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1 Introduction and main results

We study the global bifurcation diagram of the solutions of the supercritical semilinear

elliptic Dirichlet problem

\left\{\begin{array}{ll}
\triangle u+ $\lambda$ f(u)=0 & \mathrm{i}\mathrm{n} B,\\
u>0 & \mathrm{i}\mathrm{n} B,\\
u=0 & \mathrm{o}\mathrm{n} \partial B,
\end{array}\right. (1)

where B=\{x\in \mathrm{R}^{N} : |x|<1\} with N\geq 3 and  $\lambda$ is a nonnegative constant. In (1) we

assume that  f has the form

f(u)=u^{p}+g(u) , (2)

where p>p_{S} :=(N+2)/(N-2) and g(u) is a lower order term.

By the symmetry result of Gidas‐Ni‐Nirenberg [9], every regular positive solution u

is radially symmetric and \Vert u\Vert_{L\infty}=u(0) . It is known that all regular positive solutions

can be described as a smooth graph of  $\alpha$ :=\Vert u\Vert_{L^{\infty}} (see, e.g., [14]). Therefore, the

solution set becomes a curve and it is described as \{( $\lambda$( $\alpha$), u_{ $\alpha$})\}_{ $\alpha$>0} with \Vert u_{ $\alpha$}\Vert_{L}\infty= $\alpha$.
Since  $\lambda$( $\alpha$) determines the structure of the positive solutions, we mainly study the

graph of  $\lambda$( $\alpha$) .

There are several results about bifurcation diagrams of supercritical elliptic equa‐

tions. Joseph‐Lundgren [11] studied the Dirichlet problem

\left\{\begin{array}{ll}
\triangle u+ $\lambda$(u+1)^{p}=0 & \mathrm{i}\mathrm{n} B,\\
u>0 & \mathrm{i}\mathrm{n} B,\\
u=0 & \mathrm{o}\mathrm{n} \partial B.
\end{array}\right. (3)
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Define the exponent p_{JL} by

PJL :=\left\{\begin{array}{ll}
1+\frac{4}{N-4-2\sqrt{N-1}}, & N\geq 11,\\
\infty, & 2\leq N\leq 10,
\end{array}\right.
which is called the Joseph‐Lundgren exponent introduced in [11]. It was shown by [11]
that there exists $\lambda$^{*}>0 and the following holds: When p_{S}<p<p_{JL},  $\lambda$( $\alpha$) oscillates

infinitely many times around $\lambda$^{*} and converges to $\lambda$^{*} as  $\alpha$\rightarrow\infty
,

and when  p\geq p_{JL},

 $\lambda$( $\alpha$) is strictly increasing and converges to $\lambda$^{*} as  $\alpha$\rightarrow\infty . Note that, by a special

change of variables, the problem (3) can be transformed into an autonomous first order

system.

The study of the problem

\left\{\begin{array}{ll}
\triangle u+ $\lambda$ u+u^{p}=0 & \mathrm{i}\mathrm{n} B,\\
u>0 & \mathrm{i}\mathrm{n} B,\\
u=0 & \mathrm{o}\mathrm{n} \partial B
\end{array}\right. (4)

was initiated by Brezis‐Nirenberg [1] in the critical case p=p_{S} . Later, the supercritical
case p>p_{S} was studied by Budd‐Norbury [3], Budd [4], Merle‐Peletier [13], Dolbeault‐

Flores [8], and Guo‐Wei [10]. Note that (4) is transformed into (1) with f(u)=u+u^{p}
by changing u\displaystyle \mapsto $\lambda$\frac{1}{p-1}u . The singular solution of (4) was constructed in [13]. According
to [3, 8, 10], the bifurcation curve has infinitely many turning points if p_{S}<p<p_{JL}.

In [10] the nonexistence of a turning point for large solutions was proved for a certain

range on p(>p_{JL}) . In general we cannot expect a change of variables that transforms

the equation into an autonomous first order system. In [10] they used the intersection

number between the regular and singular solution and their Morse indices. In [5, 6, 7]
Dancer studied infinitely many turning points for various analytic nonlinear terms,

using the analyticity. For other bifurcation diagrams of supercritical problems see

[12, 15, 16].
We mainly study the bifurcation curve in the case p\geq p_{JL} , using the intersection

number. Let us introduce a collection of hypotheses of f(u) in (1).

(\mathrm{f}.1)f\in C^{1}([0, \infty)) and f(u)>0 for u\geq 0.

(f.2) f has the form (2), where g(u) satisfies

|g(u)|\leq C_{0}u^{p- $\delta$} and |g'(u)|\leq C_{0}u^{p- $\delta$-1} for u\geq u_{0}

with some constants u_{0}\geq 0,  $\delta$>0 ,
and C_{0}>0.

(f.3) f(u) is convex for u\geq 0.
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Let C denote the set of all the regular solution of (1). Assume that (f.1) and (f.2) hold.

Then it is known by [14] that C becomes a curve and is described as

C=\{( $\lambda$( $\alpha$), u(r,  $\alpha$)):0< $\alpha$<\infty\} with u(0,  $\alpha$)= $\alpha$.

Since f(0)>0, C emanates from (0,0) .

By a singular solution u of (1), we mean that u(r) is a classical solution of (1) for

0<r\leq 1 and satisfies  u(r)\rightarrow\infty as  r\rightarrow 0 . Define H_{0,\mathrm{r}\mathrm{a}\mathrm{d}}^{1}=\{u(x)\in H_{0}^{1}(B);u(x)=
u(|x|)\} . Let p>p_{S} ,

and assume that (f.1) and (f.2) hold. It was shown by [14] that

there exists a singular solution ($\lambda$^{*}, u^{*}) of (1) such that u^{*}\in H_{0,\mathrm{r}\mathrm{a}\mathrm{d}}^{1} and satisfies

u^{*}(r)=A(\sqrt{$\lambda$^{*}}r)^{- $\theta$}(1+O(r^{ $\delta \theta$})) as r\downarrow 0 , (5)

where  $\delta$>0 is the constant in (f.2),

 $\theta$=\displaystyle \frac{2}{p-1} and A:=\displaystyle \{\frac{2}{p-1}(N-2-\frac{2}{p-1})\}^{\frac{1}{p-1}} (6)

We show the uniqueness of the singular solution ($\lambda$^{*}, u^{*}) and the asymptotic behavior

of u(r,  $\alpha$) as  $\alpha$\rightarrow\infty.

Theorem 1. Let p>p_{S} . Suppose that (f.1) and (f.2) hold.

(i) There exists a unique $\lambda$^{*}>0 such that the problem (1) with  $\lambda$=$\lambda$^{*} has a

singular solution u^{*} . The solution u^{*} is a unique singular solution of (1) with  $\lambda$=$\lambda$^{*}.

Furthermore, u^{*}\in H_{0,\mathrm{r}\mathrm{a}\mathrm{d}}^{1} and satisfies (5) with (6).
(ii) Let ( $\lambda$( $\alpha$), u(r,  $\alpha$)) be a solution of (1) with u(0,  $\alpha$)= $\alpha$>0 . Then, as  $\alpha$\rightarrow\infty,

 $\lambda$( $\alpha$)\rightarrow$\lambda$^{*} and u(r,  $\alpha$)\rightarrow u^{*}(r) in C_{loc}^{2}((0,1 (7)

where ($\lambda$^{*}, u^{*}) is the singular solution in (i).

Remark. The asymptotic properties (7) was shown by Merle‐Peletier [13] for the

problem (4). We will give a slight simpler proof.

Following the idea by [14], we define three types of bifurcation diagrams according
to the intersection number of  $\lambda$( $\alpha$) and $\lambda$^{*} for  $\alpha$> O. Let I\subset \mathrm{R} be an interval, and

let f\in C(I) . We define the zero‐number of f in I by

\mathcal{Z}_{I}(f) = \displaystyle \sup\{n\in \mathrm{N} : there are $\alpha$_{1} ,
. . .

, $\alpha$_{n+1}\in I, $\alpha$_{1}<\cdots<$\alpha$_{n+1}

such that f($\alpha$_{i})f($\alpha$_{i+1})<0 for 1\leq i\leq n}

if f changes sign in I
, and \mathcal{Z}_{I}(f)=0 otherwise. By \mathcal{I}[C] we denote the number of the

turning points of C.
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Definition. Put m=\mathcal{Z}_{(0,\infty)}( $\lambda$(\cdot)-$\lambda$^{*}) .

(i) We say that C is of Type I if  m=\infty . As a consequence, if  C is of Type I, then

(1) has infinitely many regular solutions for  $\lambda$=$\lambda$^{*} and \mathcal{I}[C]=\infty.

(ii) We say that C is of Type II if m=0.

(iii) We say that C is of Type III if  1\leq m<\infty . As a consequence, if (1) has at least

one and finitely many regular solutions for  $\lambda$=$\lambda$^{*}
,

then C is of Type III.

Since f(0)>0 , we have  $\lambda$( $\alpha$)\rightarrow 0 as  $\alpha$\rightarrow 0 . Then the diagram C is of type II if

 $\lambda$( $\alpha$)\leq$\lambda$^{*} for all  $\alpha$>0 . Furthermore, we obtain the following.

Proposition 1. Assume that (\mathrm{f}.1)-(\mathrm{f}.3) hold. Then C is of type II if and only if

 $\lambda$( $\alpha$) is strictly increasing and  $\lambda$( $\alpha$)\uparrow$\lambda$^{*} as  $\alpha$\rightarrow\infty.

As a consequence, C is of type II if and only if (1) has a unique regular solution for

each  $\lambda$\in(0, $\lambda$^{*}) and no regular solution for  $\lambda$\geq$\lambda$^{*} . In particular, \mathcal{I}[C]=0 . For the

problem (3), the diagram C is of Type I if p_{S}<p<p_{JL} ,
and Type II if p\geq p_{JL} ,

and

Type III does not appear.

Brezis‐Vázques [2] studied the problem (1) in a general domain when f is C^{1},
nondecreasing, convex functions defined on [0, \infty ) with

 f(0)>0 and \displaystyle \lim_{u\rightarrow\infty}\frac{f(u)}{u}=\infty.
It is well known that there exists a finite positive number \overline{ $\lambda$}

,
called the extremal value,

such that

(i) for 0< $\lambda$<\overline{ $\lambda$} , there exists a minimal classical solution u_{ $\lambda$}\in C^{2}(\overline{B}) of (1),

(ii) for  $\lambda$=\overline{ $\lambda$}
,

there exists a weak solution \overline{u} of (1),

(iii) for  $\lambda$>\overline{ $\lambda$} , there exists no weak solution of (1).

The solution \overline{u} , called the extremal solution, is obtained as the increasing limit of u_{ $\lambda$}

as  $\lambda$\uparrow\overline{ $\lambda$} , and it may be either classical or singular. In the problem (1), if the extremal

solution is singular, then \overline{ $\lambda$}=$\lambda$^{*}
,

and by (iii), the curve C is of Type II. Let ($\lambda$^{*}, u^{*})
be the singular solution of (1). It was shown by [2] that, if u^{*}\in H_{0}^{1}(B) , and if u^{*} is

stable in the sense where

\displaystyle \int_{B}(|\nabla $\phi$|^{2}-$\lambda$^{*}f'(u^{*})$\phi$^{2})dx\geq 0 for all  $\phi$\in C_{0}^{1}(B) ,

then ($\lambda$^{*}, u^{*}) is the extremal solution, and hence the curve C is of Type II.
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A partial result about the classification of the bifurcation diagrams was obtained

in [14] in terms of Morse index. By m(u^{*}) we define

 m(u^{*})=\displaystyle \sup { \dim X:X\subset H_{0,\mathrm{r}\mathrm{a}\mathrm{d}}^{1}(B) , H[ $\phi$]<0 for all  $\phi$\in X\backslash \{0\} },

where

H[ $\phi$]=\displaystyle \int_{B}(|\nabla $\phi$|^{2}-$\lambda$^{*}f'(u^{*})$\phi$^{2})dx.
We call m(u^{*}) the Morse index of u^{*}.

Theorem A. [14, Theorems A and \mathrm{B} ] Suppose that N\geq 3 and (\mathrm{f}.1)-(\mathrm{f}.2) hold.

(i) Ifp_{S}<p<p_{JL} , then the curve C is of Type I and m(u^{*})=\infty.

(ii) If p>p_{JL} , then 0\leq m(u^{*})<\infty.

In this note, we consider the case p\geq PJL and N\geq 11 ,
and investigate the structure

of solution curve of (1) by means of the zero number of the solutions to

$\phi$''+\displaystyle \frac{N-1}{r}$\phi$'+$\lambda$^{*}f'(u^{*}) $\phi$=0 for 0<r<1 , (8)

where ($\lambda$^{*}, u^{*}(r)) be the singular solution of (1). We denote by z( $\phi$) the the number

of the zeros of  $\phi$(r) for 0<r<1 . We see that, for any solution  $\phi$ of (8),  z( $\phi$)=\infty if

 p_{S}<p<p_{JL} ,
and  0\leq z( $\phi$)<\infty if  p\geq p_{JL} . We show the following.

Theorem 2. Suppose that (\mathrm{f}.1)-(\mathrm{f}.3) hold. Then the following (\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i}) are equiva‐
lent each other.

(i) The diagram C is of type II.

(ii) For any  $\phi$\in C_{0,\mathrm{r}\mathrm{a}\mathrm{d}}^{1}(B) ,

\displaystyle \int_{B}|\nabla $\phi$|^{2}dx\geq$\lambda$^{*}\int_{B}f'(u^{*})$\phi$^{2}dx.
(iii) There exists a solution  $\phi$ of (8) satisfying  z( $\phi$)=0.

We consider the case where (8) has a solution  $\phi$ satisfying  1\leq z( $\phi$)<\infty . We will

see that if  p\geq p_{JL} ,
then there exists a unique solution $\phi$^{*}(r)\in C^{2}(0,1 ] of

\left\{\begin{array}{ll}
($\phi$^{*})''+\frac{N-1}{r}($\phi$^{*})'+$\lambda$^{*}f'(u^{*})$\phi$^{*}=0, & 0<r<1,\\
r^{ $\nu$}$\phi$^{*}(r)\rightarrow 1 \mathrm{a}\mathrm{s} r\downarrow 0, & 
\end{array}\right. (9)
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where

 $\nu$=\displaystyle \frac{(1-$\epsilon$_{p})(N-2)}{2} and $\epsilon$_{p}=\displaystyle \frac{2}{N-2}\sqrt{\frac{(N-2)^{2}}{4}-\frac{2p}{p-1}(N-2-\frac{2}{p-1})}.
Note that $\epsilon$_{p}\in(0,1) if p>p_{JL} and $\epsilon$_{p}=0 if p=p_{JL} . By the Strum comparison

theorem, we have |z($\phi$_{1})-z($\phi$_{2})|\leq 1 for any solutions $\phi$_{1} and $\phi$_{2} of (8). We see that,
for any nontrivial solution  $\phi$ of (8),  z($\phi$^{*})\leq z( $\phi$) . Then, Theorem 2 implies that the

curve \mathrm{C} is of Type II if and only if z($\phi$^{*})=0.
We impose the condition on f :

(f.3)� f(u) is convex for u\geq u_{0} for some u_{0}\geq 0.

Theorem 3. Let N\geq 11 and p\geq p_{JL} . Suppose that (f.1)) (f.2) and (f.3)� hold.

Let $\phi$^{*} be the unique solution of the problem (9). Assume that z($\phi$^{*})\geq 1 . Then

T[C]\geq z($\phi$^{*}) and (1) has at least z($\phi$^{*}) regular solution(s) for  $\lambda$=$\lambda$^{*} . Assume, in

addition, that $\phi$^{*}(1)\neq 0 . Then u is nondegenerate if \Vert u\Vert_{L^{\infty}} is large, and hence, there

exist constants M\geq\tilde{M}>0 such that the curve \{( $\lambda$( $\alpha$), u(r,  $\alpha$  $\alpha$>\overline{M}} has no

turning point and  $\lambda$( $\alpha$)\neq$\lambda$^{*}for  $\alpha$>M.

Remark. Note that  z($\phi$^{*})<\infty in the case  N\geq 11 and p\geq p_{JL}.

Corollary 1. In addition to the hypotheses on N, p and f in Theorem 3, assume

that f is analytic on (- $\eta$, \infty) for some  $\eta$> O. Let $\phi$^{*} be the unique solution of the

problem (9). If z($\phi$^{*})\geq 1 and $\phi$^{*}(1)\neq 0 ,
then the curve C is of Type III.

We see that, if (f.1), (f.2) and (f.3)� hold, then m(u^{*})=z($\phi$^{*}) . We are led to the

following conjecture.

Conjecture. [14, Conjecture 1.4] The bifurcation curve C has exactly m(u^{*})
turning point(s) for a certain class of nonlinear terms, i.e., \mathcal{I}[C]=m(u^{*}) .

Combining Theorem A and Theorems 2 and 3, we can classify bifurcation diagrams
as Table 1 shows.

Table 1 tells us that the structure of the regular solutions of (1) is encoded in the

singular solution. From the viewpoint of the Morse index of the singular solution,
a Type III bifurcation diagram is an intermediate case between Type I and Type II

bifurcation diagrams.
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\left\{\begin{array}{l}
\mathrm{T}\mathrm{y}\mathrm{p}\mathrm{e} \mathrm{I}\\
p_{S}<p<p_{JL} \mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\vec{\frac{}{\mathrm{r}\mathrm{e}\mathrm{m}\prime}}\mathrm{A}(\mathrm{i}) m(u^{*})=\infty \mathrm{a}\mathrm{n}\mathrm{d} (\mathcal{I}[C]=\infty)\\
p\geq P_{JL} \mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m} \mathrm{A}(\mathrm{i}\mathrm{i})\Rightarrow [Case]
\end{array}\right.m(u^{*})=0 Theorem 2
\Rightarrow Type II

Type III

(m(u^{*})\leq \mathcal{I}[C]<\infty)

Table 1: Classification of bifurcation diagrams for supercritical elliptic equations with

power growth.

2 Sufficient conditions for Types II and III

We will show some sufficient conditions for Types II and III.

Theorem 4. Let N\geq 11 and p\geq p_{JL} . Suppose that f satisfies (\mathrm{f}.1)-(\mathrm{f}.3) . Assume

in (2) that g(u)\geq 0 for u\geq 0 and

g'(u)\leq C_{A}u^{p-1} for u\geq 0 , (10)

where

C_{A}=\displaystyle \frac{\frac{(N-2)^{2}}{4}-pA^{p-1}}{A^{p-1}}.
Then the curve C is of Type II.

Remark. (i) We see that C_{A}>0 if p>PJL and C_{A}=0 if p=p_{JL} . Thus, in the

case p=p_{JL} ,
the condition (10) leads that g^{l}(u)\leq 0 for u\geq 0.

(ii) Let p>p_{JL} . Since we assume (f.2), the inequality (10) is satisfied for sufficiently

large u automatically. Thus the condition (10) require that inequality holds for  u\in

[0, u_{0}] with some u_{0}>0.

For a\geq 0 , define f_{a}(u)=f(u+a) for u\geq 0 . Let us consider the problem

\left\{\begin{array}{ll}
\triangle u+ $\lambda$ f_{a}(u)=0, & x\in B,\\
u>0, & x\in B,\\
u=0, & x\in\partial B.
\end{array}\right. (11)

We obtain the following.

Theorem 5. Let N\geq 11 and p\geq p_{JL} . Assume that f satisfies (f.1), (f.2) and

(f.3)�. Then there exists a_{0}\geq 0 such that, for all a\geq a_{0} , the curve C of the problem

(11) is of Type II.

To show examples of Type III bifurcation diagram, we impose the condition on f :
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(f.1)� f\in C^{1}[0, \infty) , f(u)>0 for u>0 ,
and f(0)=0.

Define F(u) by

F(u)=\displaystyle \int_{0}^{u}f(t)dt for u\geq 0.

We obtain the following.

Theorem 6. Suppose that p\geq p_{JL} and (f.1)�, (f.2), (f.3) hold and f(u) is analytic

for u>0 . Assume that g(u) in (2) satisfies

g(u)=u^{q}+O(u^{q+$\delta$_{0}}) as u\rightarrow 0

and

g'(u)=qu^{q-1}+O(u^{q-1+$\delta$_{0}}) as u\rightarrow 0

with some constants q\in(p_{S},p_{JL}) and $\delta$_{0}>0 . Assume, in addition, that

(q+1)F(u)\leq uf(u) for u\geq 0.

Then there exists a sequence \{a_{n}\}_{n=1}^{\infty} such that a_{1}>a_{2}>\cdots>a_{n}>\cdots>0 and the

following holds: If a_{n+1}<a<a_{n} for some n\geq 1 , then the problem (11) has a Type
III bifurcation diagram and  n\leq \mathcal{I}[C]<\infty hold.

A typical example of  f in Theorem 6 is given by

f(u)=u^{p}+u^{q} with p_{S}<q<PJL \leq p . (12)

By changing the variables u\mapsto au and  $\lambda$\mapsto a^{1-p} $\lambda$
,

we see that (11) with (12) is

equivalent to the problem

\left\{\begin{array}{ll}
\triangle u+ $\lambda$\{(u+1)^{p}+b(u+1)^{q}\}=0 & \mathrm{i}\mathrm{n} B,\\
u>0 & \mathrm{i}\mathrm{n} B,\\
u=0 & \mathrm{o}\mathrm{n} \partial B,
\end{array}\right. (13)

where b :=a^{q-p} . We obtain the following:

Corollary 2. Let \{a_{n}\}_{n=1}^{\infty} be as in Theorem 6. If a_{n}^{q-p}<b<a_{n+1}^{q-p} for some n\geq 1,
then the problem (13) has Type III bifurcation diagram and n\leq T[C]<\infty.

We can intuitively understand Corollary 2 in the following way: If b>0 is small,
then (13) is close to (3) with p\geq p_{JL} , and hence, C is of Type II. When b is large,
the term b(u+1)^{q} with p_{S}<q<PJL is dominant for a relatively small solution u and

C has turning point(s). However, if u is large, then (u+1)^{p} with p\geq p_{JL} becomes

dominant and u is nondegenerate. Hence, this is an intermediate case. Moreover, the

lower bound of \mathcal{I}[C] can be controlled by b=a^{q-p}.
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