Japan E-mail address: ynaito@ehime-u.ac.jp

> 東京大学大学院数理科学研究科 宮本 安人 愛媛大学大学院理工学研究科 内藤 雄基