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Abstract

We present a numerical study of laminar incompressible flows in two‐dimensional and

three‐dimensional contraction‐expansion channels. The aim is to understand the causes of

the so‐called Coanda effect (i.e., the tendency of a fluid jet to be attracted to a surface) in

order to reproduce wall‐hugging jets in a mock heart chamber constructed to improve the

diagnosis of mitral valve regurgitation. First, we validate the critical Reynolds number for

the onset of the Coanda effect (also known as symmetry‐Ureaking bifurcation) given by our

computations against the values found in the literature. Excellent agreement is found. Then,
we considered flow in a section of the mock heart chamber and showed how a pronounced
Coanda effect is possible only with some modifications of the contraction channel geometry.
Finally, we propose a 3\mathrm{D} mock heart chamber in which quasi‐2D flow is possible, thereby
allowing the Coanda effect at the low Reynolds numbers for which it is observed in 2\mathrm{D}.

1 Introduction

Coanda effect is a phenomenon that is described in the scientific literature as the tendency
of a fluid jet to be attracted to a nearby surface [27, 29], see Figure 1. The principle was

named after Romanian aerodynamics pioneer Henri Coanda, who was the first to recognize
the practical application of the phenomenon in aircraft development.

Figure 1: Steady state solution for flow in a sudden expansion with a 1 : 6 expansion at

Re=133.3 . The jet hugs the upper wall of the expansion chamber.

Most recently, Coanda effect became popular in cardiology where it has been used to

explain the wall hugging jets in certain cases of mitral valve regurgitation. Mitral regurgi‐
tation (MR) is a valvular disease characterized by abnormal leaking of blood through the

mitral valve from the left ventricle into the left atrium of the heart. MR can lead to atrial

arrhythmias, pulmonary artery hypertension, congestive heart failure, and death. Diagnosis
of mitral regurgitation is often performed using color Doppler echocardiography. Figure 2(a)
shows the echocardiographic image of a jet flowing in the center of the left atrium (central
jet), while Figure 2(b) shows the echocardiographic image of a jet hugging the wall of the

left atrium (eccentric jet), known as the Coanda effect.
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(a) Central color Doppler jet (b) Eccentric color Doppler jet

Figure 2: (a) Echocardiographic image of central regurgitant jet flowing from the left ventricle

(LV) to the left atrium (LA). Colors denote different flow velocities. (b) Echocardiographic
image of eccentric regurgitant jet, hugging the walls of the left atrium (LA) known as the

Coanda effect.

One of the biggest challenges in echocardiographic assessment of mitral regurgitation is

Coanda effect: when the regurgitant jet �hugs� the wall of the heart�s atrium as shown in

Figure 2 (b), the echocardiographic assessment of the severity of MR is contaminated [9,
24]. These eccentric, wall‐hugging, non‐symmetric regurgitant jets that have been observed

at Reynolds numbers well below turbulence [28, 1], appear smaller in the color Doppler
image of regurgitant flow (due to the presence of a large secondary vortex), leading to a

gross under‐estimation of regurgitant volume by inexperienced observers [9, 3]. As a result,
patients who may require surgery are left untreated. Understanding the flow conditions and

regurgitant orifice geometries responsible for the Coanda effect has been recognized to be of

great importance for echocardiographic assessment of mitral valve regurgitation [9].
In our previous works [19, 20, 18], we showed that, once validated, a computational model

provides detailed, point‐wise information about the quantities that are used in echocardio‐

graphic assessment of MR, thereby providing information that can be used to tune and refine

the already existing protocols, or design new protocols. Our computational fluid model has

been validated against experiments performed in an in vitro mock heart chamber shown in

Figure 3. The mock heart chamber has been developed by our collaborators at the Methodist

DeBakey Heart & Vascular Center [1e] to study 2\mathrm{D} and 3\mathrm{D} color Doppler techniques that

are routinely used to image the complex intra‐cardiac flows associated with central MR jets
[10, 11]. The chamber is composed of two acrylic cylinders partitioned by a divider plate
containing a geometric orifice mimicking a leaky mitral valve and it was studied in a variety
of clinically relevant flow conditions. However, our collaborators have never been able to

reproduce in vitro the wall‐hugging MR jets typical of the Coanda effect.

Despite of the large cardiovascular and bioengineering literature reporting on the Coanda

effect in echocardiographic assessment of mitral regurgitation, there is very little connection

with the fluid dynamics literature that could help identify and understand the main features

of the corresponding flow conditions. In this paper, our goal is to understand what causes

the onset of the Coanda effect in a simplified setting. A mitral regurgitant jet flows from

the left ventricle through an orifice between the mitral leaflets, called regurgitant orifice, into

the left atrium. As a simplified setting, which has the same geometric features as MR, we

consider contraction‐expansion channels. First, we focus on the planar case (see Fig. 4(\mathrm{a}) )
and investigate the influence of the Reynolds number defined in eq. (6) and the expansion
ratio  $\lambda$=W/w , where W and w are defined in Fig. 4(a). Then, we consider a 2\mathrm{D} geometry
corresponding to a section of the mock heart chamber (see Fig. 8) in order to understand the

role played by certain geometric features on triggering the Coanda effect. Finally, we will
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Figure 3: Experimental set‐up: (a) picture of the flow loop with the mock heart chamber at

the bottom of the picture and (b) its schematic representation.

propose a  3\mathrm{D} mock heart chamber geometry in which the Coanda effect can be reproduced
and explain why it is unlikely to observe such an effect in the chamber currently used to

simulate regurgitant flow in mitral valve regurgitation, shown in Fig. 3(a).
The outline of the paper is as follows. In Section 2 we state the problem, discuss the

numerical methods used for the time and space discretization and describe the solution of

the associated linear system. In Section 3, we report on the results of the validation against
[15] and [6]. In Section 4, we discuss the results for the flow in the mock heart chamber.

Finally, conclusions are drawn in Section 5.

2 Numerical modeling

The fluid in the mock heart chamber is water with 30% glycerin added to mimic blood

viscosity (0.035 poise). The motion of such a fluid, which is incompressible, viscous, and

Newtonian, in a spatial domain of dimension d (denoted hereafter by  $\Omega$ ) over a time interval

of interest (0, T) is described by the incompressible Navier‐Stokes equations:

 $\rho$(\displaystyle \frac{\partial u}{\partial t}+u\cdot\nabla u)-\nabla\cdot $\sigma$=0 \mathrm{i}\mathrm{n} $\Omega$\times(0, T) , (1)

\nabla\cdot u=0 \mathrm{i}\mathrm{n} $\Omega$\times(0, T) , (2)

where  $\rho$ is the fluid density,  u is the fluid velocity, and  $\sigma$ the Cauchy stress tensor. For

Newtonian fluids,  $\sigma$ has the following expression

 $\sigma$(u,p)=-p\mathrm{I}+2 $\mu \epsilon$(u) ,
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where p is the pressure,  $\mu$ is the fluid dynamic viscosity, and

 $\epsilon$(u)=\displaystyle \frac{1}{2}(\nabla u+(\nabla u)^{T})
is the strain rate tensor. In eq. (1) -(2) , it is supposed that no body force is applied to the

system.
Equations (1) -(2) need to be supplemented with initial and boundary conditions:

u=u_{D} \mathrm{o}\mathrm{n}\partial$\Omega$_{D}\times(0, T) , (3)

 $\sigma$ n=g \mathrm{o}\mathrm{n}\partial$\Omega$_{N}\times(0, T) , (4)
u=u_{0} in  $\Omega$\times\{0\} . (5)

Here \overline{\partial$\Omega$_{D}}\cup\overline{\partial$\Omega$_{N}}=\overline{\partial $\Omega$} and \partial$\Omega$_{D}\cap\partial$\Omega$_{N}=\emptyset . In addition  u_{D}, g and u_{0} are given. For all

the test cases under consideration g and u_{0} are set to zero, while u_{D} will vary as specified
in Sections 3 and 4.

The Reynolds number Re can be used to characterize the flow regime. It is defined as:

Re=\displaystyle \frac{ $\rho$ LU}{ $\mu$} , (6)

where L is a characteristic length and U is a characteristic velocity. The Reynolds number

can be thought of as the ratio of inertial forces to viscous forces. For large Reynolds numbers

inertial forces are dominant over viscous forces and vice versa.

The flow in the 2\mathrm{D} geometry reported in Fig. 4(a) can be seen as the limiting case of a

3\mathrm{D} flow in the domain shown in Fig. 4(b) for channel depth H tending to infinity. For the

3\mathrm{D} problem, the characteristic length L is given by the hydraulic diameter of the contraction

channel, i.e. L=2Hw/(H+w) ,
thus (6) becomes:

Re_{3D}=\displaystyle \frac{ $\rho$ U}{ $\mu$}\frac{2Hw}{H+w} . (7)

By letting  H\rightarrow\infty in eq. (7), we define the Reynolds number for the  2\mathrm{D} problem

Re=2\displaystyle \frac{ $\rho$ Uw}{ $\mu$} . (8)

We define Re as in (S) with the purpose of comparing our results with [15] in Sec. 3 and

for the 2\mathrm{D} simulations on a section of the mock heart chamber. As characteristic velocity
U in (8), we take the average velocity in the contraction channel. So, if we denote by U_{\max}
the maximum velocity in the contraction channel and assume that the contraction channel

is long enough to have a fully developed parabolic velocity profile, we have U=2U_{\max}/3.
For the 3\mathrm{D} simulations in Sec. 4.2 we will use definition (7). As characteristic velocity U

in (7), we take again the average velocity in the contraction channel. If we assume that in

the contraction channel we have a fully developed parabolic velocity profile with maximum

velocity U_{\max} , this means U=U_{\max}/2.
For the variational formulation of the fluid problem (1) -(2) , we denote by L^{2}( $\Omega$) the

space of square integrable functions in a spatial domain  $\Omega$ and with  H^{1}( $\Omega$) the space of the

functions in L^{2}( $\Omega$) with first derivatives in L^{2}( $\Omega$) . We use )_{ $\Omega$} and \}_{ $\Omega$} to denote the

L^{2}( $\Omega$) inner product and a duality pairing in  $\Omega$
, respectively. Moreover, let us define:

[H_{D}^{1}( $\Omega$)]^{d}=\{v\in[H^{1}( $\Omega$)]^{d}, v|_{\partial$\Omega$_{D}}=u_{D}\},
[H_{0D}^{1}( $\Omega$)]^{d}=\{v\in[H^{1}( $\Omega$)]^{d}, v|_{\partial$\Omega$_{D}}=0\},

where \partial$\Omega$_{D} is the part of the domain boundary on which a Dirichlet condition (3) is imposed.
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(a) 2\mathrm{D} geometry (b) 3\mathrm{D} geometry

Figure 4: (a) 2\mathrm{D} and (b) 3\mathrm{D} contraction‐expansion channel. The 2\mathrm{D} channel in (a) is the

limit case of the 3\mathrm{D} channel in (b) for H\rightarrow\infty.

The variational formulation of the fluid problem (1) -(2) is: given t\in(0, T) ,
find (u,p)\in

[H_{D}^{1}( $\Omega$)]^{d}\times L^{2}( $\Omega$) such that

 $\rho$(\displaystyle \frac{\partial u}{\partial t}, v)_{ $\Omega$}+\mathcal{N}(u;[u,p], [v, q])_{ $\Omega$}=0, \forall(v, q)\in[H_{0D}^{1}( $\Omega$)]^{d}\times L^{2}( $\Omega$) , (9)

with

\displaystyle \mathcal{N}(u;[u,p], [v, q])_{ $\Omega$}=2 $\mu$( $\epsilon$(u),  $\epsilon$(v))_{ $\Omega$}+ $\rho$\int_{ $\Omega$}(u\cdot\nabla u)\cdot v\mathrm{d} $\Omega$-(p, \nabla\cdot v)_{ $\Omega$}
+(\nabla\cdot u, q)_{ $\Omega$} . (10)

The initial condition is given by (5). Notice that for eq. (9) we assumed g=0 in (4) as is

the case for the numerical tests in Sections 3 and 4.

2.1 Discretization

For the time discretization of equations (1) -(2) we chose the Backward Differentiation For‐

mula of order 2 (BDF2, see [21]). Given \triangle t\in \mathbb{R} , let us set t^{n}=t_{0}+n\triangle t ,
with n=0, N_{T}

and T=t_{0}+N_{T}\triangle t . Problem (1) -(2) discretized in time reads: given u^{n} , for n\geq 0,
\backslash 

find the

solution (u^{n+1},p^{n+1}) of the system:

 $\rho$\displaystyle \frac{3u^{n+1}-4u^{n}+u^{n-1}}{2\triangle t}+ $\rho$ u^{n+1}\cdot\nabla u^{n+1}-\nabla\cdot $\sigma$(u^{n+1},p^{n+1})=0 \mathrm{i}\mathrm{n} $\Omega$
, (11)

\nabla\cdot u^{n+1}=0 \mathrm{i}\mathrm{n} $\Omega$ . (12)

All the numerical test in Sections 3 and 4 are started from fluid at rest, that is we set  u_{0}=0
in (5). Thus, we take u^{-1}=u^{0}=0.

For the space discretization, we introduce a conformal and quasi‐uniform partition T_{h}
of  $\Omega$ made up of a certain number of elements (triangles in  2\mathrm{D}

,
tetrahedra in 3\mathrm{D} ). Let

V_{h}\subset[H^{1}( $\Omega$)]^{d}, V_{D,h}\subset[H_{D}^{1}( $\Omega$)]^{d}, Q_{h}\subset L^{2}( $\Omega$) be the finite element spaces approximating
[H^{1}( $\Omega$)]^{d}, [H_{D}^{1}( $\Omega$)]^{d} ,

and L^{2}( $\Omega$) , respectively. We introduce the Lagrange basis \{$\phi$_{i}\}_{i=1}^{\mathcal{N}_{v}} and

\{$\pi$_{i}\}_{i=1}^{\mathcal{N}_{p}} associated to V_{h} and Q_{h} (respectively), where \mathcal{N}_{v} is the number of nodes for the

velocity approximation and \mathcal{N}_{p} is number of nodes for the pressure approximation.
In order to write the matrix version of the fully discretized problem, we set:

‐ The mass matrix: M_{i,j}=\displaystyle \int_{ $\Omega$} $\rho \phi$_{j}$\phi$_{i}.
‐ The stiffness matrix: K_{i,j}=2\displaystyle \int_{ $\Omega$} $\mu \epsilon$($\phi$_{j}): $\epsilon$($\phi$_{i}) .

‐ The matrix associated with the convective term: N_{i,j}(u^{n+1})=\displaystyle \int_{ $\Omega$} $\rho$(u^{n+1}\cdot\nabla)$\phi$_{j}\cdot$\phi$_{i}.
‐ The matrix associated with operator (-\nabla:) : B_{i,j}=-\displaystyle \int_{ $\Omega$}(\nabla\cdot$\phi$_{j})$\pi$_{i}.
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The full discretization of problem (1) -(2) yields the following nonlinear system

\displaystyle \frac{3}{2\triangle t}M\mathrm{U}^{n+1}+K\mathrm{U}^{n+1}+N(u^{n+1})\mathrm{U}^{n+1}+B^{T}\mathrm{P}^{n+1}=\mathrm{b}_{u}^{n+1} , (13)

B\mathrm{U}^{n+1}=\mathrm{b}_{p}^{n+1} , (14)

where \mathrm{U}^{n+1} and \mathrm{P}^{n+1} are the arrays of nodal values for velocity and pressure. The arrays

\mathrm{b}_{u}^{n+1} and \mathrm{b}_{p}^{n+1} account for the contributions of the solution at the previous time steps and

the contribution that the boundary nodes give to the internal nodes.

Set C=\displaystyle \frac{3}{2\triangle t}M+K+N(u^{n+1}) . We can rewrite (13) -(14) in the form

A\mathrm{X}^{n+1}=\mathrm{b}^{n+1} , (15)

where

A=\left\{\begin{array}{ll}
C & B^{T}\\
B & 0
\end{array}\right\}, \mathrm{X}^{n+1}=\left\{\begin{array}{l}
\mathrm{U}^{n+1}\\
\mathrm{P}^{n+1}
\end{array}\right\}, \mathrm{b}^{n+1}=[\mathrm{b}_{p}^{n+1}\mathrm{b}_{u}^{n+1}].
In order to deal with the convective term nonlinearity, we use a fixed‐point algorithm. At

every fixed‐point iteration, we use a multifrontal parallel sparse direct solver (see, e.g., [5])
to solve the linearized version of system (15).

The standard Galerkin approximation of the incompressible Navier‐Stokes equations re‐

ported in (13) -(14) is unstable if the pair (Q_{h}, V_{h}) does not satisfy the well‐known inf‐sup
condition (see, e.g. [22]). In order to be able to use equal order velocity‐pressure pairs (which
are not inf‐sup stable, like the \mathbb{P}_{1}-\mathbb{P}_{1} finite elements we used for the results in this paper),
we resort to a stabilized formulation.

The stabilization method that we adopt is the orthogonal subgrid scales (OSS) technique
proposed in [4]: it provides pressure stability and stabilizes the convective term for high
Reynolds numbers. Let u_{h} and p_{h} be the space discrete velocity and pressure. The stabilized

version of the problem under consideration reads: given t\in(0, T) ,
find (u_{h},p_{h})\in V_{h}\times Q_{h}

 $\rho$(\displaystyle \frac{\partial u_{h}}{\partial t}, v_{h})_{ $\Omega$}+\mathcal{N}_{s}(u_{h};[u_{h,Ph}], [v_{h}, q_{h}])_{ $\Omega$}=0, \forall(v_{h}, q_{h})\in V_{D,h}\times Q_{h},
where \mathcal{N}(u_{h};[u_{h},p], [v_{h}, q_{h}])_{ $\Omega$} in the discretization of (9) has been replaced by

\mathcal{N}_{s}(u_{h};[u_{h},p_{h}], [v_{h}, q_{h}])_{ $\Omega$}=\mathcal{N}(u_{h};[u_{h},p_{h}], [v_{h}, q_{h}])_{ $\Omega$}
+S (u_{h};[u_{h},Ph][v_{h}, q_{h}])_{ $\Omega$}.

The perturbation term S introduced by OSS (in its quasi‐static form) reads

S (u_{h};[u_{h)}p_{h}], [v_{h}, q_{h}])_{ $\Omega$}=($\tau$_{1}$\Pi$^{\perp}(u_{h}\cdot\nabla u_{h}+\nabla p_{h}), u_{h}\cdot\nabla v_{h}+\nabla q_{h})_{ $\Omega$}
+($\tau$_{2}$\Pi$^{\perp}(\nabla\cdot u_{h}), \nabla\cdot v_{h})_{ $\Omega$} . (16)

Here, $\Pi$^{\perp} is the L^{2} orthogonal projection onto the finite element space, i.e.: $\Pi$^{\perp} =

\mathcal{I} - $\Pi$ where  $\Pi$ is the  L^{2} projection onto the finite element space and \mathcal{I} the iden‐

tity operator. For the choice of the stabilization parameters $\tau$_{1} and $\tau$_{2} and for a thorough
description of this stabilization technique, we refer to [4].

Let us denote by C_{s} the sum of matrix C and the corresponding stabilization terms

obtained from (16). Similarly, we denote by B_{s} ( B_{s}^{T} , resp.) the sum of matrix B ( B^{T}
, resp.)

and the corresponding stabilization terms. Moreover, we denote by L_{ $\tau$} the matrix associated

with the pressure stabilization. The stabilized fully discrete problem can be written in matrix

form (15) as

A=\left\{\begin{array}{ll}
C_{s} & B_{s}^{T}\\
B_{s} & L_{ $\tau$}
\end{array}\right\}, \mathrm{X}^{n+1}=\left\{\begin{array}{l}
\mathrm{U}^{n+1}\\
\mathrm{P}^{n+1}
\end{array}\right\}) \mathrm{b}^{n+1}=\left\{\begin{array}{l}
\mathrm{b}_{u}^{n+1}\\
\mathrm{b}_{p}^{n+1}
\end{array}\right\}.
For more details concerning the discretization of the Navier‐Stokes problem, we refer to,

e.g., [22].
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3 Preliminary study of a contraction‐expansion channel

The main aim of this section is to validate our solver against the results reported in [15]
and [6]. We perform a series of simulations in planar contraction‐expansion channels with

two different values of the expansion ratio  $\lambda$ to identify the critical Reynolds number  Re_{sb} at

which the jet ceases to be symmetric (i.e., central; see Fig. 2(\mathrm{a}) ) to become wall‐hugging (i.e.,
eccentric; see Fig. 2(\mathrm{b}) ). This is known in the literature as symmetry breaking bifurcation.

Once our solver has been validated and convergence studies have been performed showing
good convergence properties, it can be used as a predictive tool for discovery of new physical
phenomena.

Let us start with the test case in [15]. The geometry under consideration is shown in

Fig. 4(a) with the upstream and downstream channel width W=4 ,
and contraction width

w=0.26 . Thus, the expansion ratio  $\lambda$=W/w is 15.4. The length of the contraction L_{c} is

set to 2. In this domain, we simulate the flow for different Reynolds numbers (ranging from

0.01 to 71.3) to ,examine the onset of asymmetries.
Eq. (1) -(2) are supplemented with the following steady boundary conditions: parabolic

velocity profile at the inlet $\Gamma$_{in} , stress‐free boundary condition at the outlet $\Gamma$_{out} , and no‐slip
condition on the rest of the boundary. Both the channel upstream of the contraction and

the expansion channel need to be long enough so that the flow is fully established when it

reaches the contraction and the outlet section. The fluid is initially at rest. A time marching
algorithm is used to approach the steady‐state solution. The numerical simulations were

stopped when the relative L^{2}‐norm of the difference of two subsequent solutions was less

that a prescribed tolerance  $\epsilon$ :

\displaystyle \frac{||\mathrm{u}_{h}^{n+1}-\mathrm{u}_{h}^{n}||_{L^{2}( $\Omega$)}}{||\mathrm{u}_{h}^{n+1}||_{L^{2}( $\Omega$)}}\leq $\epsilon$ and \displaystyle \frac{||p_{h}^{n+1}-p_{h}^{n}||_{L^{2}( $\Omega$)}}{||p_{h}^{n+1}||_{L^{2}( $\Omega$)}}\leq $\epsilon$ , (17)

where \mathrm{u}_{h}^{n+1} (resp., \mathrm{u}_{h}^{n} ) and p_{h}^{n+1} (resp., p_{h}^{n} ) are the computed velocity and pressure at time

t^{n+1} (resp., t^{n} ). The value of  $\epsilon$ was set to  10^{-8}.
In Fig. 5, we report the streamlines at the time when stopping criterion (17) is satisfied

for four different values of Re. For very low Reynolds number (e.g., Re =0.01 ), it is

impossible to deduce the flow direction from the streamlines: as shown in Fig. 5(a), the flow

has both a horizontal and vertical symmetry axis. As the Reynolds number is increased, the

Moffatt eddies (see [14]) downstream of the expansion grow while the vortices upstream of the

contraction reduce in size: we see in Fig. 5(b) that the flow at Re=7.8 has lost the symmetry
about the vertical axis, while the symmetry about the horizontal axis is maintained. At a

further increase of the Reynolds number, the flow becomes asymmetric also with respect to

the horizontal symmetry axis of the domain; see Fig. 5(c) which corresponds to Re=31.1 . In

Fig. 5(c), the lower recirculation enlarged and pushed the high velocityjet to the upper wall.

Notice that the flow could have evolved to its reflected image configuration with respect to

the domain symmetry axis. A further increase in Reynolds number generates a third vortex

downstream on the side of the smaller primary vortex, as the enlarged one grows and pushes
the jet even closer to the wall; see Fig. 5(d). Fig. 5 is in good qualitative agreement with

[15].
It was shown [26, 8, 25, 13] that this behavior occurs as a result of a supercritical pitchfork

bifurcation in the solution of the Navier Stokes equations, i.e., above Re_{sb} two stable solutions

co‐exist [2]. Bifurcation theory allows to clarify the nature of the multiplicity of possible
flows, whereas \mathrm{a} (numerical or laboratory) experiment will give one or the other of the stable

asymmetric solutions. The asymmetric solution remains stable for a certain range of Re

and asymmetries become stronger with the increasing Reynolds number, as shown in [12].
The formation of stable asymmetric vortices in 2\mathrm{D} planar expansion is due to the Coanda

effect (see [29]): an increase in velocity near one wall will lead to a decrease in pressure near

that wall and once a pressure difference is established across the channel it will maintain the
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(a) Re=0.01 (b) Re=7.8 (c) Re=31.1

\rightarrow r_{4}

\rightarrow r_{3}

r_{1}

r_{2}

(d) Re=71.3

Figure 5: Expansion ratio  $\lambda$=15.4 : Streamlines at the time when stopping criterion (17) is

satisfied for Reynolds numbers (a) Re=0.01 , (b) Re=7.8 , (c) Re=31.1 , (d) Re=71.3.

The streamlines are colored with the velocity magnitude, with blue corresponding to 0 and

red corresponding to 1.

asymmetry of the flow. The value of Re_{sb} has been identified for different expansion ratios

 $\lambda$ . In particular, it was found that  Re_{sb} decreases with increasing value of  $\lambda$ (see [6, 23, 13

For a quantitative agreement, we report the bifurcation diagram shown in Fig. 6, which

shows the effect of the Reynolds number on the length of the recirculation zones formed

downstream of the expansion and it is identical to the one presented in [15]. The lengths
in Fig. 6 (  r_{1} to r_{4} , as marked in Fig. 5(\mathrm{d}) ) are normalized with respect to the downstream

channel width W . As in [15], the critical Reynolds number for the symmetry breaking Re_{sb}
was found to be approximately 28.5, which is in good agreement also with the results in [12].
In fact, reference [12] considers  $\lambda$=16 and obtains a critical Reynolds number of 27.5, which

is very close to what we get. At Re between 41 and 42, the third vortex appears.

Figure 6: Expansion ratio  $\lambda$=15.4 : bifurcation diagram for the geometry shown in Fig.
4(\mathrm{a}) .

For a further validation of the results, we consider a test case from [6]. Since we are only
interested in the evolution of the vortices in the expansion channel as Re varies, we are going
to consider the domain reported in Fig. 7(a): the inlet $\Gamma$_{in} of this new geometry is the outlet

of the contraction channel in Fig. 4(a). The expansion chamber width W is set to 1 and
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(a) Geometry considered in [6] (b) Bifurcation diagram for  $\lambda$=6

Figure 7: (a) Computational geometry considered in [6] and (b) a convergence study for the

bifurcation diagram corresponding to the 2\mathrm{D} flow in such geometry with  $\lambda$=6 . The results

refer to three different meshes: coarse, medium, and fine.

the contraction width w is equal to 1/6, which implies  $\lambda$=6 . This is one of the geometries
considered in [6]. Note that if the contraction channel length L_{c} (see Fig. 4) is large enough
to have an established Poiseuille flow in it, the flow upstream of the contraction is not going
to affect the flow downstream. In this domain, we examine the onset of asymmetries by
simulating the flow for Reynolds numbers ranging from 0.01 to 73.3.

As boundary conditions, we impose a parabolic velocity profile with maximum velocity
U_{\max}=1 on $\Gamma$_{in} , a stress‐free boundary condition at the outlet $\Gamma$_{out} , and no‐slip condition

on the rest of the boundary. We change the Reynolds number by varying the value of the

viscosity  $\mu$ . The stopping tolerance for the fixed point iterations was set to  10^{-8} , since as

the Reynolds number increases the convective term needs to be properly resolved.

For this second test case, we checked the influence of the mesh size on the value of Re_{sb}.
Three meshes with different levels of refinement were considered:

‐ a coarse mesh, with an average element diameter h_{avg}=4\cdot 10^{-2} , a maximum element

diameter h_{\max}=6\cdot 10^{-2} and a minimum element diameter h_{\min}=10^{-2} ; this mesh

has around 10^{4} nodes and 1. 9\cdot 10^{4} triangles;

‐ a medium mesh, with h_{avg}=2.3\cdot 10^{-2}, h_{\max}=4\cdot 10^{-2}, h_{\min}=7\cdot 10^{-3} ; this mesh has

around 2. 2\cdot 10^{4} nodes and 4. 3\cdot 10^{4} triangles;

‐ a fine mesh, with h_{avg}=1.3\cdot 10^{-2}, h_{\max}=2.8\cdot 10^{-2}, h_{\min}=5\cdot 10^{-3} ; this mesh has

around 4.4 \cdot  10^{4} nodes and 8.7 \cdot  10^{4} triangles.

The minimum diameter was set at the inlet in order to have proper resolution of the con‐

traction. The bifurcation diagram in Fig. 7(b) shows the effect of Reynolds number on the

length of the recirculation regions. Since now W=1 , the normalized lengths correspond to

the actual lengths.
From Fig. 7(b) we see that for  $\lambda$=6 the third recirculation does not appear for Re\leq 73.3,

regardless of the mesh used, while for  $\lambda$=15.4 it appeared just past Re=41 . We observe

that the results for the medium mesh and the fine mesh are almost superimposed and they
both give a value of Re_{sb} approximately equal to 46.5. Notice that as the aspect ratio  $\lambda$

decreases, the critical Reynolds number for the symmetry breaking increases, as observed

also in [6]. The bifurcation graph in Fig. 7(b) is very similar to the one in [6], taking
into account the fact that we defined the Reynolds number as in (8) with the characteristic

velocity  U=2U_{\max}/3 , while in [6] the Reynolds number is defined as in (6) with L=w and

U=U_{\max}, U_{\max} being the maximum inlet velocity. Converting our value Re,b=46.5 to the

system used in [6] we get 34.8, which is very close to 33, the value found in [6]. Fig. 7(b)
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shows that if the computations are performed on a mesh that is under‐refined, the value of

Re_{sb} gets overestimated.

At larger Reynolds number the flow becomes increasingly complex and other bifurcations

occur. At a further increase of Re, the flow becomes unsteady and the existence of a Hopf
bifurcation is deduced [26]. In [17], for  $\lambda$=6 we showed that a Hopf bifurcation does occur

in the expansion channel: at a certain Reynolds number the asymmetric solution loses its

stability and a one‐parameter family of periodic solutions bifurcates from the stationary
solution.

4 Numerical results for the mock heart chamber

In this section, we first consider the flow in a section of the mock heart chamber. This 2\mathrm{D}

study sheds some light on the causes of the Coanda effect and helps us understand how to

construct a 3\mathrm{D} mock heart chamber in which the Coanda effect can be reproduced. Finally,
we comment on why it is unlikely to observe such an effect in the current mock heart chamber

shown in Fig. 3(a).

4.1 A section of the chamber

Let us consider the radial section of the real chamber parallel to the horizontal chamber walls

in Fig. 3(a). The geometry of this section is a contraction‐expansion channel with expansion
ratio  $\lambda$=45 . Notice that the inlet and outlet sections for this channel differ from those in

Fig. 4(a). In fact, the fluid enters end exits the mock heart chamber through two tubes whose

dimeter is smaller that the chamber diameter. We changed inlet and outlet with respect to

the channels in the previous section to reflect the flow configuration in the real chamber.

Based on the results reported in Sec. 3, we expect the wall‐hugging effect to appear at a

very low Reynolds number since the channel under consideration has  $\lambda$=45 . In Fig. 8, we

report the streamlines at the time when stopping criterion (17) is satisfied for three different

values of Re. For a Reynolds number equal to 2, the jet expands in the center of the expansion
chamber as shown in Fig. 8(a). Notice that due to the modified inlet and outlet sections, we

cannot refer to the jet in Fig. 8(a) as symmetric, however there is clearly no wall‐hugging
effect taking place. As the Reynolds number is increased to 20, the upper downstream

recirculation zone becomes bigger than the lower recirculation: the jet is pulled towards the

outlet, yet again no Coanda effect is displayed; see Fig. 8(b). At Re=100 instead, the jet
hugs the lower wall before reaching the outlet as shown in Fig. 8(c). Moreover, from Re=20

to Re=100 secondary recirculations have appeared and the flow has become increasingly
complex.

In Sec. 3, we noted that if the contraction channel length L_{c} (see Fig. 4(\mathrm{a}) ) is large enough
to have established Poiseuille flow in it, the flow upstream of the contraction is not going
to affect the flow downstream. In the geometry under consideration the contraction channel

length is very small because �healthy� mitral valve leaflets have a thickness of less than 5

mm. For this reason, we decided to check whether different flows upstream of the contraction

lead to different flows in the expansion chamber. We report in Fig. 9 the streamlines at the

time when the stopping criterion (17) is satisfied for Re=100 and two inlet configurations:
inlet at the left vertical wall (as for the channels in Sec. 3) and inlet as in the real chamber

(i.e., as in Fig. 8). Fig. 9 shows that also for a short contraction channel length the flow

upstream of the contraction does not influence the flow in the expansion chamber.

If the Reynolds number is further increased from 100 the solution becomes time‐dependent,
indicating that a Hopf bifurcation has occurred. Thus, increasing the Reynolds number is

not a viable way to make the Coanda effect more pronounced. In the following, we are go‐

ing to consider a couple of geometry modifications that will push the jet to the wall almost

throughout its entire length, as observed in vivo (see Fig. 2 (b)).
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(a) Re=2 (b) Re=20

(c) Re=100

Figure 8: Streamlines in a section of the mock heart chamber for different values of Reynolds
number: (a) Re=2 , (b) Re=20 ,

and (c) Re=100.

(a) Large vertical inlet (b) Small horizontal inlet

Figure 9: Streamlines for Re=100 in a section of the mock heart chamber for two inlet

configurations: (a) inlet at the left vertical wall and (b) inlet as in the real chamber. The

arrows indicate the flow direction.

The mitral valve is a bi‐leaflet valve. The anterior leaflet covers approximately two‐thirds

of the total valve surface. See Fig. 10(a). This means that the orifice between the leaflets

is unlikely to form in the center of the valve. For this reason, we consider an orifice closer

to the lower wall (see Fig. 11(\mathrm{a}) ) rather than in the center (see Fig. 8). Moreover, mitral

valve prolapse, which is characterized by the displacement of a mitral valve leaflet into the

left atrium as shown in Fig. 10(b), is typically observed in patients with eccentric regurgitant
jets. Therefore we consider the geometry with an uneven orifice reported in Fig. ll(b).

Fig. ll(a) shows that when the orifice is closer to the lower wall the recirculation below

the jet in the expansion chamber is smaller than in the case of a central orifice, so \mathrm{t}\mathrm{h}_{\mathrm{t}}\mathrm{e} wall‐

hugging effect becomes more pronounced. Compare Fig. ll(a) with Fig. 9(a), which were

both obtained for Re=100 . In the case of an uneven orifice (i.e., prolapsed valve), the

jet hugs the lower wall along its entire length. See Fig. ll(b), which also corresponds to

Re=100.

In summary, this 2\mathrm{D} study in a section of the real chamber indicates that an evident

Coanda effect can be achieved thanks to two geometry modifications: lowering the location

of the orifice (closer to the outlet), and making the orifice plate uneven. Next, we are going
to use these conclusions to construct a 3\mathrm{D} mock heart chamber in which the Coanda effect

can be reproduced.
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(a) Mitral valve anatomy (b) Mitral valve prolapse

Figure 10: (a) Anatomy of the mitral valve [16] and (b) comparison between a normal mitral

valve and a prolapsed mitral valve.

(a) Lower orifice (b) Uneven orifice

Figure 11: Streamlines for Re=100 in a section of the mock heart chamber for two modified

orifice configurations: (a) lower orifice and (b) uneven orifice.

4.2 A 3\mathrm{D} chamber with quasi‐2D flow

In [15], the 3\mathrm{D} channel in Fig. 4(b) was considered and an extensive set of simulations was

carried out for expansion ratio  $\lambda$=14.5 and variable aspect ratio  $\chi$=H/w . The goal was

to understand how the flow varies in a 3\mathrm{D} contraction‐expansion channel as the Reynolds
number (defined in eq. (7)) and  $\chi$ change.

Let us introduce dimensionless variable \mathcal{H}=H/(H+w)= $\chi$/( $\chi$+1) : the values of \mathcal{H}

is bounded between 0 , for  $\chi$=0 which corresponds to the Hele‐Shaw flow limit, and 1, for

 $\chi$\rightarrow\infty which corresponds to the  2\mathrm{D} flow limit. It was found in [15] that for low \mathcal{H} and low

Re_{3D} , there is no visible recirculation formed downstream of the expansion. For Re_{3D}>28.5,
which corresponds to the critical value for the symmetry breaking in 2\mathrm{D} fo.r  $\lambda$=14.5 , the

sequence of events when \mathcal{H} varies is as follows. For low \mathcal{H} (e.g., 0.01) the flow still resembles

an irrotational flow. As \mathcal{H} increases, small vortices form at the outlet of the contraction

channels. These vortices, called �lip vortices form only in the three‐dimensional flow and

they are not observed in the planar case. When \mathcal{H} reaches the value of 0.5, in addition to

the lip vortices, corner vortices appear. The latter are the Moffatt eddies observed also in

the bi‐dimensional flow (see Fig. 5(\mathrm{a}) ). A further increase of \mathcal{H} leads to the formation of full

corner recirculations as those in Fig. 5(b). Only for high values of \mathcal{H} (e.g., 0.8), asymmetric
flow with large recirculations is observed.

The results in [15] show that the vertical walls in Fig. 4(b) have a stabilizing effect on the

flow patterns by inhibiting the onset of flow asymmetries, i.e. fully three‐dimensional flow

prevents the flow asymmetries observed in quasi‐2D flow at the same Reynolds number. In

fact, the results in [15] indicate that the asymmetric solution, corresponding to the Coanda

effect, is obtained for larger Reynolds numbers and for channels with larger normalized

depth \mathcal{H} . Since \mathcal{H}=H/(H+w) , where w is the width of the contraction channel and H

is the depth, this implies that Coanda effect occurs for the contraction channels which are
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slender (w<<H) . This information can be related to the studies of Coanda effect in mitral

regurgitation: the depth of the channel corresponds to the regurgitant orifice length, while

the width of the channel corresponds to the orifice width. Therefore, the Coanda effect is

expected to occur for regurgitant orifices which are long and narrow, i.e., for those for which

w<<H.

The mitral valve leaflets, when the valve is closed, make contact along a relatively long
region, called coaptation. See Figure 12(a). In regurgitant valves when the two leaflets do not

close properly, the length of the coaptation region that stays open corresponds to the depth
in the contraction channel, denoted by H in Figure 12. Thus, in the case of mitral valve

regurgitation, one can expect to see Coanda effect in cases when the regurgitation occurs

along a large portion of the mitral coaptation and at larger Reynolds numbers.

Figure 12: (a) Sketch of a closed regurgitant mitral valve, viewed from the top (left atrium)
and (b) sketch of an eccentric regurgitant jet in the magnified view of the valve in (a).

We test our hypotheses by constructing a 3\mathrm{D} mock heart chamber with a slender orifice:

we extrude the section of the real chamber considered in Sec. 4.1 to achieve aspect ratio

 $\chi$=45 , corresponding to \mathcal{H}=0.98 . See Fig. 13. Notice in Fig. 13(b) that the extrusion

generates also elongated inlet and outlet sections.

\uparrow \downarrow
|\mathrm{n}|\mathrm{e}\mathrm{t} 0utlet

(a) 3\mathrm{D} chamber for quasi‐2D flow (b) Chamber skeleton

Figure 13: (a) 3\mathrm{D} chamber generated by extruding the section of the real chamber considered

in Sec. 4.1. (b) Skeleton of the chamber in (a).

We report in Fig. 14 the streamlines at the time when stopping criterion (17) is satisfied

for Re_{3D}=100 and two orifice configurations: even and uneven orifice. In the case of the

even orifice shown in Fig. 14(a), the big recirculation below the jet in the expansion chamber

prevents an evident wall‐hugging effect, as already observed in 2\mathrm{D} (see Fig. 8(\mathrm{c}) ). On the

other hand, the jet passed through the uneven orifice hugs the expansion chamber walls along
its entire length, as shown in Fig. 14(b).

Fig. 15 shows the velocity magnitude on the central vertical section of the geometry in

Fig. 13(a) for both the even and the uneven orifice. Notice how closely the flow resembles the

corresponding 2\mathrm{D} flow in Fig. 8(c) and 11(b), respectively. This shows that far away from

the vertical wall the flow does not feel the presence of the walls. This 3\mathrm{D} chamber succeeds
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(a) Even orifice (b) Uneven orifice

Figure 14: Streamlines in the 3\mathrm{D} chamber shown in Fig. 13(a) for Reynolds number Re_{3D}=
100 and two orifice configurations: (a) even orifice and (b) uneven orifice.

in producing quasi‐2D flow, thereby allowing the Coanda effect at the low Reynolds numbers

for which it is observed in 2\mathrm{D}.

(a) Even orifice (b) Uneven orifice

Figure 15: Velocity magnitude on the central vertical section of the geometry in Fig. 13(a)
for two orifice configurations: (a) even orifice and (b) uneven orifice.

For the uneven orifice, which corresponds to a prolapsed valve, we compared our numerical

results with experimental data acquired by Magnetic Resonance Imaging in Fig. 16. The

qualitative comparison is excellent.

The 3\mathrm{D} chamber proposed in this section successfully recreates the Coanda effect because

it allows for quasi‐2D flow since it is made of two cubes, it has elongated (rectangular) inflow

and outflow sections, and a slender orifice. The real chamber shown in Fig. 3(a) is made of

two cylinders, it has small (circular) inflow and outflow sections and a small orifice. Thus,
the flow in the real chamber is fully 3\mathrm{D} , inhibiting the onset of wall‐hugging jets. For this

reason, it is unlikely to observe such an effect in the real mock heart chamber.

5 Conclusions

We presented a numerical study aimed at understanding the causes of the Coanda effect in

2\mathrm{D} and 3\mathrm{D} contraction‐expansion channels. The dynamics of these systems were analyzed
by means of direct numerical simulation of the unsteady NavierStokes equations. This was

a first step towards establishing a connection between the large cardiovascular and bioengi‐
neering literature reporting on the Coanda effect in echocardiographic assessment of mitral

regurgitation and the fluid dynamics literature. The long term goal of this work is to improve
the diagnosis of mitral valve regurgitation for eccentric, wall‐hugging jets.

In contraction‐expansion channels, a steady symmetric flow is observed for sufficiently
small values of the Reynolds number. Above a certain critical Reynolds number, a steady
asymmetric solution is observed: recirculation zones of different sizes form on the upper and

lower wall. We validated the critical Reynolds number for the symmetry‐Ureaking bifurcation

given by our computations against the value in [15] for expansion  $\lambda$=15.4 and the value in
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Figure 16: Qualitative comparison between our simulation of flow in the mock left atrium

(LA) chamber and Magnetic Resonance Imaging of flow in LA [7]. The fluid is flowing from

the left ventricle (LV). Flow streamlines are shown.

[6] for  $\lambda$=6 . Excellent agreement was found.

Next, we considered the flow in a section of the mock heart chamber our medical collabo‐

rators use to reproduce in vitro the cardiac hemodynamics encountered in patients with MR.

Such a section is a 2\mathrm{D} contraction‐expansion channel with a large expansion ratio ( $\lambda$=45) .

Through a series of numerical simulations we show that a pronounced Coanda effect is possi‐
ble only with some modifications of the orifice (i.e., contraction channel) geometry. Thanks

to these results and the results in 3\mathrm{D} contraction‐expansion channels reported in [15], we

argue that in the real chamber the fully three‐dimensional flow prevents the wall‐hugging
effect observed in 2\mathrm{D} flow at the same Reynolds number.

Finally, we propose a 3\mathrm{D} mock heart chamber in which quasi‐2D flow is possible, thereby
allowing the Coanda effect at the low Reynolds numbers for which it is observed in 2\mathrm{D}.
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