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On global minimization for general p—regularized

subproblems with p > 2
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Abstract

The p-regularized subproblem (p-RS) is a regularizing term for computing a
Newton-like step for unconstrained optimization, which incorporates a weighted
regularization term %||z'||”. In this article, we resolve the global minimizers of (p-

RS) for p > 2 with necessary and sufficient optimality conditions.

Key Words: Trust-region subproblem; Local minimizer; Extended Trust-region sub-

problem.

1 Introduction

For an unconstrained optimization problem to minimize f over R*, Newton’s method
has an attractive local convergence property near a second order critical point. Ensuring
the global convergence for Newton’s method with an analyzable computational complex-
ity, however, requires modifications to guarantee a sufficient descent at each step. Unlike
the Levenberg-Marquardt type of methods or most quasi-Newton methods which always
maintain a positive-definite approximate Hessian of f, the p-regularized subproblem min-

imizes globally the second order Taylor’s polynomial of f plus a weighted (by o) higher
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order regularization term. The subproblem takes the following model
(p—RS) min < g(z) = L Tl + Tz + 2|z
zeR” 2 Y4 ’

where ¢ > 0, p > 2, and H is the Hessian of f at any iterate, regardless of its definiteness.
It is often assumed that f is smooth enough to have a symmetric Hessian and to obtain
the desired global convergence. If the global minimizer of (p-RS) renders a satisfactory
decrease in the value of f, it is accepted; but rejected otherwise with an increase in o to

enhance the regularization force.

In literature, (p-RS) with p = 3 is known as the cubic regularization which is the
most common choice among all others. The idea of the cubic regularization was first
due to Griewank [9] and later was considered by many authors with thorough global
convergence and complexity analysis. See Nesterov and Polyak [15]; Weiser Deuflhard
and Erdmann [17]; and Cartis, Gould and Toint [2]. When p = 4, (p-RS) reduces to a
form of the double well potential function which has many applications in solid mechanics
and quantum mechanics [5, 18]. Gould, Robinson and Thorne [8] studied (p-RS) for a

general p > 2 in comparison with the the trust-region subproblem

(TRS) min -;—xTH z+clx
s.t. ||lz[?< A, zeR™

In this article, we characterize (p-RS) completely for any p > 2 by (i) extending the
necessary and sufficient global optimality conditions for p = 3 in [2] and (ii) the analysis
using the secular function (to be specified later) for p =4 in [18].

Notations. Let v(-) denote the optimal value of problem (-). For any symmetric
matrix P € R™", P > (>)0 means that P is positive (semi)definite. The determinant of
P is denoted by det(P) whereas the identity matrix of order n by I. For a vector z € R",
Diag(z) is a diagonal matrix with diagonal components being z,...,z,. For a number
B8 € R, sign(p) = I%I if B # 0, otherwise sign(8) = 0. Finally, A\;(P) is the ith smallest

eigenvalue of P.
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2 Main results for global minimization

We first observe that the objective function g(z) of (p-RS) is coercive, ie.,

lim g(z) = +o0.

|lz||—+o0

Consequently, the global minimizer of (p-RS) always exists. The starting point of the
analysis is the first order and the second order necessary conditions for any local minimizer

of g.

Lemma 1 Assume that 2 is a local minimizer of (p-RS), p > 2. It holds that

Vy(z) = (H+olz|P*I) z+c=0, (1)
Vg(z) = (H + allz||”~*I) + o(p — 2)||z|/P*2zz" = 0, 2)

where Vg, V2g denote the gradient and the Hessian of g(z), respectively.

The next theorem shows that, a local minimizer £ becomes global if and only if H +
o||z||P=21 > 0. The necessity has been shown by Theorem 2 in [8]. We only prove the

sufficiency here.-

Theorem 1 The point z* is a global minimizer of (p-RS) for p > 2 if and only if it is a
critical point satisfying Vg(z*) = 0 and H + o||z*||P~2I = 0. Moreover, the £, norms of

all the global minimizers are equal.

Proof If z* = 0,, then o|jz*||P~? = 0 so that ¢ = —(H + o||z*||P"2I)z* = 0 and
H = H + o||z*||P=2I = 0. Consequently, zT Hz > 0, Vz € R". It follows that z* =0, is a

global minimizer since

1
g(z) = §a:THx +cfz+ %l]z]]” > %llx”" > 0= g(0), Vz #0, = z*.
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Now we assume z* # 0,, ie., ||z*|| > 0. Define Q = H + o||z*||P~2I. According to the
assumption, > 0. Then, for any x € R"® and z # z*, it holds that

1
g(@) = ngHx+ch+§nxup

1 1
= 377w+ z— (ol P+ el

2
1 ¢ r 0 Izl \* p |
= —z'Qz+cz+—|z*|f ( - — 5T (3)
? P A\er) 2t

Define f(t) = t%, p > 2. It is strictly convex for ¢ > 0. Therefore,

=t >fO)+f()Et-1)=1+ g(t —1), Vi > 0.

JJ=(?

By substituting ¢ with T2 Ve have

)4
( | ) Y )
les?) ~20eP = 2
Then,
1
o@) > 35 Qe a1~ 5). 4

By @ = 0, the lower bounding function of g in the right hand side of (4) is convex
quadratic in terms of z. Since z* satisfies (H + o||z*|[P~2])z* = Qz* = —c, z* is a global

minimizer of the convex function in the right hand side of (4). As a consequence,

() 2 5(0)Qs" + "+ 2P0 - B) = o(a")

2
and z* is a global minimizer of (p-RS).

Finally, from (3), if & is also a global minimizer of (p-RS), # must minimize both
327Qz + 'z and (II”zL”H;) - g% simultaneously. This can happen if and only if

Q# = —c and ||2]| = [l=*].

Remark 1 When p = 3, two other proofs of the necessary and sufficient condition can be
found in Theorem 8.1 in [2] and Theorem 10 in [15], respectively. We notice that the proof
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in [2] is inherited from that of the necessary and sufficient condition for the trust-region
subproblem [3] and the proof in [15] highly relies on the special structure of the case p = 3.
Our proof is much easier in understanding, since it is simply based on a direct comparison

between g(z) and g(z*).

To characterize the set of global minimizers of (p-RS), we may assume that H is
diagonal, i.e.,
H = Dia‘g(aly MR an)v (5)

where

ag=..=0,<0op+1 ... Z ap

and k is the multiplicity of the smallest eigenvalue a;. Otherwise, let H = ULUT be the
eigenvalue decomposition of H. Let y = UTz. Then |y|| = |UTz|| = ||z|| and we obtain

a diagonal version of (p-RS) in terms of y.

Theorem 2 The set of global minimizers of (p-RS) is either a singleton or a k-dimensional
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apy1—o1’
k1 i=k+1

2 n
sphere centered at (0,- -+ ,0, — ;== ... | — <) with the radius \/("’f}) DY (;—c'zﬁ

Proof Let z* be any global minimizer of (p-RS) and define t* = ||z*||P~2 > 0. Notice
that ¢* is independent of the choice of z* since the £, norms of all the global minimizers are
equal. By Theorem 1, a; 4+ ot* > 0, Vi = 1,2,...,n. That is, t* € (max{—%,0},+00).
Moreover, the solutions z* satisfying (H + ot*I)z* = —c define the set of the global
minimizers. If H + ot*I is invertible, the global minimizer z* is uniquely defined by (the
still unknown ¢* that)

* —C

P ot

By summing all (z})?, t* is necessarily a nonnegative root of the following secular function

i=1,...,n.

on a specific open interval:

_y__d 5 - o
W) =3 oy~ € 1o = (max(= 1,0} +o0). ©

i—a1)?’



Since limy o o1 gy A(E) > 0, tlgnoo h(t) = —oo and h(¢) is strictly decreasing on I,, the
secular function h(t) has a unique root on I,, which must be ¢*.

On the other hand, H + ot*I is singular in which case t* = =2*. (Obviously, this case
can not happen for a; > 0.) Then, ¢ +...+¢; =0, and o;+0t* >0, i = k+1,k+2,...,n
such that

T

@*:(0,0,...,0, Gl = ) )
Qg1 — O Qp — 0

is one trivial solution to (H — a;])z* = —c. By summing all (£})? in (7), we again obtain

a secular function

. n c? 2 a1

=3 e = [ e0). 5

© i=;+1 (oi + ot)? ’ € oo ®)

Notice that A(t) is also strictly decreasing on I, and Jim h(t) = —co. If h(—22) =0,
then t* = =2 is the unique root of A(t) on I;. Thus, Z* defined by (7} is the unique global
minimizer of (p-RS).

Ifh (—2) < 0, then (8) has no solution and the trivial solution * to (H—a1I)z* = —¢

does not satisfy ¢t* = =21 = ||£*||P=2, Then, any z* satisfying

2

n 2
() +... 4+ () + i=zk;1 R f?a1)2 = (_Tal> i 9)
is a global minimizer of (p-RS). Namely, the global minimum solution set forms a k-
dimensional sphere centered at (0,--- ,0, —a:‘:’_‘m AR —-ancjal) with the radius
&2 o5
a i=k+1 C

Otherwise, i (—21) > 0, then (8) has no solution and (9) cannot hold for any z*. We

obtain a contradiction that (p-RS) has no global minimizer. The proof is thus complete.

Finally, we show that (p-RS) possesses some hidden convexity that its global minimizer
can be obtained by solving an equivalently reformulated convex programming. We first

have
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Proposition 1 Suppose H is diagonal. Let z* be any global minimizer of (p-RS), then

¢z <0,i=1,...,n.

Proof Comparing z* with Z = (—x3, 3,3, ..., z}), we immediately have
0> g(z*) — 9(2) = (2] — 71) = 2177

A similar argument applying to all other components yields the result. This completes

the proof.

By Proposition 1, (p-RS) and (10) below share the same optimal solution set.

2
n n 2
min Lg? + gz; +9< xf)
glan ety (10)
s.t. ¢z; <0, i=1,...,n.

Introducing the nonlinear one-to-one map:

Ziy if ¢ S 0» .
n=d VA i i=1,...n, (11)
~VE, if >0,
the problem (10) becomes the following convex program:
. 4 1 n - n g
min —gIQIﬁ+ 2 wst g (lezz) (12)

s.t. 220,i=1,...,n.
The global optimal solution of (12) can be converted to generate z* through the transfor-

mation (11).

Remark 2 The first two derivatives of the secular function h(t) are

°. —20¢? 2 ap
’ — i =
w) Z (s +ot)® p-— 2tp

=1

and

" _ - 602(3@2 _2(4—P) @2
MO v G

=1



h(t) is strictly decreasing on I, and convezx only for p > 4. For p =3, if H % 0 (which
ensures that ¢ # 0) and h is restricted to a finite subinterval of I, covering t*, by properly
choosing the regularization parameter o, h(t) can be made convez. Notice that the secular

function for (TRS) is always convex though.

3 Conclusions

Since the cubic regularization subproblem can be used to modify Newton’s method
for solving unconstrained optimization problems, it is generally believed that the cubic
regularization subproblem is very close to (TRS) in spirit. Our comprehensive analysis
on the p-regularized subproblems for general p > 2 gives the most detailed corhparison
between the two types of subproblems and confirms that they do share many similar

features.
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