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1 Introduction and Preliminaries

In this paper, we employ the limiting subdifferential and the Mordukhovich nor-
mal cone (cf. [7]) to examine approximate Pareto solutions of a multiobjective
optimization problem. More precisely, we establish Fritz-John type necessary con-
ditions for e-(weakly) Pareto solutions and e-quasi-(weakly) Pareto solutions of a
multiobjective optimization problem involving nonsmooth/nonconvez functions,

With the help of generalized convex functions defined in terms of the limit-
ing subdifferential and the Mordukhovich normal cone, the obtained necessary
conditions for approximate Pareto solutions of the considered problem become
sufficient ones. In this way, we are able to explore completely duality relations for
approximate Pareto solutions between multiobjective optimization problems such
as strong duality and converse duality.

Throughout the paper we use the standard notation of variational analysis;

see e.g., [7]. Unless otherwise specified, all spaces under consideration are Asplund
spaces whose norms are always denoted by || - ||. The canonical pairing between
space X and its dual X* is denoted by (-, -). The symbol Bx stands for the closed
unit ball in X. As usual, the polar cone of 2 C X is the set

Q={z"e X*|(z*2) <0 VzeQ}l (1.1)

Also, we denote by R the nonnegative orthant of R™, where m € N:={1,2,...}.



Given a set-valued mapping F: X =% X* between X and its dual X*, we
denote by

Limsup F(z) := {z* € X*| 3 sequences z, —Z and z}, — z*
T

with 2% € F(z,) forall ne N}

the sequential Painlevé-Kuratowski upper/outer limit of F' as x — Z. Here the

symbol ", indicates the convergence in the weak™ topology of X*.

A set © C X is called closed around T € 2 if there is a neighborhood U of Z
such that QN clU is closed. We say that Q is locally closed if 2 is closed around
z for every z € §). Let Q C X be closed around % € €.

The Fréchet normal cone to €2 at Z € ) is defined by

N(z:Q) = {J:* e X”

limsupm < 0}, (1.2)
a_ lz—2z|
T—>T

where z <% % means that z — 7 with z € Q. If 2 ¢ Q, we put N(z; Q) :=0.

The limiting/Mordukhovich normal cone N(Z;) to Q at T € Q is obtained
from Fréchet normal cones by taking the sequential Painlevé-Kuratowski upper
limits as:

N(z;Q) := Limsup N(z; Q). (1.3)
Q
z—>E

If z ¢ Q, we put N(z;Q) := 0.
For an extended real-valued function ¢ : X — R := [—o0, 00], we set

domg :={z € X | p(z) < oo}, epip:={(z,p) € X XR|pu2p(z)}.

The limiting/Mordukhovich subdifferential of ¢ at T € X with |p(Z)| < oo is
defined by

9p(Z) = {z" € X* | (z*, —1) € N((Z,9(Z)); epip)}. (1.4)

If |¢(Z)| = oo, then one puts dp(Z) := 0.



Considering the indicator function é(-;€2) defined by §(z;Q) := 0 for z € Q
and by d(z; ) := oo otherwise, we have (see [7, Proposition 1.79]):

N(z0) = 06(zQ) Vzeq. (1.5)

The nonsmooth version of Fermat’s rule (see, e.g., [7, Proposition 1.114]) is
formulated as follows: If Z is a local minimizer for ¢, then

0 € dp(3). (1.6)

For a function ¢ locally Lipschitz at Z with modulus £ > 0, it holds that (see
[7, Corollary 1.81])

llz* | <€ Va* € dp(Z). (1.7)

2 Optimality Conditions for Approximate So-
lutions

This section is devoted to presenting optimality conditions for approximate solu-
tions in multiobjective optimization prolems. Let 2 be a nonempty closed subset
of X, and let K :={1,2,...,m}, and I := {1,2,...,p} be index sets. Suppose that
f:=(fr), k € K, and g := (g;), i € I are vector functions with locally Lipschitz
components defined on X.

We focus on the following constrained multiobjective optimization problem

(P):
mingry {f(z)|z e}, (2.8)

where C is the feasible set given by

C:={zeq] gi(z) <0,ieI}. (2.9)

Definition 2.1 ([5, 6]) Let € := (e1,...,6n) € RT.
(i) We say that Z € C is an e-Pareto solution of problem (2.8) iff there isno z € C
such that

fe(x) + e < fr(Z), ke K (2.10)



with at least one strict inequality.
(if) A point Z € C is called an e-quasi-Pareto solution of problem (2.8) iff there is
no ¢ € C such that

fi(z) +exllz — Z|| < fiu(®), ke K (2.11)
with at least one strict inequality.

If all the inequalities in (2.10) (resp., (2.11)) are strict, then one has the defini-
tion for e-weakly Pareto solution (resp., e-quasi-weakly Pareto solution) of problem
(2.8). We denote the set of e-Pareto solutions (resp., e-weakly Pareto solutions,
e-quasi-Pareto solutions, and e-quasi-weakly Pareto solutions) of problem (2.8) by
e-S(P) (resp., eS8¥(P), e-quasi-S(P), and e-quasi-S”(P)). Note that we always
assume hereafter that € € RT \ {0}.

To simplify the statements concerning problem (2.8), for fixed Z € X and
e € RT \ {0} we define (cf. [3]) a real-valued function 4 on X as follows:

Y(z) == R {fe(z) = fu(Z) + &, gi(x)}, ze€X. (2.12)

Theorem 2.1 Let Z € e-SY(P). For any v > 0, there exist z, € Q and A\, >
0, k€K, pu; 20,0 €T with Y pcpe A+ D icq i = 1, such that ||z, — Z|| < v and

0€e Z )\kafk(l‘,,) + Zuiag,-(z,,) + wat + N(:I:,,; Q),
keK iel '

Ae[fi(zy) — fo(®) + & — ¥(z)] =0, k€K,
pilgi(zy) — ¥(zy)] =0, i€l

where the function ¢ was defined in (2.12).

The forthcoming theorem presents a Fritz-John type necessary condition for
e-quasi-(weakly) Pareto solutions of problem (2.8) with the help of Ekeland Vari-
ational Principle [2].



Theorem 2.2 Let T € e-quasi-SY(P). Then there exist Ay > 0,k € K, and
pi > 0,4 €T with Y pcpe Ak + D er i = 1, such that

0e Z A0Sk (Z) + Z[l,iagi(i) + Z AxexBx~ + N(Z;9Q), (2.13)
kEK i€l keK

[.I,,,g,,'(:f) =0, 1€l

Remark 2.1 According to Theorem 2.2, if Z is an e-quasi-(weakly) Pareto so-
lution of problem (2.8), then the approximate (KKT) condition defined above is
guaranteed by the following constraint qualification (CQ) due to [1](for special
cases, one can see [4, 7, 8]): One says that condition (CQ) is satisfied at Z € C if
there do not exist p; > 0,¢ € I(Z) not all zero, such that

0€ Y mdgi(z)+ N(%Q), (2.14)
i€l(Z)

where I(Z) := {i € I | g;(Zz) = 0}.

Theorem 2.3 Let T € C satisfy the e-approzimate (KKT) condition.

(i) If f and g are generalized convex on X at Z, then T € e-quasi-S¥(P).

(ii) If f is strictly generalized conver and g is generalized conver on § at Z,
then T € e-quasi-S(P).

3 Duality for Approximate Solutions

For z€ X, A:= (M), M >0, k € K, and p:= (i;), pi > 0, 7 € I, let us denote
a vector Lagrangian function L by

L(z, A 1) == f(2) + (1, g(2))e,

where e := (1,...,1) € R™. In connection with the constrained multiobjective
optimization problem (P) formulated in (2.8) and a given € := (e1,...,€6n) €
R\ {0}, we consider a multiobjective dual problem in the following form (D):

lllaX]R"_f {L(za /\’f"') l (29 A: ,U,) € CD} (315)



Here the feasible set Cp is defined by

Cp = {(z A1) € Xx (RF\{0}) xRE | 0€ D" Mdfi(2) + D 1i0gi(2)
kEK i€l

+ Z AkexBx~ + N(z;Q), Z Ak =1},
kK keK
(3.16)

Definition 3.1 Let L := (Ly,...,Ly), and let € := (e1,...,en) € RT\ {0}
We say that (2, )\, i) € Cp is an e-quasi-Pareto solution of problem (3.15) iff there
is no (2, A, p) € Cp such that

Lk(Z, Aa Il/) > Lk(zy X) ﬁ) + Ck“(za Xa /7‘) - (Z, A) ﬂ)”a ke K (317)
with at least one strict inequality.

If all the inequalities in (3.17) are strict, then one has the definition for -
quasi-weakly Pareto solution of problem (3.15). Also, the set of e-quasi-Pareto
solutions (resp., e-quasi-weakly Pareto solutions) of problem (3.15) is denoted by
e-quasi-S(D) (resp., e-quasi-S¥(D)).

Theorem 3.1 (Duality) Let T € e-quasi-S™(P) be such that the (CQ) defined in
(2.14) is satisfied at this point. Then there exist X := (\), M\ >0, k € K, not all
zero, and i := (), fi > 0, i € I, such that (Z,\, 1) € Cp and f(z) = L(z, ), fi).
In addition,

(i) If f and g are generalized convex on Q at any z € Q, then (Z, A, i) € e-quasi-
S¥(D).

(it) If f is strictly generalized convez and g is generalized convex on Q0 at any
z € ), then (Z,\, i) € e-quasi-S(D).

Theorem 3.2 (Converse Duality) Let (Z, ), i) € Cp such that f(Z) = L(Z, )\, i).
(i) IfZ € C and f and g are generalized convez on Q} at T, then T € e-quasi-S¥(P).
(ii) Ifz € C and f 1is strictly generalized convez and g is generalized convez on Q
at Z, then T € e-quasi-S(P).
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