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Abstract These disk array architectures are known as redundant arrays of

independent disks (RAID) Minimizing the number of disk operations when

writing to consecutive disks leads to cyclic orderings. Using the special bipartite
graph H(h;t) , Mueller et a1.(2005) gave label in the case of h=1 , 2. Adachi and

Kikuchi (2015) gave label in the case of h=3 . In this paper, we give a new label

in the case of h=4 and t=1 ,
in order to investigate infinite family H(4;t) . And

we obtain a cyclic ordering for the complete bipartite graph K_{36,36}.

1. Introduction

The desire to speed up secondary storage systems has lead to the development
of disk arrays which achieve performance through disk parallelism. To avoid high
rates of data loss in large disk arrays one includes redundant information stored

on the check disks which allows the reconstruction of the original data stored

on the information disks even in the presence of disk failures. These disk array
architectures are known as redundant arrays of independent disks (RAID) (see
[11] and [10]).

Optimal erasure‐correcting codes using combinatorial framework in disk ar‐

rays are discussed in [11] and [9]. For an optimal ordering, there are [5] and [6].
Cohen et al. [8] gave a cyclic construction for a cluttered ordering of the complete
graph. In the case of a complete graph, there are [7] and [3]. Furthermore, in

the case of a complete bipartite graph, [12] and [2] gave a cyclic construction for

a cluttered ordering of the complete bipartite graph by utilizing the notion of a

wrapped  $\Delta$‐labelling. In the case of a complete tripartite graph, we refer to [1].
In a RAID system disk writes are expensive operations and should therefore

be minimized. In many applications there are writes on a small fraction of con‐

secutive disks —

say  d disks — where d is small in comparison to k , the number of

information disks. Therefore, to minimize the number of operations when writing
to d consecutive information disks one has to minimize the number of check disks
—

say f — associated to the d information disks. Minimizing the number of

disk operations when writing to consecutive disks leads to the concept of (d, f)-
cluttered orderings which were introduced for the complete graph by Cohen et
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al. [8]. Mueller et al. [12] adapted the concept of wrapped \triangle‐labellings to the

complete bipartite graph.
Using the special bipartite graph  H(h;t) in section 3, Mueller et al. [12] gave

label in the case of h=1 ,
2. Adachi and Kikuchi [2] gave label in the case of

h=3 . In this paper, we give a new label in the case of h=4 and t=1 , and give
a cyclic ordering for the complete bipartite graph K_{36,36}.

2. A Cyclic Ordering

Let G=(V, E) be a graph with n=|V| and E=\{e_{0}, e_{1}, \cdots , e_{m-1}\} . Let

d\leq m be a positive integer, called a window of G , and  $\pi$ a permutation on

\{0, 1, \cdots, m-1\} , called an edge ordering of G . Then, given a graph G with

edge ordering  $\pi$ and window  d , we define V_{i}^{ $\pi$,d} to be the set of vertices which are

connected by an edge of \{e_{ $\pi$(i)}, e_{ $\pi$(i+1)}, \cdots, e_{ $\pi$(i+d-1)}\}, 0\leq i\leq m-1 , where indices

are considered modulo m . The cost of accessing a subgraph of d consecutive edges
is measured by the number of its vertices. An upper bound of this cost is given
by the d‐maximum access cost of G defined as \displaystyle \max_{i}|V_{i}^{ $\pi$,d}| . An ordering  $\pi$ is a

(d, f) ‐cluttered ordering, if it has d‐maximum access cost equal to f . We are

interested in minimizing the parameter f.
In the following, H=(U, E) always denotes a bipartite graph with vertex set

U which is partitioned into two subsets denoted by V and W . Any edge of the

edge set E contains exactly one point of V and W respectively. Let \ell=|E| , then a

\triangle ‐labelling of  H with respect to V and W is defined to be a map  $\Delta$ :  U\rightarrow Z_{l}\times Z_{2}
with \triangle(V)\subset Z_{\ell}\times\{0\} and \triangle(W)\subseteq Z_{l}\times\{1\} , where each element of Zp occurs

exactly once in the difference list

\triangle(E) :=($\pi$_{1}(\triangle(v)-\triangle(w))|v\in V, w\in W, (v, w)\in E) . (2.1)

Here, $\pi$_{1} : Zp\times Z_{2}\rightarrow Zp denotes the projection on the first component. In general,
 $\Delta$‐labellings are a well‐known tool for the decomposition of graphs into subgraphs
(see [4]). In this context a decomposition is understood to be a partition of the

edge set of the graph. In case of the complete bipartite graph, one has the

following proposition.

Proposition 2.1 a121) Let  H=(U, E) be a bipartite graph, \ell=|E| , and  $\Delta$

be a  $\Delta$ ‐labelling as defined above, Then there is a decomposition of the complete
bipartite graph  K_{l,\ell} into isomorphic copies of H.

Next, we define the concept of \mathrm{a}(d, f)‐movement which can easily Ue gener‐

alized to arbitrary set system.

Definition 2.1 Let G be a graph with edge set E(G)=\{e_{0}, e_{1}, . . . e_{n-1}\} ,
where

n is positive integer, and let $\Sigma$_{0}, $\Sigma$_{1}\subset E(G) with d:=|$\Sigma$_{0}|=|$\Sigma$_{1}| . For a
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permutation  $\sigma$ on \{0, 1, \cdots, n-1\} define V_{i}^{ $\sigma$,d} :=\displaystyle \bigcup_{j=0}^{d-1}e_{ $\sigma$(i+j)} for 0\leq i\leq n-d.
Then, for some given a positive integer f , and a map  $\sigma$ is called \mathrm{a}(d, f) ‐movement

from $\Sigma$_{0} to $\Sigma$_{1} if $\Sigma$_{0}=\{e_{ $\sigma$(j)}|0\leq j\leq d-1\}, $\Sigma$_{1}=\{e_{ $\sigma$(j)}|n-d\leq j\leq n-1\} , and

\displaystyle \max_{i}|V_{i}^{ $\sigma$,d}|\leq f.
In order to assemble such (d, f)‐movements of certain subgraphs to \mathrm{a}(d, f)-

cluttered ordering, we need some notion of consistency. Let  $\varphi$ :  $\Sigma$_{0}\rightarrow$\Sigma$_{1} be any

bijection, then \mathrm{a}(d, f) ‐movement  $\sigma$ from  $\Sigma$_{0} to $\Sigma$_{1} is called consistent with  $\varphi$ if

 $\varphi$(e_{ $\sigma$(j)})=e_{ $\sigma$(n-d+j)} , for j=0 , 1, . . . , d-1 . (2.2)

Now, for each j\in Z_{l} one gets an automorphism $\tau$_{j} of the bipartite graph K_{\ell,\ell}
defined by cyclic translation of the vertex set:

$\tau$_{j} : Z_{\ell}\times Z_{2}\rightarrow Z_{l}\times Z_{2}, $\tau$_{j}((u, b)) :=(u+j, b) , (2.3)

(u, b)\in Z_{l}\times Z_{2} . Obviously, $\tau$_{j} induces in a natural way an automorphism of the

edge set of K_{\ell,\ell} which we also denote $\tau$_{j} . Then, $\tau$_{j}(E^{(i)})=E^{(i+j)} and $\tau$_{j}($\Sigma$_{0}^{(i)})=
$\Sigma$_{0}^{(i+j)}, i\in Z_{\ell} . Next, we define a subgraph G^{(0)}\subset K_{\ell,\ell} by specifying its edge set

E(G^{(0)}) :=E^{(0)}\cup$\Sigma$_{0}^{( $\kappa$)} . Let E(G^{(0)})=\{e_{0}^{(0)}, e_{1}^{(0)}, . . . e_{n-1}^{(0)}\}, n=P+d , where we fix

some arbitrary edge ordering. We denote the restriction of the cyclic translation

$\tau$_{ $\kappa$} to $\Sigma$_{0}^{(0)} by $\varphi$_{ $\kappa$}^{(0)} which defines a bijection $\varphi$_{ $\kappa$}^{(0)} : $\Sigma$_{0}^{(0)}\rightarrow$\Sigma$_{0}^{( $\kappa$)}.

Definition 2.2 With above notation, \mathrm{a}(d, f)‐movement of G^{(0)} from $\Sigma$_{0}^{(0)} to

$\Sigma$_{0}^{( $\kappa$)} consistent with $\varphi$_{ $\kappa$}^{(0)} will be denoted as (d, f) ‐movement from $\Sigma$_{0}^{(0)} consistent

with the translation parameter  $\kappa$.

According to Definition 1, such \mathrm{a}(d, f)‐movement is given by some permu‐

tation  $\sigma$ of the index set \{0, 1, . . . , n-1\} . By applying the cyclic translation

$\tau$_{i} one gets a graph G^{(i)} :=$\tau$_{i}(G^{(0)}) with edge set E(G^{(i)})=E^{(i)}\cup$\Sigma$_{0}^{(i+ $\kappa$)}=
\{e_{0}^{(i)}, e_{1}^{(i)}, . . . e_{n-1}^{(i)}\}, i\in Z_{\ell} . We denote the restriction of $\tau$_{ $\kappa$} to $\Sigma$_{0}^{(i)} by $\varphi$_{ $\kappa$}^{(i)} which

defines a bijection

$\varphi$_{ $\kappa$}^{(i)}:$\Sigma$_{0}^{(i)}\rightarrow$\Sigma$_{0}^{(i+ $\kappa$)}, $\varphi$_{ $\kappa$}^{(i)}(e^{(i)})=e^{(i+ $\kappa$)}, e^{(i)}\in$\Sigma$_{0}^{(i)} . (2.4)

Then  $\sigma$ also defines \mathrm{a}(d, f)‐movement of G^{(i)} from $\Sigma$_{0}^{(i)} to $\Sigma$_{0}^{(i+ $\kappa$)} consistent

with $\varphi$_{ $\kappa$}^{(i)} . Using that e_{ $\sigma$(j)}^{(i)}\in$\Sigma$_{0}^{(i)}, 0\leq j<d , (see Defintion 1), we get, for

j=0 , 1, . . .

, d-1,

e_{ $\sigma$(\dot{j})}^{(i+ $\kappa$)}(2.4)=$\varphi$_{ $\kappa$}^{(i)}(e_{ $\sigma$(j)}^{(i)})(2.2)=e_{ $\sigma$(n-d+j)}^{(i)}=e_{ $\sigma$(l+j)}^{(i)} . (2.5)

Having such a consistent  $\sigma$ , it is easy to construct \mathrm{a}(d, f)‐cluttered ordering
of K_{\ell,l} . In short, one orders the edges of K_{\ell,\ell} by first arranging the subgraphs
of the decomposition along E^{(0)}, E^{( $\kappa$)}, E^{(2 $\kappa$)}

,
. . . , E^{((\ell-1) $\kappa$)} and then ordering the

edges within each subgraph according to  $\sigma$.
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Proposition 2.2 (\displaystyle \int 12]) Let H=(U, E)_{f}\ell=|E| , be a bipartite graph allowing
some p‐labelling, and let  $\kappa$ be a translation parameter coprime to P. Furthermore,
let  $\Sigma$_{0}\subset E, d :=|$\Sigma$_{0}| . If there is a(d, f) ‐movement from $\Sigma$_{0} consistent with  $\kappa$,

then there also is a(d, f) ‐cluttered ordering for the complete bipartite graph K_{l,l}.

3. Labelling of H(h;t)

In this section, we define an infinite family of bipartite graphs which allow

(d, f)‐movements with small f . In order to ensure that these (d, f)‐movements are

consistent with some translation parameter  $\kappa$ , we impose an additional condition

on the \triangle‐labellings also referred to as wrapped‐condition.
Let  h and t be two positive integers. For each parameter h and t , we define a

bipartite graph denoted by H(h;t)=(U, E) . Its vertex set U is partitioned into

U=V\cup W and consists of the following 2h(t+1) vertices:

V := \{v_{i}|0\leq i<h(t+1
W := \{w_{i}|0\leq i<h(t+1

The edge set E is partitioned into subsets E_{s}, 0\leq s<t , defined by

E_{s} := \{\{v_{i}, w_{j}\}|s\cdot h\leq i,j<s\cdot h+h\},
E_{s} := \{\{v_{i}, w_{h+j}\}|s\cdot h\leq j\leq i<s\cdot h+h\},

E_{s} := \{\{v_{h+i}, w_{j}\}|s\cdot h\leq i\leq j<s\cdot h+h\},
E_{s} := E_{s}\cup E_{s}\cup E_{s} , for 0\leq s<t,

E := \displaystyle \bigcup_{s=0}^{t-1}E_{s}.

E_{0} E_{0} E_{0}
v_{3}

w_{3}

Figure 3.1: Partition of the edge set of H(2;1) .

Fig. 3.1 shows the edge partition of H(2;1) . For the number of edges holds

|E|=t\displaystyle \cdot(h^{2}+\frac{h(h+1)}{2}+\frac{h(h+1)}{2})=th(2h+1) . The t subgraphs defined by the edge
sets E_{s}, 0\leq s<t , and its respective underlying vertex sets are isomorphic to

H(h;1) . Intuitively speaking, the bipartite graph H(h;t) consists of t consecutive

copies of H(h;1) , where the last h vertices of V and W respectively of one copy
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are identified with the first h vertices of V and W respectively of the next copy.

Traversing these copies with increasing s will define \mathrm{a}(d, f)‐movement of H(h;t)
with small parameter f as is shown in the next proposition.

Proposition 3.3 a121) Let h, t be pogitive integers. Let H(h;t)=(U, E)_{J}t\geq 2,
be the bipartite graph as defined above. Then, there is a(d, f) ‐movement of
H(h;t) from E_{0} to E_{t-1} with d=h(2h+1) and f=4h.

By Proposition 2.1 a  $\Delta$‐labelling of the graph  H(h;t) will lead to a decom‐

position of the complete bipartite graph K_{\ell,\ell} into \ell isomorphic copies of  H(h;t) ,

where \ell=th(2h+1) . However, in general there is no (d, f)‐movement consis‐

tent with some translation parameter  $\kappa$ . To this means, we impose an additional

condition on the  $\Delta$‐labelling. The following definition generalizes and adapts the

notion of a wrapped  $\Delta$ ‐labelling to the bipartite case, which was introduced in [8]
for certain subgraphs of the complete graph.

Definition 3.1 Let  H=(U, E) , \ell=|E| , denote a bipartite graph and let

X, Y\subset U with |X|=|Y|. A  $\Delta$‐labelling  $\Delta$ is called a wrapped \triangle ‐labelling of  H

relative to X and Y if there exists a  $\kappa$\in Z coprime to P such that

\triangle(Y)=\triangle(X)+( $\kappa$, 0) (3.1)

as multisets in Z_{\ell}\times Z_{2} . The parameter  $\kappa$ is also referred to as translation param‐

eter of the wrapped  $\Delta$‐labelling.
For the graphs  H=H(h;t) , we define X :=\{v_{i}, w_{i}|0\leq i<h\} and Y :=

\{v_{i}, w_{i}|ht\leq i<h(t+1)\} . Furthermore, in the following we only consider wrapped
 $\Delta$‐labellings relative to  X and Y for which the stronger condition

\triangle(v_{i+ht})= $\Delta$(v_{i})+( $\kappa$, 0) and  $\Delta$(w_{i+ht})= $\Delta$(w_{i})+( $\kappa$, 0) , (3.2)

hold for 0\leq i<h . Suppose we have such labelling \triangle satisfying condition

(3.2). Now,  E^{(i)}, i\in Z_{\ell} , are isomorphic copies of H(h;t) . Furthermore, $\Sigma$_{0}^{( $\kappa$)}
is isomorphic to H(h;1) consisting of the first d edges of E^{( $\kappa$)} . Fkom condition

(3.2) follows that the graph G^{(0)}\subset K_{l,l} with edge set E(G^{(0)}) :=E^{(0)}\cup$\Sigma$_{0}^{( $\kappa$)}
can obviously identified with H(h;t+1) . In addition, one easily checks that the

(d, f)‐movement of G^{(0)}=H(h;t+1) from Proposition 3.3 is consistent with the

translation parameter  $\kappa$.

Proposition 3.4 (\displaystyle \int 12]) Let h, t be positive integers. Fkom any wrapped \triangle-

labelling of H(h;t) , satisfying condition (3.2), one gets a(d, f) ‐cluttered ordering
of the complete bipartite graph Kp,p with P=th(2h+1) , d=h(2h+1) , and

f=4h.
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Now, we construct some infinite families of such wrapped  $\Delta$‐labellings. By
applying Proposition 2.2 we get explicite (d, f)‐cluttered orderings of the corre‐

sponding bipartite graphs.

Theorem 3.1 (12j) Let t be a positive integer. For all t there is a(d, f)-
cluttered ordering of the complete bipartite graph K_{3t,3t} with d=3 and f=4.

Theorem 3.2 a121) Let t be a positive integer. For all t there is a(d, f)-
cluttered ordering of the complete bipartite graph K_{10t,10t} with d=10 and f=8.

Theorem 3.3 (l21) Let t be a positive integer. For all t there is a(d, f) ‐cluttered

ordering of the complete bipartite graph K_{21t,21t} with d=21 and f=12.

Here, we define a wrapped  $\Delta$‐labelling of  H(4;1) . H(4;1)=(U, E) has 16

vertices and 36 edges. For a fixed t , a labelling  $\Delta$ is a map  $\Delta$ :  U\rightarrow Z_{8}\times Z_{2} on

the vertex set U=V\cup W . We specify the second component of \triangle on the vertices

 V= (v_{0}, vl, .. . v_{7} ) by

 0, a, 2a, 3a,  $\kappa$, a+ $\kappa$, 2a+ $\kappa$, 3a+ $\kappa$ , (3.3)

and on the vertices  W= (w_{0}, wl, . .

., w7) by

 0, b, 2b, 3b,  $\kappa$, b+ $\kappa$, 2b+ $\kappa$, 3b+ $\kappa$ . (3.4)

 a=26 3a=6 a+ $\kappa$=31 3a+ $\kappa$=11
0 2a=16  $\kappa$=5 2a+ $\kappa$=21

Figure 3.2: A wrapped  $\Delta$‐labelling of  H(4;1) , |E|=36, |V|=16,  $\kappa$=5.

Proposition 3.5 As the values of a,  b_{f} $\kappa$ of equations (3.3) and (3.4), we set

 a=26, b=27,  $\kappa$=5 . (3.5)

Then the differences of  $\Delta$ using the notation from (2.1) cover all numbers in Z36
exactly once.
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Proof. Suppose that we set equation (3.5). We now compute the differences

of  $\Delta$ using the notation from (2.1). All integers are considered modulo 36.

\triangle(E_{0}) = \{0, (a-b) , 2(a-b) , 3(a-b) , a, 2a, 3a, -b, 2a-b, 3a-b,
-2b, a-2b, 3a-2b, -3b, a-3b, 2a-3b\}

= \{0, -1, -2, -3, 26, 16, 6, 9, 25, 15, 18, 8, 24, 27, 17, 7\}
= \{6, 7, 8, 9\}\cup\{15, 16, 17, 18\}\cup\{24, 25, 26, 27\}\cup\{33, 34, 35, 0\}

 $\Delta$(E``) = \{- $\kappa$, - $\kappa$+(a-b), - $\kappa$+2(a-b), - $\kappa$+3(a-b) ,

- $\kappa$+a, - $\kappa$+2a-b, - $\kappa$+3a-2b, - $\kappa$+2a, - $\kappa$+2a-b, - $\kappa$+3a\}
= \{-5, -6, -7, -8, 21, 20, 19, 11, 10, 1\}
= \{1\}\cup\{10, 11\}\cup\{19, 20, 21\}\cup\{28, 29, 30, 31\}

 $\Delta$ (EÓ�) = \{ $\kappa$,  $\kappa$+(a-b) ,  $\kappa$+2(a-b) ,  $\kappa$+3(a-b) ,

 $\kappa$-b,  $\kappa$+a-2b,  $\kappa$+2a-3b,  $\kappa$-2b,  $\kappa$+a-2b,  $\kappa$-3b\}
= {5, 4, 3, 2, 14, 13, 12, 23, 22, 32}
= \{2, 3, 4, 5\}\cup\{12, 13, 14\}\cup\{22, 23\}\cup\{32\}.

From this one easily checks that above lists cover all numbers in Z36 exactly
once.

(Q.E.D.)

Note that |E|=36 and  $\kappa$=5 are coprime and that the wrapped‐condition
(3.2) is obviously fulfilled. By Proposition 3.5, the differences of  $\Delta$ using the

notation from (2.1) cover all numbers in Z36 exactly once. Thus,  $\Delta$ defines a

wrapped  $\Delta$‐labelling. By applying Proposition 3.4 we get the following result.

Theorem 3.4 There is  a(d, f) ‐cluttered ordering of the complete bipartite graph
K_{36,36} with d=36 and f=16.

Here we can obtain a wrapped  $\Delta$‐labelling of  H(4;1) . And we are investigating
H(4;2) , (4; 3), \cdots, H(4;t) . Form the proofs of Theorem 3.1, 3.2 and 3.3, we have

obtain a wrapped \triangle‐labelling of  H(1;t) , H(2;t) and H(3;t) . In the future, we

will investigate H(4;t) , H(5;t) ,
\cdot\cdot

\cdot, H(h;t) .
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