GENERALIZATIONS OF SCHEIN THEOREM *

Kunitaka Shoji Department of Mathematics Shimane University

In the paper [], B.M. Schein proved that any finite cyclic subsemigroup of the full transformation semigroup $\mathcal{T}(X)$ on a finite set X is covered by an inverse subsemigroup of $\mathcal{T}(X)$. In this paper, we study a generalization of Schein theorem.

1 Schein theorem

Let X be a finite set and \mathcal{T}_X the full transformation semigroup on X with composition being from the right to the left.

For any $a \in \mathcal{T}_X$, We say that a(X) is the range of a and $\bigcap_{k=0}^{\infty} a^k(X)$ is called the stable range of a and denoted by SR(a).

(1) Define the depth d(x) of x by an integer k such that $x \in a^k(X)$, but $x \notin (X)a^{k+1}$ for $x \in X - SR(a)$. $d(x) = \infty$ if $x \in SR(a)$.

(2) Define the *height* of x by the least non-negative integer k such that $d(a^k(x)) > k+d(x)$ if $d(x) < \infty$. Denote it by h(x). Further, $h(x)=\infty$ if $x \in SR(a)$.

Given a partial map b of a(X) to X such that for $x \in a(X)$, $b(x) \in a^{-1}(x)$ and $d(b(x)) \ge d(y)$ for all $y \in a^{-1}(x)$.

(3) Define the gap g(x) as the greatest integer k such that $b^k a^k(x) = x$.

(4) Define the reach r(x) by r(x) = g(x) + 1.

Thus, $h(x) \ge r(x) > g(x)$. Hence $(b^h a^h)(x) \ne x$ and $(b^r a^r)(x) \ne x$.

Schein theorem

For an element $a \in \mathcal{T}_X$,

there exists an element $b \in \mathcal{T}_X$ such that $y = bx \ (x, y \in X)$

if and only if (1) if d(x) > 0 ($x \in X$) then $y \in a^{-1}(x)$ has a maximal depth.

(2) d(x) = 0 $(x \in X)$ then $a^{h}(x) = a^{h+1}(y)$ and $(b^{r}a^{r})(ab)(x) = (ab)(b^{r}a^{r})(x)$, where $h = h(x), r = r(x), g(y) \ge r$.

In this case, the subsemigroup $\langle a, b \rangle$ is an inverse semigroup generated by a and b in \mathcal{T}_X .

^{*}This is an absrtact and the paper will appear elsewhere.

Acutally, take $y = b^{h+1}a^h(x)$ the coIt is possible because of definition of h (that is, $d(a^h(x)) > h+d(x)$).

Remark, By L.M. Gluskin theorem[1], inverse semigroups $\langle a, b \rangle$ and $\langle a', b' \rangle$ are isomorphic to each other if $\langle a \rangle$ and $\langle a' \rangle$ isomorphic. In [2]T.E. Hall showed that Schein theorem is applicable to amalgamation problem.

2 Generalizations of Schein theorem

We pose generalizations of Schein theorem from cyclic semigroups to extensions of cyclic semigroups by groups in $\mathcal{T}(X)$ and several questions as follows :

Let a semigroup $S = G \cup \bigcup_{i=1}^{n} Ga^{i}$, where G is the group of units in S and Ga = aG.

Question 1 Suppose that S is a subsemigroup of $\mathcal{T}(X)$. The does there exist an element $b \in \mathcal{T}(X)$ such that $\langle S, b \rangle$ is an inverse semigroup?

(the first genralization of Schein theorem)

Let X be a finite set and $a \in \mathcal{T}(X)$ such that there exists distinct $x, y \in X - a(X)$ with a(x) = a(y). Let $g \in \mathcal{T}(X)$ such that g(x) = y, g(y) = x and g(z) = z for all $z \in X - \{x, y\}$.

Let $b \in \mathcal{T}(X)$ such that $bx = b^{h(x)+1}a^{h(x)}(x)$ Then ga = ag = a and bg = b (since h(x) = h(y)) but $gb \neq b$. Both gb and b are an inverse element of a.

< S, b > is a left inverse semigroup.

Question 1 has a negative answer.

Let a semigroup $S = G \cup \bigcup_{i=1}^{n} Ga^{i}$, where G is the group of units in S and Ga = aG.

Question 2 Suppose that S is a subsemigroup of $\mathcal{T}(X)$. The does there exist an elemenet $b \in \mathcal{T}(X)$ such that $\langle S, b \rangle$ is an orthodox semigroup? (That is, is the set of idempotents in a regular semigroup $\langle S, b \rangle$ a subsemigroup?)

(the second genralization of Schein theorem)

The answer of Question 2 would be negative.

Let a semigroup $S = G \cup \bigcup_{i=1}^{n} Ga^{i}$, where G is the group of units in S and ga = ag for any $a \in G$.

When $S \subseteq \mathcal{T}(X)$, X is a directed graph with edges labelled by a. For $x \in SR(X)$, the subgraph $Gr(a; x) = \{y \in X \mid ya^k = x, d(x) < \infty\}$ is a tree, that is, a directed graph without cycle. Each $g \in G$ indeuces an automorphism of a directed graph X.

Question 3 Let a semigroup $S = G \cup \bigcup_{i=1}^{n} Ga^{i}$, where G is the group of units in S and ga = ag for any $a \in G$.

Suppose that S is a subsemigroup of $\mathcal{T}(X)$. The does there exist an elemenet $b \in \mathcal{T}(X)$ such that $\langle S, b \rangle$ is an inverse semigroup?

(the third genralization of Schein theorem)

References

- [1] L. M. Gluskin, Elementary Generalized Groups Mat. Sb. 41(83)(1957), 23-36.
- T. E. Hall, Representation extension and amalgamation for semigroups. Quart. J. Math. Oxford (2) 29(1978), 309-334. 489-496.
- [3] B. M. Schein, A symmetric semigroup of transformations is covered by its inverse subsemigroups, Acta Math. Acad. Sc. Hungar. 22(1971), 163-171.