
LARGE DATA INCOMPRESSIBLE NONSTATIONARY FLOWS

IN CYLINDRICAL DOMAINS

JOANNA RENCLAWOWICZ

ABSTRACT. We discuss the existence of solutions to the large data incompressible non‐

stationary flows in a cylindrical domain. The motion of the fluid is modeled using the

Navier‐Stokes system with the slip boundary conditions and prescribed inflow and out‐

flow functions.
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1. INTRODUCTION

We present the problem examined in papers [\mathrm{R}\mathrm{Z}1]-[\mathrm{R}\mathrm{Z}7] , related to the nonstationary,
incompressible motion in cylindrical domain. The results obtained in these papers will

be the start point for further analysis of inflow‐outflow problems and next, flows around

some obstacle, with large velocities. The motion is modeled with Navier‐Stokes system
of equations, with slip boundary condition. The main goal is to obtain the existence

result for the inflow‐outflow problem with arbitrarily large flux, where the initial velo.city
does not change to much along the axis of cylinder and the inflow does not change much

along directions perpendicular to this axis either with respect to time. The inflow‐outflow

problem is the subject in papers [RZ4], [RZ5], [RZ6] and also [\mathrm{R}\mathrm{Z}7]- for the reverse Y‐

shaped domain. In the paper [RZ1] we consider the problem with no inflow and in [RZ2]
and [RZ3] we examine an auxiliary Poisson equation in order to obtain the weighted
estimates in L_{2} and L_{p} Sobolev weighted spaces, crucial for other results.

Introducing some large data, like the inflow, is a diffcult question to establish global
existence of regular solutions. Regularity of solutions for Navier‐Stokes equations, even

with no flux, requires some smallness conditions. We underline, that our restrictions

admit much more general class of solutions than, for example, in [Kl, K2, Zl, Z3] because

in these papers the flux must converge to zero suffciently fast or there is no flux. Many
results of this type were proved assuming smallness of initial velocity, some restrictions

on domain (so called thin domain,  $\Omega$=$\Omega$'\times(0,  $\epsilon$), $\Omega$'\in \mathbb{R}^{2} with small  $\epsilon$ ) or special
structure of solutions (so that the solution is close to 2‐dimensional solution). We mention

here as some examples [M1], where the existence for large data is obtained under some

geometrical constraints for  2\mathrm{d} model in steady and evolutionary case; [M2], where steady
Navier‐Stokes equations in pipe‐like domain are investigated and existence is shown for

a class of cylindrical symmetric solutions and [Z4], where the problem of nonstationary
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flow in axially symmetric domain is examined and the result concerns the existence for

solutions close to axially symmetric solutions and the inflow and outflow sufficiently close

to homogeneous flux. In our results there is no restrictions on magnitude of flux, moreover,

in the proof of the existence of global regular solutions we admit arbitrarily large L_{2} norm

of initial velocity. However, our data could not be arbitrary: if we were able to take any

data then the regularity problem for the weak solutions to the Navier‐Stokes would be

solved. We assume smallness of derivatives along the axis of cylinder for inflow function

and initial velocity.
Let us formulate the system of Navier‐Stokes equations describing the motion in papers

[\mathrm{R}\mathrm{Z}4]-[\mathrm{R}\mathrm{Z}6].

v_{t}+v\cdot\nabla v-\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(v,p)=f in $\Omega$^{T}= $\Omega$\times(0, T) ,

\mathrm{d}\mathrm{i}\mathrm{v}v=0 in $\Omega$^{T},
v\cdot\overline{n}=0 on S_{1}^{T},

(1.1)  $\nu$\overline{n}\cdot \mathbb{D}(v)\cdot\overline{ $\tau$}_{ $\alpha$}+ $\gamma$ v\cdot\overline{ $\tau$}_{ $\alpha$}=0,  $\alpha$=1 , 2, on S_{1}^{T},
v\cdot\overline{n}=d on S_{2}^{T},

\overline{n}\cdot \mathbb{D}(v)\cdot\overline{ $\tau$}_{ $\alpha$}=0,  $\alpha$=1 , 2, on S_{2}^{T},
v|_{t=0}=v(0) in  $\Omega$,

where  $\Omega$\subset \mathbb{R}^{3} is a cylindrical domain (Figure 1), S=\partial $\Omega$,  T<\infty is the existence

time,  v is the velocity of the fluid motion with v(x, t)=(v_{1}(x, t), v_{2}(x, t), v_{3}(x, t))\in \mathbb{R}^{3},
p=p(x, t)\in \mathbb{R}^{1} denotes the pressure, f=f(x, t)=(f_{1}(x, t), f_{2}(x, t), f_{3}(x, t))\in \mathbb{R}^{3} —the

external force field, x=(x_{1}, x_{2}, x_{3}) are the Cartesian coordinates, \overline{n} is the unit outward

vector normal to the boundary S and \overline{ $\tau$}_{ $\alpha$},  $\alpha$=1
, 2, are tangent vectors to S and the dot .

denotes the scalar product in \mathbb{R}^{3}. \mathbb{T}(v,p) is the stress tensor of the form

\mathrm{T}(v,p)= $\nu$ \mathbb{D}(v)-p\mathrm{I},

where  $\nu$ is the constant viscosity coefficient and I is the unit matrix. Next,  $\gamma$>0 is the

slip coefficient and \mathbb{D}(v) denotes the dilatation tensor of the form

\mathbb{D}(v)=\{v_{i,x_{j}}+v_{j,x_{i}}\}_{i,j=1,2,3}.
In paper [RZ1] we consider the problem (1.1) with no inflow and no friction on the

boundary, so boundary conditions on S are zero:

v\cdot\overline{n}=0 on S^{T},
\overline{n}\cdot \mathbb{T}(v,p)\cdot\overline{ $\tau$}_{ $\alpha$}=0,  $\alpha$=1

, 2, on S^{T}.

X3

FIGURE 1. Domain  $\Omega$.
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Domain  $\Omega$\subset \mathbb{R}^{3} as presented on the picture is a straight cylinder parallel to the X3

axis with arbitrary cross section. We denote the boundary of  $\Omega$ by  S and set S=S_{1}\cup S_{2}
where S_{1} is parallel to the axis X3 and S_{2} is perpendicular to X3. Consequently,

S_{1} = \{x\in \mathbb{R}^{3} : $\varphi$_{0}(x_{1}, x_{2})=c_{0}, -a<x_{3}<a\},
S_{2}(-a) = \{x\in \mathbb{R}^{3}:$\varphi$_{0}(x_{1}, x_{2})<c_{0}, x_{3}=-a\},

S_{2}(a) = \{x\in \mathbb{R}^{3}:$\varphi$_{0}(x_{1}, x_{2})<c_{0}, x_{3}=a\}
where a, c_{0} are positive given numbers and $\varphi$_{0}(x_{1}, x_{2})=c_{0} describes a sufficiently smooth

closed curve in the plane x_{3}= const.

To define inflow and outflow we specify boundary condition (1.1)4 introducing d=

(d_{1}, d_{2}) where

d_{1} =-v\cdot\overline{n}|_{S_{2}(-a)}
d_{2} =v\cdot\overline{n}|_{S_{2}(a)}

with d_{i}\geq 0, i=1 ,
2. Using (1.1)_{2,3} and (1.2) we conclude the following compatibility

condition

(1.2)  $\Phi$\displaystyle \equiv\int_{S_{2}(-a)}d_{1}dS_{2}=\int_{S_{2}(a)}d_{2}dS_{2},
where  $\Phi$ is the flux.

Plan of analysis that leads to our global existence result:

Existence of weak solutions with estimate  A on interval (0, T) , paper [RZ4], based

on weighted estimates from papers [RZ2] and [RZ3].
A priori estimates on regular solutions on interval (0, T) with constant \mathcal{A} for large
times T

, paper [RZ5] and paper [RZ1] for the problem with no inflow.

Existence of regular solutions on interval (0, T) for large data, paper [RZ5] and

paper [RZ1].
Regular solutions on íntervals (kT, (k+1)T) , k\in \mathbb{N} ,

with estimate \mathcal{A}_{k} for large
times T

, paper [RZ6].
Controling initial data on intervals (kT, (k+1)T) and prolongation of solutions to

global ones, paper [RZ6].
In Sections 2‐5, we focus on these issues.

2. WEAK SOLUTIONS AND WEIGHTED ESTIMATES

In order to formulate the weak solutions existence theorem we define a space natural

for the study of weak solutions to the Navier‐Stokes equations:

V_{2}^{0}($\Omega$^{T})=\displaystyle \{u:||u||_{V_{2}^{0}($\Omega$^{T})}\equiv \mathrm{e}\mathrm{s}\mathrm{s}\sup_{)}||u||_{L_{2}( $\Omega$)}+t\in(0T)(\int_{0}^{T}||\nabla u||_{L_{2}( $\Omega$)}^{2}dt)^{\frac{1}{2}}<\infty\}.
We use as well Lebesque and Sobolev spaces:

isotropic and anisotropic Lebesgue spaces:

L_{p}(Q) , Q\in\{$\Omega$^{T}, S^{T},  $\Omega$, S\}, p\in[1, \infty],
L_{q}(0, T;L_{p}(Q)) , Q\in\{ $\Omega$, S\}, p, q\in[1, \infty] ;

Sobolev spaces

W_{q}^{s}(Q) , Q\in\{ $\Omega$, S\}, s, q\in[1, \infty) ,
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anisotropic Sobolev spaces:

W_{q}^{s,s/2}(Q^{T}) , Q\in\{ $\Omega$, S\}, s=2m, m\in \mathbb{N}, q\in[1, \infty) ,

with the norm

\displaystyle \Vert u\Vert_{W_{q}^{s, $\epsilon$/2}(Q^{T})}=(_{| $\alpha$|}\sum_{+2a\leq s}\int_{Q^{T}}|D_{x}^{ $\alpha$}\partial_{t}^{a}u|^{q}dxdt)^{\frac{1}{q}}
where

D_{x}^{ $\alpha$}=\partial_{x_{1}}^{$\alpha$_{1}}\partial_{x_{2}}^{$\alpha$_{2}}\partial_{x_{3}}^{$\alpha$_{3}}, | $\alpha$|=$\alpha$_{1}+$\alpha$_{2}+$\alpha$_{3}, a, $\alpha$_{i}\in \mathbb{Z}_{+}\cup\{0\}.
In the special case q=2,

H^{s}(Q)=W_{2}^{s}(Q) , Q\in\{ $\Omega$, S\}, s\in \mathbb{Z}_{+}\cup\{0\},
with the norm

\displaystyle \Vert u\Vert_{H^{s}(Q)}=(\sum_{| $\alpha$|\leq s}\int_{Q}|D_{x}^{ $\alpha$}u|^{2}dx)^{\frac{1}{2}}
Obviously, we need as well the definition of weak solution to the system (1.1), however,

since for this we have to introduce some auxiliary functions in order to homogenize the

inflow boundary condition, we are going to present the corresponding construction in the

next section.

Theorem 1. Assume the compatibility condition (1.2). Assume that  v(0)\in L_{2}( $\Omega$);f\in

 L_{2}(0, T;L_{6/5}( $\Omega$));d_{i}\displaystyle \in L_{\infty}(0, T;W_{p}^{s-1/p}(S_{2}))\cap L_{2}(0, T;W_{2}^{1/2}(S_{2}));\frac{3}{p}+\frac{1}{3}\leq s, p>3 or

p=3, s>\displaystyle \frac{4}{3} ; and d_{i,t}\in L_{2}(0, T;W_{6/5}^{1/6}(S_{2})) ,
i=1

,
2. Then there exists a weak solution v

to problem (1.1) such that v is weakly continuous with respect to t in L^{2}( $\Omega$) norm and

v converges to v_{0} as t\rightarrow 0 strongly in L^{2}( $\Omega$) norm. Moreover, v\in V_{2}^{0}($\Omega$^{T}) ,  v\cdot\overline{ $\tau$}_{ $\alpha$}\in

 L_{2}(0, T;L_{2}(S_{1})) ,
 $\alpha$=1

, 2, and v satisfies, for all t\leq T

\displaystyle \Vert v\Vert_{V_{2}^{0}($\Omega$^{t})}^{2}+ $\gamma$\sum_{ $\alpha$=1}^{2}\int_{0}^{t}\Vert v\cdot\overline{ $\tau$}_{ $\alpha$}\Vert_{L_{2}(S_{1})}^{2}\leq 2\Vert f\Vert_{L_{2}(;6}^{2}0,tL_{5}( $\Omega$))
(2.1)

+ $\varphi$(\displaystyle \sup_{ $\tau$\leq t}\Vert d\Vert_{W_{3}^{s-\frac{1}{\mathrm{p}}}(S_{2})})(61+\Vert v(0)\Vert_{L_{2}( $\Omega$)}^{2}\equiv A^{2}
where  $\varphi$ is a nonlinear positive increasing function.

To show the existence theorem, we need to obtain an energy type estimate, and for this

purpose, we have to make the Dirichlet boundary condition (1.1)5 homogeneous.
To this end, we extend the functions corresponding to the inflow and outflow so that

\tilde{d}_{i}|_{S_{2}(a_{ $\iota$})}=d_{i}, i=1, 2, a_{1}=-a, a_{2}=a
We use the Hopf construction (see papers of Hopf [H1] and Ladyshenskaya [L]) and in‐

troduce the function  $\eta$ :

 $\eta$( $\sigma$; $\epsilon$,  $\rho$)=\left\{\begin{array}{l}
1, 0\leq $\sigma$\leq $\rho$ e^{-1/ $\epsilon$}\equiv r,\\
- $\epsilon$\ln\frac{ $\sigma$}{ $\rho$}, r< $\sigma$\leq $\rho$,\\
0,  $\rho$< $\sigma$<\infty.
\end{array}\right.
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We define (locally) functions $\eta$_{i} on the neighborhood of S_{2} (inside  $\Omega$ ) by setting:

 $\eta$_{i}= $\eta$($\sigma$_{i}; $\epsilon$,  $\rho$) , i=1, 2 ,

where $\sigma$_{i} denote local coordinates defined on a small neighborhood of S_{2}(a_{i}) :

$\sigma$_{1}=a+x_{3}, $\sigma$_{2}=a-x_{3}

and we set

 $\alpha$ = \displaystyle \sum_{i=1}^{2}\tilde{d}_{i}$\eta$_{i},
b =  $\alpha$\overline{e}_{3}, \overline{e}_{3}=(0,0,1) .

We set

u=v-b.

Therefore,

\mathrm{d}\mathrm{i}\mathrm{v}u = -\mathrm{d}\mathrm{i}\mathrm{v}b=-$\alpha$_{x_{3}} in  $\Omega$,
u\cdot\overline{n} = 0 on S.

Now we notice that the boundary condition for u is homogeneous, but the function u is

not ideal as the new variable: it is not divergence free. Let us rewrite the compatibility
condition

\displaystyle \int_{ $\Omega$}$\alpha$_{x_{3}}dx=-\int_{S_{2}(-a)} $\alpha$|_{x_{3}=-a}dS_{2}+\int_{S_{2}(a)} $\alpha$|_{x_{3}=a}dS_{2}=0.
We need to correct the function u , so we define  $\varphi$ as a solution to the Neumann problem

\triangle $\varphi$ = -\mathrm{d}\mathrm{i}\mathrm{v}b in  $\Omega$,

(2.2) \overline{n}\cdot\nabla $\varphi$ = 0 on S,

\displaystyle \int_{ $\Omega$} $\varphi$ dx = O.

Next, we set

w=u-\nabla $\varphi$=v-(b+\nabla $\varphi$)\equiv v- $\delta$.

Consequently, (w,p) is a solution to the following problem:

w_{t}+w\cdot\nabla w+w\cdot\nabla $\delta$+ $\delta$\cdot\nabla w-\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(w,p)
=f-$\delta$_{t}- $\delta$\cdot\nabla $\delta$+ $\nu$ \mathrm{d}\mathrm{i}\mathrm{v}\mathbb{D}( $\delta$)\equiv F( $\delta$, t) in $\Omega$^{T},

\mathrm{d}\mathrm{i}\mathrm{v}w=0 in $\Omega$^{T},
w\cdot\overline{n}=0 on S^{T},

(2.3)  $\nu$\overline{n}\cdot \mathbb{D}(w)\cdot\overline{ $\tau$}_{ $\alpha$}+ $\gamma$ w\cdot\overline{ $\tau$}_{ $\alpha$}
=- $\nu$\overline{n}\cdot \mathbb{D}( $\delta$)\cdot\overline{ $\tau$}_{ $\alpha$}- $\gamma \delta$\cdot\overline{ $\tau$}_{ $\alpha$}\equiv B_{1 $\alpha$}( $\delta$) ,

 $\alpha$=1
, 2, on S_{1}^{T},

\overline{n}\cdot \mathbb{D}(w)\cdot\overline{ $\tau$}_{ $\alpha$}=-\overline{n}\cdot \mathbb{D}( $\delta$)\cdot\overline{ $\tau$}_{ $\alpha$}\equiv B_{2 $\alpha$}( $\delta$) ,  $\alpha$=1 , 2, on S_{2}^{T},

w|_{t=0}=v(0)- $\delta$(0)=w(0) in  $\Omega$,

where \mathrm{d}\mathrm{i}\mathrm{v} $\delta$= O. Since Dirichlet boundary conditions for w are homogeneous and w is

divergence free, we can define weak solutions to the problem (2.3)
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Definition 1. We call w a weak solution to problem (2.3) if for any sufficiently smooth

function  $\psi$ such that

\mathrm{d}\mathrm{i}\mathrm{v} $\psi$|_{ $\Omega$}=0,  $\psi$\cdot\overline{n}|_{S}=0
the integral identity

\displaystyle \int_{$\Omega$^{\mathrm{T}}}w_{t}\cdot $\psi$ dxdt+\int_{$\Omega$^{T}}H(w)\cdot $\psi$ dxdt+ $\nu$\int_{$\Omega$^{T}}\mathbb{D}(v)\cdot \mathbb{D}( $\psi$)dxdt
+ $\gamma$\displaystyle \sum_{ $\alpha$=1}^{2}\int_{S_{1}^{T}}w\cdot\overline{ $\tau$}_{ $\alpha$} $\psi$\cdot\overline{ $\tau$}_{ $\alpha$}dS_{1}dt-\sum_{ $\alpha,\ \sigma$=1}^{2}\int_{S_{ $\sigma$}^{T}}B_{ $\sigma \alpha$} $\psi$\cdot\overline{ $\tau$}_{ $\alpha$}dS_{ $\sigma$}dt=\int_{$\Omega$^{T}}F\cdot $\psi$ dxdt

holds, where

H(w)=w\cdot\nabla w+w\cdot\nabla $\delta$+ $\delta$\cdot\nabla w.

In order to obtain the energy estimate we use  $\psi$=w as a test function: thus, we

multiply the first equation in (2.3) by  $\psi$ , integrate by parts on  $\Omega$ and apply the definition

of  F
, therefore

\displaystyle \frac{1}{2}\frac{d}{dt}\Vert w\Vert_{L_{2}( $\Omega$)}^{2}+\int_{ $\Omega$}(w\cdot\nabla $\delta$\cdot w+ $\delta$\cdot\nabla w\cdot w)dx-\int_{ $\Omega$}\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(w+ $\delta$,p) . wdx

=\displaystyle \int_{ $\Omega$}(f-$\delta$_{t}- $\delta$\cdot\nabla $\delta$) . wdx.

We use the boundary conditions on S_{1} and S_{2} in (1.1) and apply the Korn inequality to

reformulate this equality and obtain:

\displaystyle \frac{1}{2}\frac{d}{dt}\Vert w\Vert_{L_{2}( $\Omega$)}^{2}+ $\nu$\Vert w\Vert_{H^{1}( $\Omega$)}^{2}+ $\gamma$\sum_{ $\alpha$=1}^{2}\Vert w\cdot\overline{ $\tau$}_{ $\alpha$}\Vert_{L_{2}(S_{1})}^{2}
\displaystyle \leq-\int_{ $\Omega$}(w\cdot\nabla $\delta$\cdot w+ $\delta$\cdot\nabla w\cdot w)dx+c\sum_{ $\alpha$=1}^{2}\Vert $\delta$\cdot\overline{ $\tau$}_{ $\alpha$}\Vert_{L_{2}(S_{1})}^{2}

+c\displaystyle \Vert \mathbb{D}( $\delta$)\Vert_{L_{2}( $\Omega$)}^{2}+\int_{ $\Omega$}(f-$\delta$_{t}- $\delta$\cdot\nabla $\delta$)wdx.
The most difficult terms are those caused by nonlinearity w\cdot\nabla w . Let us look closer at

some example and focus on the integral

\displaystyle \int_{ $\Omega$} $\delta$\cdot\nabla w . wdx = \displaystyle \int_{ $\Omega$}(b+\nabla $\varphi$)\cdot\nabla w . wdx

= \displaystyle \int_{ $\Omega$}b\cdot\nabla w\cdot wdx+\int_{ $\Omega$}\nabla $\varphi$\cdot\nabla w. wdx=I_{1}+I_{2}.
We can estimate I_{1} using the Hölder inequality and, moreover, the local support of b

yields some smallness:

|I_{1}|\leq\Vert\nabla w\Vert_{L_{2}( $\Omega$)}\Vert w\Vert_{L_{6}( $\Omega$)}\Vert b\Vert_{L_{3}( $\Omega$)}\leq c\Vert w\Vert_{H^{1}( $\Omega$)}^{2}\Vert b\Vert_{L_{3}(\overline{S}_{2}( $\rho$))}
\leq c$\rho$^{1/6}\Vert w\Vert_{H^{1}( $\Omega$)}^{2}\Vert b\Vert_{L_{6}(\overline{S}_{2}( $\rho$))}\leq c$\rho$^{1/6}\Vert w\Vert_{H^{1}( $\Omega$)}^{2}\Vert $\delta$\Vert_{L_{6}( $\Omega$)}

\leq c$\rho$^{1/6}\Vert w\Vert_{H^{1}( $\Omega$)}^{2}\Vert\tilde{d}\Vert_{H^{1}( $\Omega$)}
where

\overline{S}_{2}( $\rho$)=\{x\in $\Omega$ : x_{3}\in(-a, -a+ $\rho$)\cup(a- $\rho$, a)\}=\overline{S}_{2}( $\rho$, a_{1})\cup\overline{S}_{2}( $\rho$, a_{2}) .
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We estimate I_{2} as follows:

|I_{2}|=|\displaystyle \int_{ $\Omega$}\nabla $\varphi$\cdot\nabla w\cdot wdx|\leq\Vert\nabla $\varphi$\Vert_{L_{3}( $\Omega$)}\Vert w\Vert_{L_{6}( $\Omega$)}\Vert\nabla w\Vert_{L_{2}( $\Omega$)}
To extract some small parameter we use the result of [RZ3] on the Poisson problem (2.2)
in weighted Sobolev spaces

\Vert\nabla $\varphi$\Vert_{L_{3}( $\Omega$)} \leq c\Vert\nabla $\varphi$\Vert_{L_{3,-$\mu$'}( $\Omega$)}\leq c\Vert\nabla_{x_{3}}\nabla $\varphi$\Vert_{L_{3,1-$\mu$'}( $\Omega$)}\leq c\Vert $\varphi$\Vert_{L_{3,1-$\mu$'}^{2}( $\Omega$)}
\leq c\Vert \mathrm{d}\mathrm{i}\mathrm{v}b\Vert_{L_{3,1- $\mu$},( $\Omega$)}

where we denote

||u\displaystyle \Vert_{L_{p, $\mu$}^{k}( $\Omega$)}=(\sum_{| $\alpha$|=k}\int|D_{x}^{ $\alpha$}u|_{\min_{\mathrm{i}=1,2}}^{p}|(\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x, S_{2}(a_{i}))|^{p $\mu$}dx)^{1/p},  $\mu$\in \mathbb{R},p\in(1, \infty) .

Let us emphasize, that in L_{2} approach we use the explicit form of solutions, and for

the existence result we apply the regularizer technique. In L_{p}, p>2 weighted spaces

(since we need the result for p=3 ), we introduce some auxiliary problem and more

subtle techniques to compare norms of solutions even for different weights. Note as well,
that weight of the form x_{3}^{ $\mu$},p\in(1, \infty) is not the Muckenhaupt weight so the results of

Coifmann‐Feffermann [CF] can not be applied.

To estimate the last norm, we choose \displaystyle \frac{2}{3}\leq 1-$\mu$'\leq 1 . With  $\mu$=1-$\mu$' we have

c\displaystyle \Vert \mathrm{d}\mathrm{i}\mathrm{v}b\Vert_{L_{3, $\mu$}( $\Omega$)}\leq c $\epsilon$(\sum_{i=1}^{2}\int_{\overline{S}_{2}(a_{ $\iota$})}|\tilde{d}_{i}|^{3}\frac{$\sigma$_{i}^{3 $\mu$}}{$\sigma$_{i}^{3}}dx)^{1/3}+(\sum_{i=1}^{2}\int_{\overline{S}_{2}(a_{x})}|\tilde{d}_{i,x_{3}}|^{3}| $\rho$(x)|^{3 $\mu$}dx)^{1/3}
\displaystyle \leq c\sum_{i=1}^{2} $\epsilon$(\sup_{x_{3}}\int_{S_{2}(a_{\mathrm{t}})}|\tilde{d}_{i}|^{3}dx'\int_{r}^{ $\rho$}\frac{$\sigma$_{i}^{3 $\mu$}}{$\sigma$_{i}^{3}}d$\sigma$_{i})^{1/3}+\sum_{i=1}^{2}(_{x}\sup_{3}\int_{S_{2}(a_{\mathrm{z}})}|\tilde{d}_{i,x_{3}}|^{3}dx'\int_{0}^{ $\rho$}$\sigma$_{i}^{3 $\mu$}d$\sigma$_{i})^{1/3}

\displaystyle \leq c $\epsilon \rho$^{ $\mu$-2/3}\sup_{x_{3}}\Vert\tilde{d}\Vert_{L_{3}(S_{2}),3}+c$\rho$^{ $\mu$+1/3}\sup_{x_{3}}\Vert\tilde{d}_{x}\Vert_{L_{3}(S_{2})}
where $\sigma$_{i}=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\{S_{2} (ai), x\}, x\in S_{2}(a_{i},  $\rho$) . We note that the last bound holds for  $\mu$>\displaystyle \frac{2}{3}
since for  $\mu$=\displaystyle \frac{2}{3} the r.h. \mathrm{s} . takes the form

c\displaystyle \sup_{x_{3}}L_{3(s_{2}),3},
which cannot be made small for large \tilde{d}. Then,

|I_{2}|\displaystyle \leq c[ $\epsilon \rho$^{ $\mu$-2/3}\sup_{x_{3}}\Vert\tilde{d}\Vert_{L_{3}(S_{2})}+$\rho$^{ $\mu$+1/3}\sup_{x_{3}}\Vert\tilde{d}_{x_{3}}\Vert_{L_{3}(S_{2})}]\Vert w\Vert_{H^{1}( $\Omega$)}^{2}.
Let us notice, that in order to estimate \displaystyle \sup_{x_{3}}\Vert\tilde{d}\Vert_{L_{3}(S_{2})} and \displaystyle \sup_{x}3\Vert\tilde{d}_{x_{3}}\Vert_{L_{3}(S_{2})} by some W_{p}^{s}
norm we apply the Sobolev anisotropic imbedding (see [BIN], Ch.3, Section 10) which

reads

2 (\displaystyle \frac{1}{p}-\frac{1}{3})\frac{1}{s}+\frac{1}{p}\cdot\frac{1}{s}+\frac{1}{s}\leq 1 for p>3,

2 (\displaystyle \frac{1}{p}-\frac{1}{3})\frac{1}{s}+\frac{1}{p}\cdot\frac{1}{s}+\frac{1}{s}<1 for p=3.

71



Thus, we find that p, s satisfy

\displaystyle \frac{3}{p}+\frac{1}{3}\leq s, p>3 or p=3, s>\displaystyle \frac{4}{3}.
We deal with other terms in the integral inequality and apply Korn inequality, Schwartz

inequality, Sobolev imbedding to obtain

\displaystyle \frac{1}{2}\frac{d}{dt}\Vert w\Vert_{L_{2}( $\Omega$)}^{2}+ $\nu$\Vert w\Vert_{H^{1}( $\Omega$)}^{2}+ $\gamma$\sum_{ $\alpha$=1}^{2}\Vert w\cdot\overline{ $\tau$}_{ $\alpha$}\Vert_{L_{2}(S_{1})}^{2}
\leq$\varphi$_{1}( $\rho$,  $\epsilon$,  $\mu$, \Vert\tilde{d}\Vert_{W_{p^{S}}( $\Omega$)})\Vert w\Vert_{H^{1}( $\Omega$)}^{2}+\Vert f\Vert_{L_{6/5}( $\Omega$)}^{2}+$\varphi$_{2}(\Vert\tilde{d}\Vert_{W_{p}^{s}( $\Omega$)})(\Vert\tilde{d}\Vert_{W_{2}^{1}( $\Omega$)}^{2}+\Vert\tilde{d}_{t}\Vert_{W_{6/5}^{1}( $\Omega$)}^{2})
where $\varphi$_{i}, i=1

,
2 is a nonlinear positive increasing function and $\varphi$_{1} is small for small

values of  $\epsilon$,  $\rho$,  $\mu$ . Thus, we can choose parameters  $\mu$>\displaystyle \frac{2}{3},  $\rho$,  $\epsilon$ in dependence on  $\nu$ and

\Vert\tilde{d}\Vert_{W_{p}^{s}( $\Omega$)} so that

$\varphi$_{1}( $\rho$,  $\epsilon$,  $\mu$, \displaystyle \Vert\tilde{d}\Vert_{W_{p}^{s}( $\Omega$)})\leq\frac{ $\nu$}{2}.
Therefore, we can �consume� the term $\varphi$_{1}\Vert w\Vert_{H^{1}( $\Omega$)}^{2} by  $\nu$\Vert w\Vert_{H^{1}( $\Omega$)}^{2} on the left hand side and

in consequence, we have only data terms on the right hand side. Next, integrating with

respect to time, we obtain the estimate of the form

\displaystyle \Vert w\Vert_{V_{2}^{0}($\Omega$^{t})}^{2}+ $\gamma$\sum_{ $\alpha$=1}^{2}\int_{0}^{t}\Vert w\cdot\overline{ $\tau$}_{ $\alpha$}\Vert_{L_{2}(S_{1})}^{2}dt\leq 2\Vert f\Vert_{L_{2}(0,t;L_{6/5}( $\Omega$))}^{2}
+ $\varphi$(\displaystyle \sup_{ $\tau$}\Vert\tilde{d}\Vert_{W_{\mathrm{p}}^{s}( $\Omega$)})(\Vert\tilde{d}\Vert_{L_{2}(0,t,W_{2}^{1}( $\Omega$))}^{2}+\Vert\tilde{d}_{t}\Vert_{L_{2}(0,t,W_{6/5}^{1}( $\Omega$))}^{2})+\Vert w(0)\Vert_{L_{2}( $\Omega$)}^{2}.

With Galerkin method we prove the existence of weak solutions and so the Theorem 1.

With the a priori estimate, we show also existence of global weak solutions.

Theorem 2. Assume the compatibility condition (1.2). Let f\in L_{2}(kT, (k+1)T;L_{6/5}( $\Omega$)) ,

d_{i}\in L_{\infty}(\mathbb{R}^{+};W_{p}^{s-1/p}(S_{2}))\cap L_{2}(kT, (k+1)T;W_{2}^{1/2}(S_{2})) ,
where \displaystyle \frac{3}{p}+\frac{1}{3}\leq s, p>3 or

p=3, s>\displaystyle \frac{4}{3} ,
and d_{i,t}\in L_{2}(kT, (k+1)T;W_{6/5}^{1/6}(S_{2})) ,

i=1
,
2. Then there exists a global

weak solution v to (1.1) such that

v\in V_{2}^{0}( $\Omega$\times(kT, (k+1)T))\forall k\in \mathbb{N}_{0}=\mathbb{N}\cup\{0\}.
Moreover, the following global estimate hold:

\displaystyle \Vert v(kT)\Vert_{L_{2}( $\Omega$)}^{2} \leq \frac{1}{1-e^{- $\nu$ T}}l_{0}^{2}+\Vert v(0)\Vert_{L_{2}( $\Omega$)}^{2}\equiv \mathrm{a}^{2},
\Vert v\Vert_{V_{2}^{0}( $\Omega$\times(kT,t))}^{2}\leq l_{0}^{2}+\Vert v(kT)\Vert_{L_{2}( $\Omega$)}^{2} \leq  l_{0}^{2}+\mathrm{a}^{2}=A(k, T) , t\in[kT;(k+1)T],

where

l_{0}^{2}=\displaystyle \frac{2}{ $\nu$}\Vert f\Vert^{2}L_{2}(kT,(k+1)T,L_{6/(S_{2})}5( $\Omega$))+\frac{1}{ $\nu$} $\varphi$(\sup_{t}\Vert d\Vert_{W_{3}^{s-1/p}})\sup_{t}(\Vert d\Vert_{W_{2}^{1/2}(S_{2})}^{2}+\Vert d_{t}\Vert_{W_{6/5}^{1/6}(S_{2})}^{2}) ,

and  $\varphi$ is an increasing function.

The next step is to work with weak solutions in order to increase the regularity.
We mention here as well the paper [RZ7], where we consider the inflow‐outflow problem

in the reverse \mathrm{Y}‐shaped domain (Figure 2), with one inflow and two outflows. The motion

of the fluid is described by the Navier‐Stokes equations with boundary slip conditions.

First, we prove some a priori energy type estimates, next part is devoted to the proof of
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existence of weak solutions to the problem by the Galerkin method. We examine also the

properties of solutions near the neighborhood of artificial boundaries D_{2} and D_{3} , where

D_{i}=$\Omega$_{1}\cap$\Omega$_{i}, i=2
, 3, dilatation tensor \mathbb{D}(v)=\{v_{x}^{i}, +v_{x_{\mathrm{z}}}^{j}\}_{i,j=1,2,3}

�

and

v_{1}\cdot\overline{n}_{1}=v_{i}\cdot\overline{n}_{1}

\overline{n}_{1}\cdot \mathbb{D}(v_{1})\cdot\overline{ $\tau$}_{J}\prime=\overline{n}_{1}\cdot \mathbb{D}(v_{i})\cdot\overline{ $\tau$}_{j} ,
on D_{i}, i=2 , 3, j=1 ,

2.

The problem can be treated as a simple model of the blood flow in veins or arteries.

(\mathrm{v}_{3}, \mathrm{p}_{3})

FIGURE 2. \mathrm{Y}‐shaped domain

3. A PRIORI ESTIMATES ON REGULAR SOLUTIONS

In [RZ5] and [RZ1] we have been proved the existence of possibly large solutions (with
respectively large data). In our case there is no restrictions on the magnitudes of the

initial velocity v(0) , the external force either, in paper [RZ5], on the flux d . Therefore

we prove the existence of large regular solutions to (1.1). However, our data could not

be arbitrary: if we were able to take any data then the regularity problem for the weak

solutions to the Navier‐Stokes would be solved. We assume smallness of the following
quantities

(3.1) \Vert v_{x_{3}}(0)\Vert_{L_{2}( $\Omega$)}, \Vert f_{x_{3}})\Vert_{L_{2}(0,T,L_{6/5}( $\Omega$))}
and, in paper [RZ5]

(3.2) \Vert d_{t}\Vert_{L_{2}(0,T;H^{1}(S_{2}))}, \Vert d_{x'}\Vert_{L_{2}(0,T,H^{1}(S_{2}))\cap L_{\infty}(0,T,H^{1}(S_{2}))}.
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It points that the initial velocity and the external force does not change much along the

cylinder. This could mean that we are looking for solutions close to 2‐dimensional solu‐

tions which are located in the cross‐section of the cylinder on the plane perpendicular to

its axis. However, this possibility does not occur: we prove the existence of solutions with

not small v_{x_{3}x_{3}} either p_{x_{3}} (Theorem 2). This property indicates that we consider indeed

3‐dimensional problem where all auxiliary problems, applied theorems of imbeddings and

interpolations are 3‐dimensional. The smallness restrictions for quantities (3.1) and (3.2)
are necessary to obtain the a priori estimate and help us to overcome the difficulties that

appear in regularity problem to the Navier‐Stokes equations. Finally, let us note that

smallness of norm (3.2) implies that the flux does not change much with respect to time

and in S_{2}.
To formulate results of [RZ5] we introduce some quantities

Definition 2. Let A be the estimate for weak solutions to (1.1) established in Theorem 1.

We set

D_{0} = \Vert d_{1}\Vert_{L_{\infty}(0,T,L_{3}(S_{2}(-a)))}^{6}+A^{2}+1_{\rangle}
 $\Lambda$ = \Vert d_{t}\Vert_{L_{2}}^{2} (0,T,H^{1} (S2)) +\Vert d_{x'}\Vert_{L_{2}}^{2}(0,T,H^{1} (S2)) +\Vert d_{x'}\Vert_{L_{\infty}}^{2}(0,T;H^{1} (S2))

+\Vert f_{3}\Vert_{L_{2}(0,T,L_{4/3}}^{2} (S2) ) +\Vert f_{x_{3}}\Vert_{L_{2}(0,T,L_{6/5}( $\Omega$))}^{2}+\Vert v_{x_{3}}(0)\Vert_{L_{2}( $\Omega$)}^{2},
 $\Gamma$ = \Vert f\Vert_{L_{2}(0,T,L_{2}( $\Omega$))}+\Vert V(0)\Vert_{H^{1}( $\Omega$)}.

In the case with no inflow, such parameters could be written in shorter form, which

suggests that paper [RZ1] is just a particular case of more general problem. However, the

techniques that lead to a priori estimates have the source in the paper [RZ1]. Therefore,
paper [RZ1] should be considered, also from the chronological point of view, as the pioneer
paper: the results proved there made possible to apply and generalize methods for more

complex inflow problem.

Condition 1. Let quantities  $\Lambda$,  $\Gamma$, D_{0} be finite. Assume that  $\Lambda$ is so small that there exists

a constant \mathcal{A} satisfying

D_{0}^{2}$\Lambda$^{2}(\mathcal{A}+\mathcal{A}^{2}+ $\Gamma$)\exp[TD_{0}+D_{0}(\mathcal{A}+ $\Gamma$)+\mathcal{A}^{2}+ $\Gamma$]
(3.3)

+\Vert f_{x_{3}}\Vert_{L_{2}(0,T,L_{2}( $\Omega$))}^{2}+\Vert v_{x_{3}}(0)\Vert_{H^{1}( $\Omega$)}^{2}\leq \mathcal{A}^{2}.
Let us notice, that from the Condition 1 it follows that the time existence T is inversely

proportional to  $\Lambda$ . Thus, the quantity  $\Lambda$ is going to be an important smallness parameter.
Further, we should point out that it depends on derivatives of inflow but not on the

function  d , which agrees with our assumptions on flow structure.

Theorem 3. (a priori estimates) Assume that Condition 1 holds. Then a solution to

problem (1.1) satisfies the following estimate

\Vert v_{x_{3}}\Vert_{W_{2}^{2,1}($\Omega$^{T})}\leq \mathcal{A},
\Vert v\Vert_{W_{2}^{2,1}($\Omega$^{T})}+\Vert\nabla p\Vert_{L_{2}($\Omega$^{T})}\leq $\varphi$(\mathcal{A},  $\Lambda$,  $\Gamma$) ,

\Vert\nabla p_{x_{3}}\Vert_{L_{2}($\Omega$^{T})}\leq $\varphi$(\mathcal{A},  $\Lambda$,  $\Gamma$) ,

where  $\varphi$ is an increasing positive function.

To omit restrictions on magnitudes of  v(0) , f and d , we carry out the proof of Theorem 3

in such a way that some smallness of v_{x_{3}}(0) and f_{x_{3}})
in L_{2} norms and on derivatives

d_{t}, d_{x'} are instead imposed. The crucial idea is hypothesis, justified by physics, that
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derivative of velocity along the axis of the cylinder, assuming sufficiently small initial

values, should remain stable and then large initial velocity v(0) either large flux do not

change that phenomena. Motivated by this splitting, we need to analyze problems for

h=v_{x_{3}}, q=p_{x_{3}} . We differentiate equations (1.1) with respect to x3 to verify that h, q

satisfy the following system of equations:

h_{t}-\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(h, q)=-v\cdot\nabla h-h\cdot\nabla v+g in $\Omega$^{T},
\mathrm{d}\mathrm{i}\mathrm{v}h=0 in $\Omega$^{T},

(3.4) \overline{n}\cdot h=0, \overline{n}\cdot \mathbb{D}(h)\cdot\overline{ $\tau$}_{ $\alpha$}+ $\gamma$ h\cdot\overline{ $\tau$}_{ $\alpha$}=0,  $\alpha$=1 ,
2 on S_{1}^{T},

h_{i}=-d_{x_{i)}} i=1 , 2, h_{3,x}3=\triangle'd on S_{2}^{T},

h|_{t=0}=h(0) in  $\Omega$,

where g=f_{x_{3}}) , \triangle'=\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}.
Let us observe here, that the h‐system, written in fact as the Stokes system, depends,

obviously, on velocity v through nonlinear terms, but as a data on the right hand side

we have only derivatives: derivatives of external force and initial velocity‐ with respect to

axis of cylinder and derivatives of inflow with respect to directions perpendicular to the

axis. Thus, if we assumed the smallness of such data and if we were able to deal with

nonlinearities, then the flow with possibly large data (like velocity, force, inflow) and with

small variations of discussed derivatives, would be stable with respect to h . Consequently,
we could deduce some smallness of h in corresponding norms.

The relation, that let us estimate h in terms of v has the form:

\Vert h\Vert_{W_{2}^{2,1}($\Omega$^{T})}\leq$\varphi$_{0}(\Vert v\Vert_{W_{2}^{2,1}($\Omega$^{T})})\Vert h\Vert_{L_{2}($\Omega$^{T})}+ $\varphi$(data) .

where $\varphi$_{0},  $\varphi$ are positive, increasing functions and data denotes the appropriate norms of

data functions. Since we are able to estimate  L_{2} norm of h with the small parameter  $\Lambda$

(see Definition 2, Condition 1):

\Vert h\Vert_{L_{2}($\Omega$^{T})}\leq $\varphi$(data, \Vert v\Vert_{W_{2}^{2,1}($\Omega$^{T})}) $\Lambda$,
and the norm W_{2}^{2,1}($\Omega$^{T}) of velocity v through the same norm of h and data:

\Vert v\Vert_{W_{2}^{2,1}($\Omega$^{T})}\leq c\Vert h\Vert_{W_{2}^{2,1}($\Omega$^{T})}+ $\varphi$(data) ,

then, we combine the three inequalities to obtain

(*) \Vert h\Vert_{W_{2}^{2,1}($\Omega$^{T})}\leq$\varphi$_{1} (data, \Vert h\Vert_{W_{2}^{2,1}($\Omega$^{T})} )  $\Lambda$+ $\varphi$(data) ,

where $\varphi$_{1} is positive, increasing function. Then, for constant \mathcal{A} respectively greater than

data and sufficiently small parameter  $\Lambda$
,

we infer Theorem 3. Let us point out, that

relation (^{*} ) yields Condition 1, which defines the smallness of A with respect to \mathcal{A} , time

T and other data.

We now more precisely discuss the three inequalities above.

The energy inequality for h , deduced through the system (3.4), has the following form:

(3.5) \Vert h\Vert_{V_{2}^{0}($\Omega$^{T})}\leq c(\Vert h\Vert_{L_{2}($\Omega$^{T})}+\Vert h\Vert_{L_{\infty}(0,T,L_{3}( $\Omega$))})+ $\varphi$(data)
Therefore, we observe that it does not involve any small parameter that we could use

in the existence proof. Thus, we will need some more refined relation and this can be

achieved by improving the regularity through the system for vorticity component  $\chi$ . For
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this reason, let us introduce rotation and  $\chi$= (rot v)_{3}= (rot v)_{3}=v_{2,x}1-v_{1,x_{2}} and note

that v'=(v_{1}, v_{2}) and h are related as follows by the rot‐div problem

 v_{1,x_{2}}-v_{2,x1}= $\chi$ in  $\Omega$',

v_{1,x_{1}}+v_{2,x_{2}}=-h_{3} in $\Omega$_{)}'
v'\cdot\overline{n}'=0 on S_{1}',

where Sí = Sl \cap {plane  x_{3}= const \in(-a, a and X3, t are treated as parameters.
The function  $\chi$ satisfies

 $\chi$_{t}+v\cdot\nabla $\chi$-h_{3} $\chi$+h_{2}v_{3,x_{1}}-h_{1}v_{3,x_{2}}- $\nu$\triangle $\chi$=F_{3} in $\Omega$^{T},

 $\chi$=v_{i}(n_{i,x_{j}}$\tau$_{1j}+$\tau$_{1i,x,}n_{j1})+v\cdot\overline{ $\tau$}_{1}($\tau$_{12,x}-$\tau$_{11,x_{2}})

(3.6) +\displaystyle \frac{ $\gamma$}{ $\nu$}v_{j}$\tau$_{1j}\equiv$\chi$_{*} on S_{1}^{T},

$\chi$_{x_{3}}=0 on S_{2}^{T},

 $\chi$|_{t=0}= $\chi$(0) in  $\Omega$,

where F_{3}=f_{2,x_{1}}-f_{1,x_{2}}.
We have to find the energy type estimates for quantities h=v_{x_{3}} ‐see (3.4) and the

third component of vorticity  $\chi$=(\mathrm{r}\mathrm{o}\mathrm{t}v)_{3} ,
see (3.6). To derive the boundary condition for

 $\chi$ we need the slip boundary condition in (1.1). In this case there are also appropriate
the Navier conditions

 v\cdot\overline{n}|_{S}=0, \overline{n}\times rot v|s=0
We have to underline that for the Dirichlet boundary condition we are not able to find

boundary conditions for  $\chi$ so Theorems 3 and 4 could not be proved.
To get the energy type estimates for solutions to problems (3.4) and (3.6) we need to

make the nonhomogeneous Dirichlet boundary conditions homogeneous by an appropriate
extensions. Otherwise we would not be able to integrate by parts. For this purpose we

introduce corresponding functions \tilde{h} and \tilde{ $\chi$} and derive appropriate estimates for these

functions. Applying such auxiliary bounds we are able to find energy type estimates for

h (see (3.5)) and for  $\chi$ :

\Vert $\chi$\Vert_{V_{2}^{0}($\Omega$^{T})}\leq c\Vert h\Vert_{L_{\infty}(0,T;L_{3}( $\Omega$))}+ $\epsilon$(\Vert v'\Vert_{L_{\infty}(0,t,H^{1}( $\Omega$))}+\Vert v'\Vert_{L_{2}(0,t,H^{2}( $\Omega$))})
(3.7)

+c\Vert v'\Vert_{L_{2}( $\Omega$,H^{1/2}(0,t))}+\Vert $\chi$(0)\Vert_{L_{2}( $\Omega$)}+ $\varphi$ (  1/ $\epsilon$ , data)
where  $\epsilon$\in(0,1) ,  $\varphi$ is an increasing positive function and data denotes the appropriate
norms of data functions.

With estimates (3.5) and (3.7) with small  $\epsilon$ , we obtain for the rot‐div problem the

inequality

(3.8) \Vert v'\Vert_{V_{2}^{1}($\Omega$^{T})}\leq c(\Vert h\Vert_{L_{2}($\Omega$^{T})}+\Vert h\Vert_{L_{\infty}(0,T;L_{3}( $\Omega$))}+\Vert v'\Vert_{L_{2}( $\Omega$,H^{1/2}(0,t))})+ $\varphi$(data) .

We apply the result of paper [A], related to Stokes‐type system, to problem (1.1), which

means that the first equation reads

v_{t}-\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(v,p)=-v'\cdot\nabla v-v_{3}h+f ,
in $\Omega$^{T}

to get

(3.9) \Vert v\Vert_{W_{5/3}^{2,1}($\Omega$^{T})}\leq c(\Vert h\Vert_{L_{2}($\Omega$^{T})}+\Vert h\Vert_{L_{\infty}(0,T,L_{3}( $\Omega$))})+ $\varphi$(data) .
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To show this, we estimate the r.h. \mathrm{s} . terms as follows:

\Vert v'\nabla v\Vert_{L_{5/3}($\Omega$^{T})} \leq \Vert v'\Vert_{L_{10}($\Omega$^{T})}\Vert\nabla v\Vert_{L_{2}($\Omega$^{T})}\leq A\Vert v'\Vert_{L_{10}($\Omega$^{T})}\leq cA\Vert v'\Vert_{V_{2}^{1}($\Omega$^{T})},
\Vert v_{3}h\Vert_{L_{5/3}($\Omega$^{T})} \leq \Vert v_{3}\Vert_{L_{10/3}($\Omega$^{T})}\Vert h\Vert_{L_{10/3}($\Omega$^{T})}\leq cA\Vert h\Vert_{L_{10/3}($\Omega$^{T})},

where A is the bound for the weak solution to (1.1) from Theorem 1 and we used the

imbedding (see [Z2])

\Vert v'\Vert_{L_{10}($\Omega$^{T})}\leq c\Vert v'\Vert_{V_{2}^{1}($\Omega$^{T})}.
Next, we apply (3.8) and in view of the interpolation

\Vert v'\Vert_{L_{2}( $\Omega$,H^{1/2}}(0, $\tau$))\leq $\epsilon$\Vert v'\Vert_{W_{5/3}^{2,1}($\Omega$^{T})}+c(1/ $\epsilon$)A,
with small  $\epsilon$ , we conclude (3.9). We can improve this to get

(3.10) \Vert v\Vert_{W_{2}^{2,1}($\Omega$^{T})}\leq cH+ $\varphi$(data)\leq c\Vert h\Vert_{W_{2}^{2,1}($\Omega$^{T})}+ $\varphi$(data)
where H=\Vert h\Vert_{L_{2}($\Omega$^{T})}+\Vert h\Vert_{L_{\infty}(0,T,L_{3}( $\Omega$))}+\Vert h\Vert_{L_{10/3}($\Omega$^{T})} and by the imbedding

H\leq c\Vert h\Vert_{W_{2}^{2,1}($\Omega$^{T})}.
Next we apply [A] to the system for h , i.e. (3.4) and using some interpolation inequalities
we get

(3.11) \Vert h\Vert_{W_{2}^{2,1}($\Omega$^{T})}\leq$\varphi$_{0}(\Vert v\Vert_{W_{2}^{2,1}($\Omega$^{T})})\Vert h\Vert_{L_{2}($\Omega$^{T})}+ $\varphi$(data) .

Finally, the crucial step is to find the bound for h in terms of v with a small parameter
A. Therefore, we show

(3.12) \Vert h\Vert_{V_{2}^{0}($\Omega$^{T})}\leq $\varphi$(data, \Vert v\Vert_{W_{2}^{2,1}($\Omega$^{T})}) $\Lambda$
We work with the relation (3.11): we combine (3.10) with estimate for \Vert v\Vert_{W_{2}^{2,1}($\Omega$^{T})} and

(3.12) to estimate \Vert h\Vert_{L_{2}($\Omega$^{T})} ,
to obtain for sufficiently small A and \mathcal{A}> $\varphi$(data) the

estimate

\Vert h\Vert_{W_{2}^{2,1}($\Omega$^{T})}\leq \mathcal{A}.
In this way Theorem 3 is proved.

4. EXISTENCE OF REGULAR SOLUTIONS

On the base of a priori estimates, we prove in papers [RZ5] and in [RZ1] the existence

result.

Theorem 4. (existence of regular solutions) Assume that Conditions 1 holds. Then there

exists a solution to problem (1.1) such that

v, v_{x_{3}}\in W_{2}^{2,1}($\Omega$^{T}) , \nabla p, \nabla p_{x_{3}}\in L_{2}($\Omega$^{T}) .

Moreover, if v\in L_{2}(0, T;W_{3}^{1}( $\Omega$)) then the solution of problem (1.1) is unique.

We establish the result on existence by the Leray‐Schauder fixed point theorem, [LS]. We

sketch the idea of the proof from paper [RZ1]. Let

\mathfrak{M}($\Omega$^{T})=\{h:\Vert h\Vert_{L_{\infty}(0,T;W_{ $\eta$}^{1}( $\Omega$))}<\infty\}.
We construct the mapping  $\Phi$(\overline{h})=h,

 $\Phi$:\mathfrak{M}($\Omega$^{T})\rightarrow W_{ $\sigma$}^{2,1}($\Omega$^{T})\leftarrow+\mathfrak{M}($\Omega$^{T}) ,

77



considering the following Stokes‐type problem

h_{t}-\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(h, q)=- $\lambda$[v(\overline{h}_{)}\overline{v})\cdot\nabla\overline{h}+\overline{h}\cdot\nabla v(\overline{h}, v +g in $\Omega$^{T},
\mathrm{d}\mathrm{i}\mathrm{v}h=0 in $\Omega$^{T},

h\cdot\overline{n}=0, \overline{n}\cdot \mathbb{D}(h)\cdot\overline{ $\tau$}_{ $\alpha$}=0,  $\alpha$=1
, 2, on S_{1}^{T},

h_{i}=0, i=1 , 2, h_{3,x_{3}}=0 on S_{2}^{T},
h|_{t=0}=h(0) in  $\Omega$,

where  $\lambda$\in[0 ,
1 ] and \overline{h}, \overline{v} are treated as given functions.

In order to fulfill the assumptions of Leray‐Schauder theorem, we show that  $\Phi$ is uni‐

formly continuous and compact in the product \mathfrak{M}($\Omega$^{T})\times[0 ,
1 ] for some parameters  $\sigma$,  $\eta$.

Therefore, we apply [BIN], Chap. 2, and [S]. To have compact  $\Phi$ we need compactness
of imbedding

 W_{ $\sigma$}^{2,1}($\Omega$^{T})\mapsto L_{\infty}(0, T;W_{ $\eta$}^{1}( $\Omega$))

which is true for  $\sigma$,  $\eta$ satisfying

\displaystyle \frac{5}{ $\sigma$}-\frac{3}{ $\eta$}-\frac{2}{\infty}<1,  $\sigma$< $\eta$.
For the uniform continuity, we need more imbeddings. We need to find energy inequalities
for problems, that we derive for differences h_{1}-h_{2}, v_{1}-v_{2} . To estimate nonlinear terms,
we assume, with j=1 , 2,

v_{j}\in W_{2}^{2,1}($\Omega$^{T})\mapsto L_{ $\sigma \lambda$_{1}}($\Omega$^{T}) ,
where \underline{1}+\underline{1}=\underline{1}

 $\sigma \lambda$_{1}  $\eta  \sigma$
�

and  v_{j}\in W_{2}^{2,1}($\Omega$^{T})\mapsto L_{ $\sigma$}(0, T;W_{ $\sigma$}^{1}( $\Omega$))

and we derive the inequalities that parameters should fulfill. We combine all the relations

to conclude \displaystyle \frac{20}{7}< $\sigma$\leq\frac{10}{3},  $\eta$>4.

5. GLOBAL SOLUTIONS

Next, in the paper [RZ6] we show the existence of global regular solutions to problem
(1.1) for arbitrary flux. To this end, we extend the local existence result proved in [RZ5]
for time intervals (kT, (k+1)T) , k\in \mathbb{N}_{0}\equiv \mathbb{N}\cup\{0\} , step by step in time. For this purpose
we need sufficiently large time of local existence to show that data at the beginning of

each step do not increase in time in appropriate norms.

We consider solutions to problem (1.1) in time intervals (kT, (k+1)T) , k\in \mathbb{N}_{0} and

define $\Omega$^{(k+1)T}= $\Omega$\times(kT, (k+1)T) , S_{i}^{(k+1)T}=S_{i}\times(kT, (k+1)T) , i=1 ,
2. Namely, we
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examine the system of problems

v_{t}+v\cdot\nabla v-\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(v,p)=f \mathrm{i}\mathrm{n}$\Omega$^{(k+1)T},
\mathrm{d}\mathrm{i}\mathrm{v}v=0 \mathrm{i}\mathrm{n}$\Omega$^{(k+1)T},
v\cdot\overline{n}=0

(5.1)  $\nu$\overline{n}\cdot \mathbb{D}(v)\cdot\overline{ $\tau$}_{ $\alpha$}+ $\gamma$ v\cdot\overline{ $\tau$}_{ $\alpha$}=0,

v\cdot\overline{n}=d

\overline{n}\cdot \mathbb{D}(v)\cdot\overline{ $\tau$}_{ $\alpha$}=0,  $\alpha$=1, 2 ,

v|_{t=kT}=v(kT)

on S_{1}^{(k+1)T},
 $\alpha$=1

, 2, on S_{1}^{(k+1)T},
on S_{2}^{(k+1)T},
on S_{2}^{(k+1)T},

in  $\Omega$.

We apply results proved for (0, T) on corresponding sets and work with the estimate

for regular solutions. Thus, we need to reformulate quantities, assumptions and results

crucial for existence of regular solutions on time interval (0, T) to sets (kT, (k+1)T) .

Definition 3.

 $\Lambda$(k, T) = \Vert d_{t}\Vert_{L_{2}}^{2}(kT,(k+1)T,H^{1} (S2)) +\Vert d_{x'}\Vert_{L_{2}}^{2}(kT,(k+1)T;H^{1} (S2)) +\Vert d_{x'}\Vert_{L_{\infty}}^{2}(kT,(k+1)T;H^{1} (S2))
+\Vert f_{3}\Vert_{L_{2}(kT,(k+1)T,L_{4/3}}^{2} (S2) ) +\Vert g\Vert_{L_{2}(kT,(k+1)T,L_{6/5}( $\Omega$))}^{2}+\Vert h(kT)\Vert_{L_{2}( $\Omega$)}^{2},

 $\Gamma$(k, T) = \Vert f\Vert_{L_{2}}(kT,(k+1)T,L_{2}( $\Omega$))+\Vert v(kT)\Vert_{H^{1}}( $\Omega$) ,

D_{0}(k, T) = \Vert d_{1}\Vert_{L_{\infty}}^{6}(kT,(k+1)T,L_{3}(S_{2}(-a)))+A^{2}(k, T)+1,
where A^{2}(k, T)=l_{0}^{2}+\displaystyle \frac{l_{0}^{2}}{1-e^{- $\nu$ T}}+e^{- $\nu$ kT}\Vert v(0)\Vert_{L_{2}( $\Omega$)}^{2}, k=0 , 1, 2, . . . .

The smallness parameter  $\Lambda$(k, T) should fullfill analogous assumptions:

Condition 2. Let quantities  $\Lambda$= $\Lambda$(k, T) ,  $\Gamma$= $\Gamma$(k, T) , D_{0}=D_{0}(k, T) be finite. Assume

that  $\Lambda$ is so small that there exists a constant \mathcal{A}_{k} satisfying

D_{0}^{2}$\Lambda$^{2}(\mathcal{A}_{k}+\mathcal{A}_{k}^{2}+ $\Gamma$)\exp[TD_{0}+D_{0}(\mathcal{A}_{k}+ $\Gamma$)+\mathcal{A}_{k}^{2}+ $\Gamma$]
(5.2)

+\Vert g\Vert_{L_{2}(kT,(k+1)T;L_{2}( $\Omega$))}^{2}+\Vert h(kT)\Vert_{H^{1}( $\Omega$)}^{2}\leq \mathcal{A}_{k}^{2}
Observe, that with given parameters  $\Lambda$,  $\Gamma$, D_{0} , constant \mathcal{A}_{k} can be found as the implicit

function. Therefore, we prove the existence of regular solutions on time interval (kT, (k+
1)T) with estimate \mathcal{A}_{k}.

Lemma 5.1. Assume that g, f\in L_{2}(kT, (k+1)T;L_{2}( $\Omega$)) , v(kT) , h(kT)\in H^{1}( $\Omega$) ,
and

quantities  $\Lambda$= $\Lambda$(k, T) ,  $\Gamma$= $\Gamma$(k, T) , D_{0}=D_{0}(k, T) are finite. Assume that  $\Lambda$ is so

small that satisfies Condition 2. Then there exists a solution to problem (5.1) such that

 v, h\in W_{2}^{2,1}( $\Omega$\times(kT, (k+1)T)) , \nabla p, \nabla p_{x_{3}}\in L_{2}( $\Omega$\times(kT, (k+1)T)) ,
and

\Vert h\Vert_{W_{2}^{2,1}($\Omega$^{kT})}\leq \mathcal{A}_{k)}
\Vert v\Vert_{W_{2}^{2,1}($\Omega$^{kT})}+\Vert\nabla p\Vert_{L_{2}($\Omega$^{kT})}\leq \mathcal{Q}(\mathcal{A}_{k}) ,

\Vert\nabla p_{x_{3}}\Vert_{L_{2}($\Omega$^{kT})}\leq \mathcal{Q}(\mathcal{A}_{k}) ,

where \mathcal{Q} is an increasing positive function, quadratic in \mathcal{A}_{k} , of the form

\mathcal{Q}(\mathcal{A}_{k})=\mathcal{A}_{k}^{2}+\mathcal{A}_{k}+ $\Lambda$(k, T)^{2}+$\Gamma$^{2}(k, T) .

79



We note, that Lemma 5.1 implies existence of solutions to problem (5.1) in the time

interval [kT, (k+1)T] if we know that v(kT) , h(kT)\in H^{1}( $\Omega$) , k\in \mathbb{N}_{0} . Consequently, we

will show that the constant \mathcal{A}_{k} in the above lemma does not depend on k
,
thus Condition 2

will be satisfied for any k if it holds for k=0 and consequently, \mathcal{A}_{k}=\mathcal{A} in theorem on

global solutions (Theorem 5 below). To this end, we have to control the initial condition

at each time step in the set of problems (5.1)
The proof of global existence result is divided into the following steps. Assume that

\Vert v(kT)\Vert_{H^{1}( $\Omega$)}\leq $\alpha$(k)
\Vert h_{t}(kT)\Vert_{L_{2}( $\Omega$)}+\Vert h(kT)\Vert_{H^{1}( $\Omega$)}\leq $\beta$(k)

where k\in \mathbb{N}_{0} . Then there exists quantities \mathcal{Q}_{k}=\mathcal{Q}(\mathcal{A}_{k}) (see Lemma 5.1 and (5.3)) and

B_{k}=\mathcal{B}(\mathcal{A}_{k}) (where B is also polynomial, like \mathcal{Q} ) that for sufficiently small  $\Lambda$ (see (5.2))
there exists a local solution to problem (5.1) in the time interval [kT, (k+1)T] such that

\Vert v\Vert_{L_{2}(kT,(k+1)T;H^{2}( $\Omega$))}\leq \mathcal{Q}_{k},
(5.3)

\Vert v_{t}\Vert_{L_{2}(kT,k(T+1),H^{1}( $\Omega$))}\leq \mathcal{B}_{k}
Moreover, for  $\Lambda$(k, T) sufficiently small we can choose T as large as we want. Then the

main result of this paper is to show that

\Vert v((k+1)T)\Vert_{H^{1}( $\Omega$)}\leq $\alpha$(k)
and

\Vert h_{t}((k+1)T)\Vert_{L_{2}( $\Omega$)}+\Vert h((k+1)T)\Vert_{H^{1}( $\Omega$)}\leq $\beta$(k) .

Starting from t=(k+1)T we can repeat the above considerations to prove existence in

the interval [(k+1)T, (k+2)T] . In fact, there exists a constant c_{0}=c_{0}(k) such that

\Vert v((k+1)T)\Vert_{H^{1}( $\Omega$)}\leq c_{0}\Vert v(kT)\Vert_{H^{1}( $\Omega$)},
\Vert h_{t}((k+1)T)\Vert_{L_{2}( $\Omega$)}+\Vert h((k+1)T)\Vert_{H^{1}( $\Omega$)}\leq c_{0}(\Vert h_{t}(kT)\Vert_{L_{2}( $\Omega$)}+\Vert h(kT)\Vert_{H^{1}( $\Omega$)})

The constant c_{0}(k) could grow as we repeat such local existence proof n_{0} times for some

finite n_{0}\in \mathbb{N} . Then, we have local existence result in the interval [0, n_{0}T] and we can

define new local existence time T as equal to n_{0}T. Thus the constant c_{0} after sufficiently
many steps can be less or equal to one.

Moreover, in [RZ6] we show that for some quantities D_{1} and D_{2} dependent on \mathcal{Q}_{k} and

\mathcal{B}_{k} the following inequalities hold

(5.4) \Vert v((k+1)T)\Vert_{H^{1}( $\Omega$)}\leq e^{-\frac{1}{2}c_{*}T}\Vert v(kT)\Vert_{H^{1}( $\Omega$)}+D_{1}(k) ,

and

\Vert h_{t}((k+1)T)\Vert_{L_{2}( $\Omega$)}+\Vert h((k+1)T)\Vert_{H^{1}( $\Omega$)}
(5.5)

\leq e^{-\frac{1}{2}c_{*}T}(\Vert h_{t}(kT)\Vert_{L_{2}( $\Omega$)}+\Vert h(kT)\Vert_{H^{1}( $\Omega$)})+D_{2}(k) .

The constant c_{*} comes from the imbedding and the rot‐div problem

c_{*}\Vert v\Vert_{H^{1}( $\Omega$)}\leq\Vert \mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(v,p)\Vert_{L_{2}( $\Omega$)}.
Here, a is global estimate for L_{2} norm of weak solutions (Theorem 2) whereas l_{2} , l3 are

time integrals on (kT, (k+1)T) of data in corresponding norms and $\varphi$_{2} is the function of

the form

$\varphi$_{2}=\displaystyle \sup_{t\in(kT,(k+1)T)}\Vert v\Vert_{L_{2}( $\Omega$)}^{\frac{1}{2}}(\sup_{t}\Vert d_{x'}\Vert_{L_{4}(S_{2})}^{2}+\sup_{t}\Vert d_{t}\Vert_{H^{1}(S_{2})}^{2})\leq \mathrm{a}^{\frac{1}{2}} $\varphi$(data) .
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Therefore, with some assumptions on D_{1}(k) , D_{2}(k) it follows that there exists $\alpha$_{0} and

$\beta$_{0} such that

\Vert v(0)\Vert_{H^{1}( $\Omega$)}\leq$\alpha$_{0},
\Vert h_{t}(0)\Vert_{L_{2}( $\Omega$)}+\Vert h(0)\Vert_{H^{1}( $\Omega$)}\leq$\beta$_{0}

and, as well

\Vert v(kT)\Vert_{H^{1}( $\Omega$)}\leq$\alpha$_{0},
\Vert h_{t}(kT)\Vert_{L_{2}( $\Omega$)}+\Vert h(kT)\Vert_{H^{1}( $\Omega$)}\leq$\beta$_{0}.

We can assume that D_{1}=\displaystyle \sup_{k}D_{1}(k) to deduce from (5.4)

\displaystyle \Vert v(kT)\Vert_{H^{1}( $\Omega$)}\leq\frac{D_{1}(1-e^{-\frac{1}{2}c_{*}kT})}{1-e^{-\frac{1}{2}c_{*}T}}+e^{-\frac{1}{2}c_{*}kT}\Vert v(0)\Vert_{H^{1}( $\Omega$)}
Then, for \Vert v(0)\Vert_{H^{1}( $\Omega$)} respectively greater than D_{1} the above inequality yields

\Vert v(kT)\Vert_{H^{1}( $\Omega$)}\leq\Vert v(0)\Vert_{H^{1}( $\Omega$)}.

In similar way we argue with h to show that if \Vert h_{t}(0)\Vert_{L_{2}( $\Omega$)}+\Vert h(0)\Vert_{H^{1}( $\Omega$)} is greater than

D_{2}=\displaystyle \sup_{k}D_{2}(k) then

\Vert h_{t}(kT)\Vert_{L_{2}( $\Omega$)}+\Vert h(kT)\Vert_{H^{1}( $\Omega$)}\leq\Vert h_{t}(0)\Vert_{L_{2}( $\Omega$)}+\Vert h(0)\Vert_{H^{1}( $\Omega$)}.

Observe, that additional restrictions on D_{1}\mathrm{i}D_{2} are stronger than more general conditions

with constants $\alpha$_{0}, $\beta$_{0}.
One could think that L_{2} norm of h_{t} appears accidentally, since it does not appear

in definitions of parameters  $\Lambda$,  $\Gamma$, D_{0} either in Condition 2, like H^{1} norms of v and h.

However, the presence of this term is the consequence of energy estimate for h , where the

norm \Vert h_{3t}\Vert_{L_{2}( $\Omega$)} appears and so, to complete the considerations, we need to analyze the

problem for h_{t} as well.

We obtain the result, under. some assumptions on derivative of external force and re‐

strictions for derivatives of inflow.

Assumption A.l Assume that T is suficiently large so that

-\displaystyle \frac{1}{2}c_{*}T+l_{1}[T^{1/4}\mathcal{Q}_{k}^{3/2}+T^{1/2}\mathcal{Q}_{k}]\leq 0
Assumptions A.2 Assume that T is sufficiently large so that

-\displaystyle \frac{1}{2}c_{*}T+ $\varphi$ {}_{1}T^{1/4}\mathcal{Q}_{k}^{3/2}+\mathcal{B}_{k}+\Vert d_{t}\Vert_{H^{1}(S_{2})}^{2}\leq 0
Let us specify quantities used above. Since a is the global bound for L_{2} norm of velocity
v (Theorem 2), we set

$\varphi$_{1} = \displaystyle \sup_{t\in(kT,(k+1)T)}\Vert v\Vert_{L_{2}( $\Omega$)}^{\frac{9}{2}}+\sup_{t\in(kT,(k+1)T)}\Vert v\Vert_{L_{2}( $\Omega$)}^{\frac{1}{2}}\leq \mathrm{a}^{\frac{9}{2}}+\mathrm{a}^{\frac{1}{2}},
l_{1} = c(1+\displaystyle \sup_{t}\Vert d_{x_{ $\alpha$}}\Vert_{L_{2}(S_{2})}^{4})\mathrm{a}^{\frac{1}{2}}(1+\mathrm{a}^{\frac{5}{2}}) .
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Then, we consider the system (1.1) for t\in \mathbb{R}_{+} which reads as follows

v_{t}+v\cdot\nabla v-\mathrm{d}\mathrm{i}\mathrm{v}\mathbb{T}(v,p)=f in $\Omega$^{\mathbb{R}_{+}}= $\Omega$\times \mathbb{R}_{+},
\mathrm{d}\mathrm{i}\mathrm{v}v=0 in $\Omega$^{\mathbb{R}_{+}},
v\cdot\overline{n}=0 on S_{1}^{\mathbb{R}_{+}},

(5.6)  $\nu$\overline{n}\cdot \mathbb{D}(v)\cdot\overline{ $\tau$}_{ $\alpha$}+ $\gamma$ v\cdot\overline{ $\tau$}_{ $\alpha$}=0,  $\alpha$=1 , 2, on S_{1)}^{\mathbb{R}_{+}}
v\cdot\overline{n}=d on S_{2}^{\mathrm{R}_{+}},

\overline{n}\cdot \mathbb{D}(v)\cdot\overline{ $\tau$}_{ $\alpha$}=0,  $\alpha$=1 , 2, on S_{2}^{\mathrm{R}_{+}},
v|_{t=0}=v(0) in  $\Omega$,

Next, we define \overline{ $\Gamma$} and smallness parameter \overline{ $\Lambda$}.

Definition 4.

\overline{ $\Gamma$} =

\displaystyle \sup_{k}\Vert f\Vert_{L_{2}(kT,(k+1)T;L_{2}( $\Omega$))}+\Vert v(0)\Vert_{H^{1}( $\Omega$)},
\overline{ $\Lambda$} = \displaystyle \sup_{k}(\Vert d_{t}\Vert_{L_{2}(kT,(k+1)T;H^{1}(S_{2}))}^{2}+\Vert d_{x'}\Vert_{L_{2}(kT,(k+1)T;H^{1}(S_{2}))}^{2}+\Vert d_{x'}\Vert_{L_{\infty}(kT,(k+1)T;H^{1}(S_{2}))}^{2}

+\Vert f_{3}\Vert_{L_{2}(kT,(k+1)T,L_{4}(S_{2}))}^{2}3+\Vert g\Vert_{L_{2}(kT,(k+1)T;L_{65}( $\Omega$))}^{2})+\Vert h(0)\Vert_{L_{2}( $\Omega$)}^{2}
Remark 5.2. We assume that \overline{ $\Lambda$} is the small parameter and this in particular implies
that \Vert h(0)\Vert_{L_{2}( $\Omega$)} is small. However, we do not require that on velocity and so v(0) and the

inflow d can be arbitrarily large.

Then, we formulate the global result:

Theorem 5. Suppose Assumptions A.1 ‐A.2 hold and (rot v)_{3}(0)\in L_{2}( $\Omega$) ,

(rot f)_{3}\in L_{2}(kT, (k+1)T;L_{2}( $\Omega$)) , d_{1}\in L_{\infty}(kT, (k+1)T;L_{3}(S_{2}(-a))) . Assume that the

quantity \overline{ $\Lambda$} is suficiently small. Then for the solution of (5.6) and sufficiently large time

T there exists constant \mathcal{A} such that

\Vert v\Vert_{W_{2}^{2,1}( $\Omega$\times(kT,(k+1)T))}+\Vert\nabla p\Vert_{L_{2}( $\Omega$\times(kT,(k+1)T))}\leq \mathcal{Q}(\mathcal{A}) ,

\Vert v_{x_{3}}\Vert_{W_{2}^{2,1}( $\Omega$\times(kT,(k+1)T))}+\Vert\nabla p_{x_{3}}\Vert_{L_{2}( $\Omega$\times(kT,(k+1)T))}\leq \mathcal{A}
for any k\in \mathbb{N}_{0} where \mathcal{Q}(\mathcal{A})=\mathcal{A}^{2}+\mathcal{A}+\overline{ $\Lambda$}^{2}+\overline{ $\Gamma$}.
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