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1 Introduction

A notion of reticulation which provides topological properties on algebras
has introduced on commutative rings in 1980 by Simmons in [5]. For a given
commutative ring A , a pair (L,  $\lambda$) of a bounded distributive lattice and a

mapping  $\lambda$ :  A\rightarrow L satisfying some conditions is called a reticulation on

A , and the map  $\lambda$ gives a homeomorphism between the topological space

Spec(A) consisting of prime filters of  A and the topological space Spec(L)
consisting of prime filters of L . The concept of reticulation are generalized
to non‐commutative rings, MV‐algebras ([1]), BL‐algebras ([3]), quantale
([2]) and so on. Since these algebras are axiomatic extensions of residuated

lattices which are algebraic semantics of so‐called fuzzy logic, it is natural to

consider properties of reticulations on residuated lattices. In 2008, Muresan
has published a paper about reticulations on residuated lattices and she has

provided an axiomatic definition of reticulations on residuated lattices, in

which five conditions are needed. In this short note, we show that only two

independent conditions of reticulation are enough to axiomatize reticula‐

tions on residuated lattices and also prove that reticulations on residuated

lattices can be considered as homomorphisms between residuated lattices

and bounded distributive lattices.

2 Residuated lattices and reticulations

An algebraic system (A, \wedge, \vee, , \rightarrow, 0,1) is called a residuated lattice if
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(1) (A, \wedge, \vee, 0,1) is a bounded lattice.

(2) (A, , 1) is a commutative monoid, that is, for all a, b\in A,
ab=ba , a \mathrm{O}1=1a=a.

(3) For all a, b, c\in A,

ab\leq c\Leftrightarrow a\leq b\rightarrow c

We have basic results about residuated lattices.

Proposition 1. Let A be a residuated lattice. For all a, b, c\in A ,
we have

(1) a\leq b\Leftrightarrow a\rightarrow b=1

(2) a\rightarrow(b\rightarrow c)=ab\rightarrow c=b\rightarrow(a\rightarrow c)

(3) a(a\rightarrow b)\leq b

(4) a\rightarrow b\leq(b\rightarrow c)\rightarrow(a\rightarrow c)

(5) a\rightarrow b\leq(c\rightarrow a)\rightarrow(c\rightarrow b)

(6) (a\vee b)^{m+n}

Proof. We only show the case (6): (a\vee b)^{m+r $\iota$}\leq a^{m}\vee b^{n} . We have

=a^{ $\tau$ n+n}\vee(a^{ $\tau$ n+n-1}b)\vee\cdots\vee(a^{m}b^{n})
\vee(a^{m}b^{n})\vee\cdots\vee(ab^{m+n-1})\vee b^{m+n}
\leq a^{m}\vee a^{m}\vee\cdots\vee a^{m}\vee b^{n}\vee\cdots\vee b^{n}\vee b^{n}

=a^{m}\vee b^{n}.

\square 

A non‐empty subset F\subseteq A of a residuated lattice A is called a filter if

(F1) If a, b\in F then ab\in F.

(F2) If a\in F and a\leq c then c\in F.
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For an element a\in A , we set

[a)=\{b\in A|(\exists n\in N) s.t. a^{n}\leq b\}

and it is called a principal filter. By \mathcal{F}(A) (or \mathcal{P}\mathcal{F}(A) ), we mean the set of

all filters (or principal filters, respectively) of A.

Moreover, a filter P(\neq A) is called a prime filter if it satisfies a condition

that a\in P or b\in P when a\vee b\in P . We denote the set of all prime filters

of A by Spec(A) .

For a bounded lattice L
,

a non‐empty subset F of L is called a lattice

filter if

(LF1) If x, y\in F then x\wedge y\in F.

(LF2) If x\in F and x\leq y then y\in F.

A lattice filter F(\neq L) is called prime if it satisfies the condition that if

x\vee y\in F then x\in F or y\in F . By Spec (L)) we mean the set of all prime
lattice filters of L.

It is trivial that every filter is also a lattice filter.

In the following, let A be a residuated lattice and L be a bounded dis‐

tributive lattice. For any subset S\subseteq A , we define

D(S)=\{P\in Spec(A)|S\not\in P\}.

It is easy to show that

Proposition 2.  $\tau$ A=\{D(S)|S\subseteq A\} is a topology on Spec(A) and \{D(a)\}_{a\in A},
where D(a)=\{P\in Spec(A)|a\not\in P\} , forms a base of the topology $\tau$_{A}.

Similarly, we also define a topology on Spec(L) for a bounded distributive

lattice L as follows. For any subset S\subseteq L , we define

D(S)=\{P\in Spec(L)|S\not\in P\},

then

Proposition 3. $\sigma$_{L}=\{D(S)|S\subseteq L\} is a topology on Spec(L)) and \{D(x)\}_{x\in L},
where D(x)=\{P\in Spec(L)|x\not\in P\} , forms a base for $\sigma$_{L}.

According to [4], we define a reticulation. A pair (L,  $\lambda$) of a bounded

distributive lattice L and a map  $\lambda$ :  A\rightarrow L is called a reticulation on a

residuated lattice A if the map satisfies the five conditions

(R1)  $\lambda$(ab)= $\lambda$(a)\wedge $\lambda$(b)
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(R2)  $\lambda$(a\vee b)= $\lambda$(a)\vee $\lambda$(b)

(R3)  $\lambda$(0)=0,  $\lambda$(1)=1

(R4)  $\lambda$ :  A\rightarrow L is surjective.

(R5)  $\lambda$(a)\leq $\lambda$(b) if and only if there exists n\in N such that

a^{n}\leq b.

Proposition 4 ([4]). Let (L,  $\lambda$) be a reticulation of A. Then we have

(1)  $\lambda$ is order‐preserving, that is, if  a\leq b then  $\lambda$(a)\leq $\lambda$(b)

(2)  $\lambda$(a\wedge b)= $\lambda$(a)\wedge $\lambda$(b)

(3) For all n\in N,  $\lambda$(a^{n})= $\lambda$(a)

(4)  $\lambda$(a)= $\lambda$(b)\Leftrightarrow[a)=[b)

We also have the following results.

Proposition 5. Let (L,  $\lambda$) be a reticulation of A. Then we have

(1)  $\lambda$(a\wedge b)= $\lambda$(a(a\rightarrow b))

(2)  $\lambda$[a)=[ $\lambda$ a)

The next fundamental result about reticulation is very important.

Theorem 1 (Muresan [4]). For a reticulation (L,  $\lambda$) of A,

(a) Spec(A) and Spec(L) are topological spaces.

(b) $\lambda$^{*} : Spec (L)\rightarrow Spec(A) is a homeomorphism, where $\lambda$^{*} is defined by
$\lambda$^{*}(P)=$\lambda$^{-1}(P)(P\in Spec(L)) .

(c) If (L_{1}, $\lambda$_{1}) and (L_{2}, $\lambda$_{2}) are reticulations of a residuated lattice A
,

then

there exists an isomorphism f : L_{1}\rightarrow L_{2} such that $\lambda$_{1}\mathrm{o}f=$\lambda$_{2}.

(d) (\mathcal{P}\mathcal{F}(A),  $\eta$) is a reticulation on A
, where  $\eta$ :  A\rightarrow \mathcal{P}\mathcal{F}(A) is a map

defined by  $\eta$(a)=[a).
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3Simple characterization of reticulation

In this section we prove that the conditions (\mathrm{R}1)-(\mathrm{R}3) of reticulations can

be proved from the rest (R4) and (R5), that is, reticulation can be defined

by only two conditions (R4) and (R5). We note that the condition (R4)
is independent from the conditions (\mathrm{R}1)-(\mathrm{R}3) and (R5) is also independent
from (\mathrm{R}1)-(\mathrm{R}4) . It follows from our result that the conditions (R4) and

(R5) are independent to each other. Let A be a residuated lattice and L

be a bounded distributive lattice. Let f : A\rightarrow L be a map satisfying the

following conditions

(R4) f : A\rightarrow L is surjective.

(R5) f(a)\leq f(b)\Leftarrow\Rightarrow(\exists n\in N) s.t. a^{n}\leq b

We have next results about the map.

Lemma 1. (1) a\leq b\Rightarrow f(a)\leq f(b)

(2) f(a\wedge b)=f(ab)

(3) (R1) f(a\wedge b)=f(a)\wedge f(b)

(4) (R2) f(a\vee b)=f(a)\vee f(b)

(5) (R3) f(0)=0, f(1)=1

Proof. (1) If a\leq b , since a=a^{1}
,

then we have a=a^{1}\leq b and thus

f(a)\leq f(b) by (R5).
(2) Since ab\leq a\wedge b ,

we get f(ab)\leq f(a\wedge b) . Moreover, since

(a\wedge b)^{2}=(a\wedge b)(a\wedge b)\leq ab ,
we also have f(a\wedge b)\leq f(ab) by (R5).

This implies that f(a\wedge b)=f(ab) .

(3) It is trivial that f(a\wedge b)\leq f(a) , f(b) , that is, f(a\wedge b) is a lower

bound of a set \{f(a), f(b)\} . For any lower bound l of \{f(a), f(b)\} ,
since f

is surjective, there is an element c\in A such that f(c)=l . This implies that

f(c)\leq f(a) , f(b) and hence that c^{m}\leq a, c^{n}\leq b for some m, n\in N by (R5).
Since c^{7n+n}=c^{rn}c^{n}\leq ab , we get from (R5) that l=f(c)\leq f(ab)=
f(a\wedge b) . Therefore, f(a\displaystyle \wedge b)=\inf_{L}\{f(a), f(b)\}=f(a)\wedge f(b) .

(4) It is obvious that f(a) , f(b)\leq f(a\vee b) . For any u\in L ,
if f(a) ,  f(b)\leq

 u
,

since u=f(d) for some d\in A by (R4), then we have f(a) , f(b)\leq f(d) ,

It follows from (R5) that there exist m, n\in N such that a^{m}\leq d, b^{n}\leq d.
Since (a\vee b)^{rn+n}\leq a^{7n}\vee b^{n}\leq d\vee d=d , we get that f(a\vee b)\leq f(d)=u
and hence that f(a\displaystyle \vee b)=\sup_{L}\{f(a), f(b)\}=f(a)\vee f(b) .
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(5) For every x\in L , since f is surjective, there is a element a\in A such

that f(a)=x . It follows ffom 0\leq a that f(0)\leq f(a)=x . If we take x=0

then we have f(0)=0 . Similarly, we have f(1)=1. \square 

The result means that the definition of reticulation is given only two

conditions (R4) and (R5).

4 Reticulation and homomorphism

Let A be a residuated lattice and (L,  $\lambda$) its reticulation. As proved above,
the map  $\lambda$ satisfies the following conditions:

(h1)  $\lambda$(0)=0,  $\lambda$(1)=1

(h2)  $\lambda$(a\wedge b)= $\lambda$(ab)= $\lambda$(a)\wedge $\lambda$(b)

(h3)  $\lambda$(a\vee b)= $\lambda$(a)\vee $\lambda$(b)

This means that the map  $\lambda$ is an onto homomorphism from  A to L of its

reticulation with respect to the lattice operations. Let

\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)=\{(a, b)| $\lambda$(a)= $\lambda$(b), a, b\in A\}.

Proposition 6. \mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) is a congruence on a residuated lattice A with respect
to\wedge, \vee, .

Let

a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)=\{b\in A|(a, b)\in \mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\}

A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)=\{a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)|a\in A\}.

We define operators \cap, \mathrm{u} for a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) , b/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\in A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) and constants

0 ,
1 as follows:

a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) $\Pi$ b/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)=(a\wedge b)/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)
=(ab)/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)

a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\mathrm{u}b/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)=(a\vee b)/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)
0=0/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) ,

1=1/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)

Then we have from the result above that
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Theorem 2 (Homomorphism Theorem). (A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$), \cap, 0,1) is a bounded

distributive lattice. If we define a map  $\nu$ :  A\rightarrow A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) by \mathrm{v}(a)=
a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)_{f} then the quotient structure (A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$),  $\nu$) is a reticulation of a

residuated lattice A and

A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\cong L.

Proof. We only show that A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) is distributive. It follows from the

sequence below: For all a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) , b/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) , c/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\in A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) ,
we have

a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\mathrm{n}(b/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\mathrm{u}c/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$))=(a(b\vee c \mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)

=((ab)\vee(ac \mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)
=(ab)/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\vee(ac)/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)
=(a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\cap b/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$))\sqcup(a/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\cap c/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)) .

\square 

On the other hand, in [4] a binary relation \equiv \mathrm{o}\mathrm{n} A is defined by

a\equiv b\Leftarrow\Rightarrow D(a)=D(b) ,

where D(a)=\{P\in Spec(A)|a\not\in P\} . Since the binary relation \equiv is a

congruence on  A with respect to lattice operations \wedge and \vee , we consider its

quotient algebra by \equiv . We take [a]=\{b\in A|a\equiv b\}, A/\equiv=\{[a]|a\in A\}.
For [a], [b]\in A/\equiv ,

if we define

[a]\vee[b]=[a\vee b]
[a]\wedge[b]=[a\wedge b],

then (A/\equiv, \wedge, \vee, [0], [1]) is a bounded distributive lattice and (A/\equiv,  $\eta$) is a

reticulation of A ([4]).
We have another view point, namely, if we note  $\lambda$(a)= $\lambda$(b)\Leftrightarrow[a) =

[b) , then we have

a\equiv b\Leftrightarrow D(a)=D(b)

\Leftrightarrow a\not\in P iff b\not\in P(\forall P\in Spec(A))
\Leftrightarrow a\in P iff b\in P(\forall P\in Spec(A))

\Leftrightarrow[a)=[b)

\Leftarrow\Rightarrow $\lambda$(a)= $\lambda$(b)

\Leftrightarrow(a, b)\in \mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) .
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This means that the binary relation \equiv defined in [4] is the same as the kernel

\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$) of the lattice homomorphism  $\lambda$.

Moreover, we introduce an partial order \sqsubseteq on the class \mathcal{P}\mathcal{F}(A) of all

principal filters of A by

[a)\sqsubseteq[b)\Leftrightarrow[b)\subseteq[a) .

It is easy to show that

\displaystyle \inf_{\subseteq}\{[a), [b)\}=[a\vee b)

\displaystyle \sup_{\subseteq}\{[a), [b)\}=[a\wedge b)=[ab)
0=[1)=\{1\}
1=[0)=A.

Hence \mathcal{P}\mathcal{F}(A) is a bounded distributive lattice. Moreover if we define a map

 $\xi$ :  A\rightarrow \mathcal{P}\mathcal{F}(A) by  $\xi$(a)=[a) ,
then (\mathcal{P}\mathcal{F}(A),  $\xi$) is a reticulation of A . Since

the reticulation is unique up to isomorphism ([4]), we see that

A/\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$)\cong \mathcal{P}\mathcal{F}(A) .

5 Conclusion

In this short note, we show that a reticulation map f can be defined only
two independent conditions:

(R4) f:A\rightarrow L is surjective.

(R5) f(a)\leq f(b)\Leftrightarrow(\exists n\in N) s.t. a^{n}\leq b

Moreover, the reticulation map is only a lattice homomorphism from a

(residuated) lattice A to a bounded distributive lattice L . Moreover, since

the implication \rightarrow does not play an role in the definition of reticulation, we

note that the argument in this short note can be generalized to the algebra
(A, \wedge, \vee, , 0,1) , where (A, \wedge, \vee, 0,1) is a bounded lattice and (A, , 1) is a

commutative monoid satisfying the axiom x(y\vee z)=(xy)\vee(xz) for

all x, y, z\in A,
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