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Abstract

We consider multi‐variable functions defined over a fixed finite set A . A centralizing
monoid M is a set of unary functions on A which commute with all members of some set

F of functions on A
, where F is called a witness of M . We show that every centralizing

monoid has a witness whose arity does not exceed |A| . Then we present a method to

count the number of centralizing monoids which have sets of some specific functions

as their witnesses. Finally, some results on the three‐element set E3 are reported
concerning witnesses consisting of binary idempotent functions, majority functions or

ternary semiprojections.
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1 Preliminaries

Let A be a non‐empty set. For n\geq 11\mathrm{e}\mathrm{t}\mathcal{O}_{A}^{(n)} denote the set of n‐variable functions defined on

\mathrm{F}_{0\mathrm{r}n>0\mathrm{a}\mathrm{n}\mathrm{d}1\leq $\iota$\leq n\mathrm{t}\mathrm{h}\mathrm{e}v\mathrm{t}\mathrm{h}(n-\mathrm{v}\mathrm{a}\dot{\mathrm{n}}\mathrm{a}\mathrm{b}1\mathrm{e})\mathrm{n}}A,\mathrm{i}.\mathrm{e}.,\mathcal{O}_{A}^{(n)}=A^{A^{n}\infty}\mathrm{a}\mathrm{n}\mathrm{d}\mathcal{O}_{A}
denote t \mathrm{h}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{o}\mathrm{f}\mathrm{f}\mathrm{i}_{\mathrm{J}} nctions defined o \displaystyle \mathrm{n}A,\mathrm{i}.\mathrm{e}.,\mathcal{O}_{A}=\bigcup_{n=1}\mathcal{O}_{A}^{(n)}

projection e \mathrm{i}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{f}unction i \mathcal{O}_{A}^{(n)} which

always takes the value of the i‐th variable. The set of projections is denoted by \mathcal{J}_{A}. A clone

over A is a subset C of \mathcal{O}_{A} which is closed under (functional) composition and includes \mathcal{J}_{A}.
For m, n\geq 1, f\in \mathcal{O}_{A}^{(n)} and g\in O_{A}^{(m)}, f commutes with g , or f and g commute, if the

equation

f(g(^{t_{C_{1}),\ldots,g(}t_{C_{n}))}}=g (f(r1), . . .

, f (rm))
holds for every m\times n matrix over A with the i‐th row r_{i}(1\leq i\leq m) and the j‐th column

c_{\mathrm{j}}(1\leq j\leq n) . We write f\perp g when f commutes with g.

In this paper we are concerned with a particular case of commutation, that is, commu‐

tation of an n‐variable function with a unary function. It follows from the definition above

that, for f\in \mathcal{O}_{A}^{(n)} and g\in \mathcal{O}_{A}^{(1)}, f and g commute if

f(g(x_{1}), \ldots, g(x_{n}))=g(f(x_{1}, \ldots, x_{n}))

holds for all x_{1} ,
. . .

, x_{n}\in A.
For a subset F of O_{A} the set of functions in \mathcal{O}_{A} which commute with all members of F

is denoted by F^{*}
, i.e.,

F^{*}= { g\in \mathcal{O}_{A}|g\perp f for all f\in F }.

When F=\{f\} we write f^{*} instead of F^{*} . Also, we write F^{**} for (F^{*})^{*} . The following
property is straightforward.
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Lemma 1.1 For any F, G\subseteq \mathcal{O}_{A}, F\subseteq G^{*} if and only if G\subseteq F^{*}.

A subset C of \mathcal{O}_{A} is a centralizer if there is a subset F of O_{A} satisfying C=F^{*} . For any

subset F of O_{A} , the centralizer F^{*} is clearly a clone. A subset M of \mathcal{O}_{A}^{(1)} is a monoid if it

is closed under composition and contains the identity. Since any centralizer F^{*} is a clone,
the unary part of F^{*} , i.e., F^{*}\cap \mathcal{O}_{A}^{(1)} , is a monoid.

A subset M of \mathcal{O}_{A}^{(1)} is a centralizing monoid if there exists a subset F of \mathcal{O}_{A} which

satisfies M=F^{*}\cap \mathcal{O}_{A}^{(1)} . In other words, a centralizing monoid is the unary part of some

centralizer. The set F in the definition of a centralizing monoid M is called a witness of M.

The centralizing monoid M will be denoted by M(F) if F is a witness of M . When F is

\{f\} we simply write M(f) for M(\{f\}) .

It is well‐known and easy to see that, for a subset M of \mathcal{O}_{A}^{(1)}, M is a centralizing monoid

if and only if M is the unary part of M^{**}
, i.e., M=M^{**}\cap \mathcal{O}_{A}^{(1)}.

2 Arity of Witnesses

We shall consider a fundamental problem on the arity of witnesses: How small can the arity
of a witness be?

Definition 2.1 For a (non‐empty) finite subset W of \mathcal{O}_{A} , the arity of W is defined to be

the maximal arty of all functions in W.

We establish the following theorem.

Theorem 2.1 Every centralizing monoid M on A has a witness whose arty is less than or

equal to |A|.

Proof follows after a definition and a lemma.

Definition 2.2 For n>1 let f\in \mathcal{O}_{A}^{(n)} be an n‐variable function and i, j\in \mathcal{N} satisfy
1\leq i<j\leq n . Define (n-1) ‐variable function f_{i\equiv j}\in \mathcal{O}_{A}^{(n-1)} by

f_{i\equiv j} (xl, . . .

, x_{n-1} ) = f (xl, . . . , xi, . . . , x_{j-1} , x_{i}, x_{j+1}, \ldots

,  x_{n-1} )

for all x_{1} , . . ., x_{i} , . . ., x_{j} ,
. . .

, x_{n}\in A . The function f_{i\equiv j} is called (i, j) ‐minor of f . Denote

by Minor(f) the set of all minors of f , i. e.,

Minor(f) = \{f_{i\equiv j}|1\leq i<j\leq n\}

Lemma 2.2 Let f\in \mathcal{O}_{A}^{(n)} be an n‐variable junction. Ifn>|A| then M(f)=M(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}(f)) ,

i. e., f^{*}\cap \mathcal{O}_{A}^{(1)}=\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}(f)^{*}\cap \mathcal{O}_{A}^{(1)}.
Proof ( \subseteq ) : Let  s\in \mathcal{O}_{A}^{(1)} be in M(f) . It follows that s\perp f , which is equivalent to saying
that

s (f(xl, . . . x_{n} )) = f(s(x_{1}), \ldots, s(x_{n}))

holds for all x_{1} ,
. . . , x_{n}\in A . In particular, for any pair (i, j) such that 1\leq i<j\leq n we

have

s (f (xl, . . . x_{n} )) = f(s(x_{1}), \ldots, s(x_{n}))
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for all x_{1} , . . .
, x_{n}\in A satisfying x_{i}=x_{\dot{}} . This implies s\perp f_{i\equiv j} . Hence s belongs to

M(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}(f)) , which concludes M(f)\subseteq M(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}(f)) .

( \supseteq ) : We prove the contraposition, that is, if  s\not\in f^{*} then s\not\in \mathrm{M}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}(f)^{*} for any s\in \mathcal{O}_{A}^{(1)}.
Now the condition s\not\in f^{*} implies s_{7}\mathrm{L}f , which means that

s (f(al, . . . , a_{n} )) \neq  f(s(a_{1}), \ldots, s(a_{n}))

holds for some a_{1} ,
. . . , a_{n}\in A . Since n>|A| , there exist i, j\in \mathcal{N} satisfying 1\leq i<j\leq n

and a_{i}=a_{j} . For notational simplicity, let i=n-1 and j=n . Then we have

s(f_{n-1\equiv n}(a_{1}, \ldots, a_{n-1})) \neq f_{n-1\equiv n}(s(a_{1}), \ldots, s(a_{n-1})) ,

which implies s_{ $\eta$}Lf_{n-1\equiv n} . Thus s\not\in \mathrm{M}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}(f)^{*} and, consequently, M(f)\supseteq M(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}(f)) .

\square 

Proof of Theorem 2.1 Let W be a witness of a centralizing monoid M . For each f in W,
if f\in \mathcal{O}_{A}^{(n)} and n>|A| , replace f with all minors of f . The set (W\backslash \{f\})\cup \mathrm{M}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{r}(f) is

a witness of M
, due to Lemma 2.2. Repeat this procedure until no function in the witness

has arity greater than |A| . Then we get a desired witness for M. \square 

3 Strategy

Let H be a subset of \mathcal{O}_{A} . Suppose we want to determine all centralizing monoids on A which

have subsets of H as their witnesses, or simply the number of such centralizing monoids. If

h is the number of elements in H the number of subsets of H is 2^{h}
, which tends to be huge

and, therefore, in such cases, it requires some trick to achieve the task above.

Our strategy to avoid this difficulty is the following. Instead of starting from a function

f in H and determine M(f)=f^{*}\cap \mathcal{O}_{A}^{(1)}=\{s\in \mathcal{O}_{A}^{(1)}|f\perp s\} , we do it in the reverse way.

Namely, we start from a unary function s\in \mathcal{O}_{A}^{(1)} , and consider the following set.

C_{H}(s) = s^{*}\cap H (=\{f\in H|f\perp s\})

Due to the next proposition, we asserts: There exists a bijection between the set of central‐

izing monoids having subsets of H as their witnesses and the set consisting of  C_{H}(s1)\cap\cdots\cap
 C_{H}(s_{r}) for 1\leq r\leq|A|^{|A|} and s_{1} , . . . , s_{r}\in \mathcal{O}_{A}^{(1)}.

Proposition 3.1 Let H be a non\rightarrow empty subset of \mathcal{O}_{A} and C_{H}(s)=s^{*}\cap H for every

s\in \mathcal{O}_{A}^{(1)}.

(1) For any non‐empty subset F of H , let G be the set of functions defined by

G=\cap\{C_{H}(s)|s\in \mathcal{O}_{A}^{(1)}, F\subseteq s^{*}\}.
Then, M(F)=M(G) , that is, the centralizing monoid having F as its witness is the

same as the centralizing monoid having G as its witness. (A witness F can be replaced
with a witness G.)
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(2) For any s_{1} , . . .

, s_{r}, t_{1} ,
. . .

, t_{q}\in \mathcal{O}_{A}^{(1)} , let

G_{1}=\displaystyle \bigcap_{i=1}^{r}C_{H}(s_{i}) and G_{2}=\displaystyle \bigcap_{j=1}^{q}C_{H}(t_{j}) .

If M(G_{1})=M(G_{2}) then G_{1}=G_{2}.

Proof (1) It suffices to show the following (i) and (ii) for any s\in \mathcal{O}_{A}^{(1)}:(\mathrm{i})s\in G^{*} implies
s\in F^{*} and (ii) s\in F^{*} implies s\in G^{*}.

(i) Obvious from F\underline{\subseteq} G. (ii) Condition s\in F^{*} implies F\subseteq s^{*} (Due to Lemma 1.1).
Then, by the definition of G , we have G\subseteq C_{H}(s) , which implies G\subseteq s^{*} and, hence, s\in G^{*}.

(2) Proof by contraposition. Assume that G_{1} and G_{2} are different. Then, w.l. 0.\mathrm{g}. , we

may assume that there exists f in G_{2}\backslash G_{1} . Then we have f\not\simeq s_{i} for some i\in\{1, . . . , r\},
which implies s_{i}\not\in M(G_{2}) . However, since G_{1}\subseteq C_{H} (si), we have s_{i}\in M(G_{1}) . Hence the

conclusion, M(G_{1})\neq M(G_{2}) , follows. \square 

Corollary 3.2 The number of the centralizing monoids having subsets of H as their wit‐

nesses is equal to the number of sets \displaystyle \bigcap_{s\in S}C_{H}(s) for all S\subseteq \mathcal{O}_{A}^{(1)}.
Proof is immediate from Proposition 3.1.

In this paper, we are concerned only with the numbers of centralizing monoids having
specific sets as their witnesses. However, if we want, not only to obtain the numbers of such

centralizing monoids, but also to determine explicitly elements of each of such centralizing
monoids, the following property is useful.

For unary functions s_{1} ,
. . .

, s_{r}\in \mathcal{O}_{A}^{(1)} let S=\{s_{1}, . . . , s_{r}\} . Then S is said to \mathrm{b}\mathrm{e}* ‐mavimal

if C_{H}(s_{1})\cap\cdots\cap C_{H}(s_{r})\not\leqq C_{H}(t) for any t\in \mathcal{O}_{A}^{(1)}\backslash S.
Proposition 3.3 For s_{1} , . . . , s_{r}\in \mathcal{O}_{A}^{(1)} , if \{s_{1}, . . . , s_{r}\}is* ‐maximal then \{s_{1}, . . . , s_{r}\} is a

centralizing monoid having C_{H}(s_{1})\cap\cdots\cap C_{H}(s_{r}) as its witness.

4 Specific Types of Centralizing Monoids on E3

From now on, we deal with the case where the base set A is E_{3}=\{0 , 1, 2 \} . We write \mathcal{O}_{3}^{(n)}
and \mathcal{O}_{3} for \mathcal{O}_{A}^{(n)} and \mathcal{O}_{A} , respectively. In the past work, centralizers on E3 were discussed,

e.g., in [Da79].
Due to Theorem 2.1 in Section 2, every centralizing monoid on E3 has a witness whose

arity is less than or equal to 3.

We have considered witnesses which consist of sets of functions in each of the following
three classes: Binary idempotent functions, majority functions and ternary semiprojections.
The reason behind the selection of these classes of functions comes from the fact that minimal

functions on E_{3} , except unary functions, all belong to these classes, which is the result of

B. Csákány ([Cs83]) obtained in 1983.

For the reader�s sake, we review the definition of each of these functions.

(i) For f\in \mathcal{O}_{3}^{(2)}, f is a binary idempotent function if f(x, x)=x for all x\in E_{3}.

(ii) For f\in \mathcal{O}_{3}^{(3)}, f is a majority function if f(x, x, y)=f(x, y, x)=f(y, x, x)=x for all

x, y\in E_{3}.
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(iii) For f\in \mathcal{O}_{3}^{(3)}, f is a semiprojection if there exists i\in\{1 , 2, 3 \} such that f(x_{1}, x_{2}, X3)=
x_{i} whenever |\{x_{1}, x_{2}, x_{3}\}|<3 for all x_{1}, x_{2}, X3\in E_{3}.

Thus, for the set H in Section 3, we took up the set of majority functions, the set of

ternary semiprojections and the set of binary idempotent functions, and enumerated all

centralizing monoids which have those sets as their witnesses ([GMR15], [MR16]).

Proposition 4.1 (i) The number of centralizing monoids on E3 which have sets of binary
idempotent functions as their witnesses is 67.

(ii) The number of centralizing monoids on E3 which have sets of majority functions as

their witnesses is 15.

(iii) The number of centralizing monoids on E3 which have sets of ternary semiprojections
as their witnesses is 13.

More detailed description concerning the statements (ii) and (iii) (respectively, (i)) is

found in [GMR15] (respectively, [MR16]).
Note that the number of binary idempotent functions on E_{3} , as well as the number of

ternary majority functions on E_{3} , is 3^{6}=729 . Also, if we mean by a ternary semiprojection

only such ternary semiprojection p which takes the value of the first argument whenever at

least two of the arguments coincide, i.e., p(x_{1}, x_{2}, X3)=x_{1} whenever |\{x_{1}, x_{2}, x_{3}\}|<3 ,
then

the number of such functions on E3 is 3^{6}=729 . We observe that the numbers 67, 15 and

13 are small as compared with the number 729 and remarkably small as compared with the

cardinality of the power set of each class of such functions, which is 2^{729}.
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