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ABSTRACT. In a recent paper [5], Gholizadeh et al. investigated the existence

of a fixed point of multimaps on almost p‐‐convex or p‐convex subsets of \mathrm{t}\mathrm{o}\mathrm{p}\mathrm{c}\succ

logical vector spaces. Most of their results are originated from some previous
works of Park on analytical fixed point theory. In this survey article, we recall

such works and compare them with the corresponding ones in [5]. Finally,
some general comments to [5] are added.

1. Introduction

In our previous talk [23] at the NACA, Chiang Rai, January 2015, we introduced

some recent results in analytical fixed point theory based on our previous works.

After that, we found a paper by Gholizadeh et al. [5], where a number of fixed point
theorems due to the present author were claimed to be generalized. Our principal
aim in this article is to introduce our previous works related to those in [5].

Let  0<p\leq 1 . In [5], its authors investigated the existence of a fixed point
of multimaps on almost p‐convex or p‐convex subsets of topological vector spaces.

Most of their results are originated from some previous works of Park on the KKM

theory and analytical fixed point theory. In fact, in [5] and [3], their authors

extended our results in [7], [9], and [10]. Note that these three papers are based on

the KKM theory. In this survey article, we recall such works and compare them

with the corresponding ones in [3] and [5]. Finally, some general comments on [5]
are added.

This paper is organized as follows. Section 2 is a preliminary on basic concepts
of our KKM theory of abstract convex spaces. We recall there that $\phi$_{A}‐spaces are

KKM spaces. Section 3 devotes to definitions related to p‐convex spaces, which

are shown to be new $\phi$_{A}‐spaces. In Section 4, we introduce general forms of the

KKM type theorems due to ourselves. One of them is to obtain a KKM theorem for

p-‐convex spaces and a general Alexandroff‐Pasynkoff theorem for abstract convex

spaces. Section 5 devotes to compare our previous fixed point theorems with the

extended p‐‐convex space versions in [5] and [3]. Finally, in Section 6, we give some

further comments on the paper [5].

2. Abstract convex spaces

Multimaps are also called simply maps. Let \langle D\rangle denote the set of all nonempty
finite subsets of a set  D . Recall the following in [16]:
Definition. An abstract convex space (E, D; $\Gamma$) consists of a topological space E, \mathrm{a}

nonempty set D , and a multimap  $\Gamma$ : \langle D\rangle\rightarrow E with nonempty values $\Gamma$_{A} := $\Gamma$(A)
for A\in(D\} , such that the  $\Gamma$‐convex hull of any  D'\subseteq D is denoted and defined by

\mathrm{c}\mathrm{o}_{ $\Gamma$}D':=\cup\{$\Gamma$_{A}|A\in\{D')\}\subset E.
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A subset X of E is called a  $\Gamma$‐convex subset of (E, D; $\Gamma$) relative to D' if for any

N\in\{D'\} , we have $\Gamma$_{N}\subseteq X , that is, \mathrm{c}\mathrm{o}_{ $\Gamma$}D'\subset X.
In case E=D , let (E; $\Gamma$) :=(E, E; $\Gamma$) .

Recall that some corrections on [16] appeared in [22].
Definition. Let (E, D; $\Gamma$) be an abstract convex space and Z a topological space.
For a multimap F : E\rightarrow Z with nonempty values, if a multimap G : D\rightarrow Z

satisfies

F($\Gamma$_{A})\displaystyle \subset G(A):=\bigcup_{y\in A}G(y) for all A\in\langle D\rangle,

then G is called a KKM map with respect to F. A KKM map G : D\rightarrow E is a

KKM map with respect to the identity map 1_{E}.
A multimap F : E\rightarrow Z is called a \mathfrak{K}\mathrm{C} ‐map [resp. \mathrm{a}\mathfrak{K}\mathrm{D} ‐map] if, for any

closed‐valued [resp. open‐valued] KKM map G:D\rightarrow Z with respect to F , the

family \{G(y)\}_{y\in D} has the finite intersection property. In this case, we denote

F\in \mathfrak{K}C(E, Z) [resp. F\in \mathfrak{K}\mathrm{D}(E, Z

Definition. The partial KKM principle for an abstract convex space (E, D; $\Gamma$) is

the statement 1_{E}\in \mathfrak{K}\mathrm{C}(E, E) ; that is, for any closed‐valued KKM map G:D\rightarrow E,
the family \{G(y)\}_{y\in D} has the finite intersection property. The KKM principle is

the statement 1_{E}\in \mathrm{R}\not\subset(E, E)\cap \mathrm{f}\mathrm{l}\mathrm{D}(E, E) ; that is, the same property also holds for

any open‐valued KKM map.

An abstract convex space is called \mathrm{a} (partial) KKM space if it satisfies the

(partial) KKM principle, resp.

In our recent works I11‐13], we studied elements or foundations of the KKM

theory on abstract convex spaces and noticed there that many important results

therein are related to the partial KKM principle.

Example. We gave known examples of (partial) KKM spaces in [16] and the

references therein. The following is one of them.

Definition. A $\phi$_{A} ‐space (X, D;\{$\phi$_{A}\}_{A\in\langle D\rangle}) consists of a topological space X, \mathrm{a}

nonempty set D , and a family of continuous functions $\phi$_{A} : $\Delta$_{n}\rightarrow X (that is,
singular n‐simplices) for A\in\{D\} with |A|=n+1 . By putting $\Gamma$_{A} :=$\phi$_{A}($\Delta$_{n}) for

each  A\in\{D\rangle , the triple (X, D; $\Gamma$) becomes an abstract convex space.

Definition. For a $\phi$_{A} ‐space (X, D;\{$\phi$_{A}\}) , any multimap G:D\rightarrow X satisfying

$\phi$_{A}($\Delta$_{J})\subset G(J) for each A\in\{D\} and  J\in\langle A\rangle
is called a KKM map.

We show that every $\phi$_{A}‐space is a KKM space:

Lemma 1. Let (X, D; $\Gamma$) be a $\phi$_{A} ‐space and G : D\rightarrow X a multimap with

nonempty closed [resp. open] values. Suppose that G is a KKM map. Then

\{G(a)\}_{a\in D} has the finite intersection property.

Proof Let  A=\{a_{0}, a_{1}, . . ., a_{n}\}\in\{D\rangle . Then there exists a continuous function

$\phi$_{A}:$\Delta$_{n}\rightarrow$\Gamma$_{A} such that, for any 0\leq i_{0}<i_{1}<\cdots<i_{k}\leq n , we have

$\phi$_{A}(\mathrm{c}\mathrm{o}\{e_{i\mathrm{o}}, e_{i_{1}}, \ldots, e_{i_{k}}\})\subset $\Gamma$(\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{k}}\})\cap$\phi$_{A}($\Delta$_{n}) .

Since G is a KKM map, it follows that

\mathrm{c}\mathrm{o}\{e_{i_{\mathrm{O}}}, e_{i_{1}}, . . . , e_{i_{k}}\}\subset$\phi$_{A}^{-1}( $\Gamma$(\{\%, a_{i_{1}}, \ldots, a_{i_{k}}\})\cap$\phi$_{A}($\Delta$_{n}))

\displaystyle \subset\bigcup_{j=0}^{k}$\phi$_{A}^{-1}(G(a_{i_{j}})\cap$\phi$_{A}(\triangle_{n})) .
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Since G(a_{i_{j}})\cap$\phi$_{A}(\triangle_{n}) is closed [resp. open] in the compact subset $\phi$_{A}($\Delta$_{n}) of $\Gamma$_{A},

$\phi$_{A}^{-1}(G(a_{i_{j}})\cap$\phi$_{A}($\Delta$_{n})) is closed [resp. open] in \triangle_{n} . Note that ei -\neq$\phi$_{A}^{-1}(G(a_{i})\cap
$\phi$_{A}(\triangle_{n})) is a KKM map on \{e_{0}, e_{1}, \cdots, e_{n}\} . Hence, uy the original KKM theorem,
we have

\displaystyle \bigcap_{i=0}^{n}$\phi$_{A}^{-1}(G(a_{i})\cap$\phi$_{A}($\Delta$_{n}))\neq\emptyset,
which readily implies \displaystyle \bigcap_{i=0}^{n}G(a_{i})\neq\emptyset . This completes the proof. \square 

Now we have the following diagram for triples (E, D; $\Gamma$) :

Simplex \Rightarrow Convex subset of a t.v. \mathrm{s}. \Rightarrow Lassonde type convex space
\Rightarrow \mathrm{H}-space \Rightarrow \mathrm{G}‐convex space \Rightarrow$\phi$_{A}-space \Rightarrow \mathrm{K}\mathrm{K}\mathrm{M} space

\Rightarrow Partial KKM space \Rightarrow AUstract convex space.

3. New KKM spaces

Let  0<p\leq 1 . Recall the definitions given by Bayoumi [4, 5]:

Definition. (p‐convex set) A set A in a vector space V is said to be ‐convex if,
for any x, y\in A, s, t\geq 0 , we have

(1-t)^{1/p}x+t^{1/p}y\in A , whenever 0\leq t\leq 1.

Definition. (p‐convex hull) If X is a topological vector space and A\subset X , the

closed p‐convex hull of A denoted by \overline{C}_{p}(A) is the smallest closed r‐convex set

containing A.

Definition. (p‐convex combination) Let A be p‐‐convex and x_{1}, \cdots, x_{n}\in A , and

t_{i}\geq 0, \displaystyle \sum_{1}^{n}t_{i}^{\mathrm{p}}=1 . Then \displaystyle \sum_{1}^{n}t_{i}x_{i} is called a p‐‐convex combination of {xi}. If

\displaystyle \sum_{1}^{n}|t_{i}|^{\mathrm{p}}\leq 1 , then \displaystyle \sum_{1}^{n}t_{i}x_{i} is called an absolutely ‐convex combination. It is easy
to see that \displaystyle \sum_{1}^{n}t_{i}x_{i}\in A for a p‐‐convex set A.

Definition. (locally p‐convex space) A topological vector space is said to be locally
p‐‐convex if the origin has a fundamental set of absolutely p‐‐convex 0‐neighborhoods.
This topology can be determined by p‐seminorms which are defined in the obvious

way.

Using these concepts, in [5], definitions of almost p\overline{-}convex sets and the p‐‐convexly
almost fixed point property are introduced as generalizations of almost convex sets

(due to Himmelberg) and the almost fixed point property, resp.

Now we have a new KKM space:

Lemma 2. Suppose that X is a subset of a topological vector space E and D is a

nonempty subset ofX such that C_{p}(D)\subset X . Let $\Gamma$_{N} :=C_{p}(N) For each N\in\langle D\rangle.
Then (X, D; $\Gamma$) is a $\phi$_{A} ‐space.

Proof. Since C_{p}(D)\subset X, $\Gamma$_{N} is well‐defined. For each N=\{x_{0}, x_{1}, \cdots, x_{n}\}\subset D,
define $\phi$_{N} : $\Delta$_{n}\rightarrow$\Gamma$_{N} by

\displaystyle \sum_{i=0}^{n}t_{i}e_{i}\mapsto\sum_{i=0}^{n}(t_{i})^{\frac{1}{\mathrm{p}}}x_{i}.
Then clearly (X, D; $\Gamma$) is a $\phi$_{A}‐space. \square 
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4. General KKM theorems

The following whole intersection property for the map‐values of a KKM map is a

standard form of the KKM type theorems [15,16,18]:
Theorem 1. Let (E, D; $\Gamma$) be a partial KKM space [resp. a KKM space] and

G:D\rightarrow E a multimap satisfying
(1) G has closed [resp. openJ values; and

(2) $\Gamma$_{N}\subset G(N) for any  N\in\langle D\rangle (that is,  G is a KKM map).
Then \{G(z)\}_{z\in D} has the finite intersection property.

Further, if

(3) \displaystyle \bigcap_{z\in M}\overline{G(z)} is compact for some M\in\langle D\rangle,
then we have

\displaystyle \bigcap_{y\in D}\overline{G(y)}\neq\emptyset.
Consider the following related four conditions for a map G:D-\rightarrow E :

(a) \displaystyle \bigcap_{z\in D}\overline{G(z)}\neq\emptyset implies \displaystyle \bigcap_{z\in D}G(z)\neq\emptyset.

(b) \displaystyle \bigcap_{z\in D}\overline{G(z)}=\overline{\bigcap_{z\in D}G(z)}(G is intersectionally closed‐valued in the sense of

Luc et al).

(c) \displaystyle \bigcap_{z\in D}\overline{G(z)}=\bigcap_{z\in D}G(z) (G is transfer closed‐valued).

(d) G is closed‐valued.

From the partial KKM principle we have a whole intersection property of the

Fan type. The following is given in [18,19]:
Theorem 2. Let (E, D; $\Gamma$) be a partial KKM space and G:D-\circ E a map such

that

(1) \overline{G} is a KKM map [that is, $\Gamma$_{A}\subset\overline{G}(A) for all  A\in\langle D\rangle ]; and

(2) there exists a nonempty compact subset  K of E such that either

(i) \displaystyle \bigcap_{z\in M}\overline{G(z)}\subset K for some M\in\langle D}; or

(ii) for each N\in\langle D}, there exists a compact  $\Gamma$ ‐convex subset  L_{N} of E relative

to some D'\subset D such that N\subset D' and

\displaystyle \overline{L_{N}}\cap\bigcap_{z\in D'}\overline{G(z)}\subset K.
Then we have K\displaystyle \cap\bigcap_{z\in D}\overline{G(z)}\neq\emptyset.

Furthermore,
( $\alpha$) if G is transfer closed‐valued, then  K\cap\cap\{G(z)|z\in D\}\neq\emptyset ;

(  $\beta$ ) if  G is intersectionally closed‐valued, then \cap\{G(z)|z\in D\}\neq\emptyset.
We give some consequences of Theorem 1:

Theorem 3. [5] Suppose that X is a subset of a topological vector space E and D

is a nonempty subset of X such that C_{p}(D)\subseteq X . Also suppose that G:D-\triangleleft X

is a multimap satisfying
(a) G(x) is closed [resp. openl in X for all x\in D.

(b) C_{\mathrm{p}}(N)\subset G(N) for each N\in\langle D\rangle.
Then \{G(x)|x\in D\} has the finite intersection property.

Proof. By putting $\Gamma$_{N} :=C_{p}(N) , (X, D; $\Gamma$) is a KKM space by Lemma 2. Now the

conclusion follows from Theorem 1. \square 

From Theorem 1, we have the following generalization of the Alexandroff‐Pasynkoff
theorem [1]:
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Theorem 4. Let (E, D; $\Gamma$) be a partial KKM space [resp. a KKM space], A\subset E,
\{A_{0}, A_{1}, . .. , A_{N}\} be a family of closed [resp. open] subsets of E such that  A\subset

\displaystyle \bigcup_{i=0}^{n}A_{i} , and N=\{z_{0}, z_{1}, \cdots, z_{n}\} be a family of points in D such tlJat  $\Gamma$(N)\subset A.
If  $\Gamma$(N\backslash \{z_{i}\})\subset A_{i} for each i=0 , 1, . .

., n, \displaystyle \mathfrak{t}he\mathrm{n}\bigcap_{i=0}^{n}A_{i}\neq\emptyset.
Proof. Let C_{0}= $\Gamma$(N\backslash \{z_{n}\}) and for i=1 , 2, . . . , n , let C_{i}= $\Gamma$(N\backslash \{z_{i-1}\}) . Define

a multimap F : D\rightarrow X by F(z_{0})=A_{n}, F(z_{i})=A_{i-1} for i=1 , 2, . . .

, n , and

F(z)=X for all z\in D\backslash N . We claim that F is a KKM map. To see this, we note

that  $\Gamma$(N)\displaystyle \subset A\subset\bigcup_{i=0}^{n}A_{i}=F(N) and for any proper subset z_{i_{0}}, z_{i_{1}} , . . . , z_{i_{k}} of N

with 0\leq k<n and 0\leq i_{0}<i_{1}<\cdots<i_{k}\leq n , we have

 $\Gamma$(\{z_{i_{0}}, z_{i_{1}}, \ldots, z_{i_{k}}\})\subset C_{i_{j}}\subset A_{i_{J}-1}=F(z_{i_{j}})
for some j\in\{0, 1, . . . , k\} . Note that i_{j}=0 if and only if i_{j}-1=n , and so

 $\Gamma$(\displaystyle \{z_{i_{0}}, z_{i_{1}}, \ldots, z_{i_{k}}\})\subset\bigcup_{j=0}^{k}F(z_{i_{j}}) . Now by Theorem 1 we have \displaystyle \bigcap_{i=0}^{n}A_{i}\neq\emptyset. \square 

Remarks. 1. If we adopt Theorem 2 instead of Theorem 1, we may have another

version of Theorem 4.

2. Note that [5, Theorem 2.2] is a generalized minimal space version of Theorem

4 motivated from the previous work of Park [7].
3. It is well‐known that the Alexandroff‐Pasynkoff theorem implies the Brouwer

fixed point theorem (e.g., see [24]). Therefore, Theorem 4 is also equivalent to the

KKM theorem.

5. 0riginal results extended to p-‐convex spaces

Recall that, in [5] and [3], their authors extended our results in [7], [9], and [10]
to p‐‐convex spaces, and these three papers of ours are based on the KKM theory.
Now, we give our original results in there, and indicate the corresponding results

extended by [5] and [3].
Theorem 5. [7] Let X be a subset of a Hausdorff topological vector space E and

Y an almost convex dense subset of X. Let T : X\rightarrow E be a lower lresp. upperl
semicontinuous multimap such that T(y) is convex for all y\in Y. If there is a

precompact subset K of X such that  T(y)\cap K\neq\emptyset for each  y\in Y , then for a\mathrm{n}y^{r}
convex neighborhood U of the origin 0 of E , there exists a point x_{U}\in Y such that

T(x_{U})\cap(x_{U}+U)\neq\emptyset.

Note that Hausdorffness of E is redundant. In [5, Theorem 2.7], all �convex� is

replaced in Theorem 5 by p‐‐convex.

Corollary 6. [7] Let X be a convex subset of a Hausdorff topological vector space

E. Let T : X\rightarrow E be a lower lresp. upperl semicontinuous multimap such that

T(x) is convex for each x\in X . If there is a precompact subset K of X such that

 T(x)\cap K\neq\emptyset for each  x\in X , then for every convex neighborhood U of the origin
0 ofE, there exists a point x_{U}\in X such that T(x_{U})\cap(x_{U}+U)\neq\emptyset.

Note that Hausdorffness of E is redundant. In [5, Corollary 2.8], all �convex� in

Corollary 6 is replaced by p‐convex.

Corollary 7. [7] Let X Ue a subset ofa locally convex Hausdorff topological vector

space E and Y an almost convex dense subset ofX. Let T:X\rightarrow X be a compact
upper semicontinuous multimap with closed values such that T(y) is nonempty
convex for all y\in Y . Then T has \mathrm{a} fixed point x_{0}\in X ; that is, x_{0}\in T(x_{0}) .

In [5, Theorem 2.12], all �convex� in Corollary 7 is replaced by p‐convex and

Hausdorftness is not assumed, but used in its proof. This means that, in [5], all

topological spaces seem to be assumed Hausdorff.
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Corollary 8. [7] Let X be a subset of a Hausdorff topological vector space E and

Y an almost convex dense subset of X. Let T:X\rightarrow E be a multimap such that

(1) T^{-}(z) is open for each z\in E ; and

(2) T(y) is convex for for each y\in \mathrm{y}.
If there is a precompact subset K of X such that  T(y)\cap K\neq\emptyset for each  y\in Y,

then for any convex neighborhood U of the origin 0 of E , there exists a point
x_{U}\in Y such that T(x_{U})\cap(x_{U}+U)\neq\emptyset.

In [5, Corollary 2.9], all �convex� in Corollary 8 is replaced by p‐‐convex, and

Hausdorffness is not assumed.

Corollary 9. [7] Let X be a convex subset of a Hausdorff topological vector space

E , and T:X\rightarrow X be a compact multimap such that

(l) T(x) is nonempty and convex for each x\in X ;

(2) T^{-}(y) is open for each y\in X ; and

Then for any convex neighborhood U of the origin 0 of E
, there exists a point

x_{U}\in X such that T(x_{U})\cap(x_{U}+U)\neq\emptyset.

Here Hausdorffness is redundant. In [5, Corollary 2.10], all �convex� in Corollary
9 is replaced by p‐‐convex, and added that T can be assumed u.s. \mathrm{c} . instead of (2).

Theorem 10. [9] Let X be a star shaped subset of a Hausdorff topological vector

space E with the origin O of E as the center. Let f : X\rightarrow X be a compact
continuous map. Then one of the following holds:

(i) f has a fixed point x_{0}=f(x_{0})\in X ;

(ii) there exist a point y_{0}\in X and a t_{0}\in(0,1) such that O\neq y_{0}=t_{0}f(y_{0}) ; or

(iii) f(O)\neq O.

In [3], this is extended to a pstar shaped subsets of a topological vector space

via Fan‐KKM principle in a generalized convex space.

Theorem 11. [10] Let X be a convex subset ofa locally convex Hausdorff t.v.s. E.

Then any closed compact multimap T:X\rightarrow X having the almost fiXed property
has a fxed point.

In [5, Theorem 2.14], all �convex� in Theorem 11 is replaced by p‐‐convex.

Theorem 12. [10] Let X be a compact convex subset ofa t.v.s. E and T:X\rightarrow X

a multimap such that

(i) T has the almost fixed point property;

(ii) T has closed values; and

(iii) T satisfies condition

\displaystyle \bigcap_{U\in \mathcal{V}}\{x\in X|x\in T(x)+U\}=\bigcap_{U\in V}\mathrm{c}1\{x\in X|x\in T(x)+\mathrm{c}\mathrm{o}\mathrm{U}\},
where \mathcal{V} is a local base of open neighborhoods of 0 in E.

Then T has a fixed point.

Note that [5, Theorem 2.19 and Corollaries 2.20‐2.22] are all motivated from

Theorem 12 above by replacing all �convex� by p‐‐convex.

Corollary 13. [10] Let X be a compact convex subset ofa locally convex Hausdorff

t . v.s. Then any closed multimap T:X\rightarrow X having the almost fixed point property
has a fixed point.

Moreover, in [5, Theorem 2.24], all �convex� in Corollary 13 is replaced Uy p‐
convex and the almost fixed point property by the p‐convexly almost fixed point
property.
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6. Further comments on [5]

1. In [5] the authors are based on the KKM type theorems (Theorems 1.3 and 1.4

there) on generalized minimal spaces in [2], and noted that they are generalizations
of Theorem 1 in Park [8,6]. However the concept of \mathrm{G}‐convex spaces are obsolete

and we established already much more general theory on abstract convex spaces.

Moreover, since any minimal space can be made into a topological space, results on

abstract convex minimal spaces can be deduced from the theory of abstract convex

spaces; see [14, 31]. Note also that some authors are still publishing papers on

minimal spaces.

2. Notice that no consideration on the Hausdorffness of topological vector spaces
are given in [5]. Many results there can hold without assuming the Hausdorffness.

This can be also stated the original works of Park on which [5] has based. In

the present paper we clearly distinguish original results where Hausdorffness is

redundant.

3. The following is given in [17]:
Definition. A  $\gamma$ ‐convex space (E, D; $\gamma$) consists of a topological space E , a nonempty
set D , and a multimap  $\gamma$ :  D\times D\rightarrow E with nonempty values  $\gamma$(a, b) for any a, b\in D.

For any D'\subset D , the  $\gamma$‐convex hult of  D' is denoted and defined by

\mathrm{c}\mathrm{o}_{ $\gamma$}D' :=\cup\{ $\gamma$(a, b)|a, b\in D'\}\subset E.
A subset X of E is called a  $\gamma$‐convex subset of (E, D; $\gamma$) relative to D' if for any

a, b\in D' , we have  $\gamma$(a, b)\subset X , that is, \mathrm{c}\mathrm{o}_{ $\gamma$}D'\subset X.
In case E\supset D , let (E\supset D; $\gamma$) :=(E, D; $\gamma$) and let (E; $\gamma$) :=(E, E; $\gamma$) .

Note that a p‐‐convex subset X (in the sense of Bayoumi) of a topological vector

space E is a  $\gamma$‐convex subset of (E, X; $\gamma$) relative to X itself.
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