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Abstract. In this article, motivated by split feasibility problems and split common null

point problems in Hilbert spaces, we first introduce the concept of nonlinear operators in

Banach spaces which covers strict pseud‐contractions and generalized hybrid mappings in

Hilbert spaces, and the metric projections and the metric resolvents in Banach spaces. Then

we consider split common fixed point problems with the operators in Banach spaces. Using
hybrid methods, Mann�s type iterations and Halpern�s type iterations, we prove weak and

strong convergence theorems for finding solutions of split common fixed point problems in

Banach spaces. Furthermore, using these results, we get well‐known and new results which

are connected with split feasibility problems and split common null point problems in Banach

spaces.
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1 Introduction

Let H_{1} and H_{2} be two real Hilbert spaces. Let D and Q be nonempty, closed and convex

subsets of H_{1} and H_{2} , respectively. Let A:H_{1}\rightarrow H_{2} be a bounded linear operator. Then the

split feasibility problem [7] is to find z\in H_{1} such that z\in D\cap A^{-1}Q . Byrne, Censor, Gibali and

Reich [6] also considered the following problem: Given set‐valued mappings A : H_{1}\rightarrow 2^{H_{1}},
and B : H_{2}\rightarrow 2^{H_{2}} , respectively, and a bounded linear operator T : H_{1}\rightarrow H_{2} , the split
common null point problem is to find a point z\in H_{1} such that

z\in A^{-1}0\cap B^{-1}0,

where A^{-1}0 and B^{-1}0 are null point sets of A and B , respectively. Defining U=A^{*}(I-P_{Q})A
in the split feasibility problem, we have that U : H_{1}\rightarrow H_{1} is an inverse strongly monotone

operator [1], where A^{*} is the adjoint operator of A and P_{Q} is the metric projection of H_{2} onto
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Q . Fbrthermore, if D\cap A^{-1}Q is nonempty, then z\in D\cap A^{-1}Q is equivalent to

z=P_{D}(I- $\lambda$ A^{*}(I-P_{Q})A)z,

where  $\lambda$>0 and P_{D} is the metric projection of H_{1} onto D . By using such results regarding
nonlinear operators and fixed points, many authors have studied split feasibility problems and

split common null point problems in Hilbert spaces, for instance, [1, 6, 8, 28].
In this article, motivated by split feasibility problems and split common null point problems

in Hilbert spaces, we first introduce the concept of nonlinear operators in Banach spaces which

covers strict pseud‐contractions and generalized hybrid mappings in Hilbert spaces, and the

metric projections and the metric resolvents in Banach spaces. Then we consider split common

fixed point problems with the operators in Banach spaces. Using hybrid methods, Mann�s type
iterations and Halpern�s type iterations, we prove weak and strong convergence theorems for

finding solutions of split common fixed point problems in Banach spaces. Furthermore, using
these results, we get well‐known and new results which are connected with split feasibility
problems and split common null point problems in Banach spaces.

2 Preliminaries

Let E be a real Banach space with norm \Vert\cdot\Vert and let  E^{*} be the dual space of E . We denote

the value of y^{*}\in E^{*} at x\in E by \langle x, y^{*} }. When \{x_{n}\} is a sequence in E , we denote the strong
convergence of \{x_{n}\} to x\in E by x_{n}\rightarrow x and the weak convergence by x_{n}\rightarrow x . The modulus

 $\delta$ of convexity of  E is defined by

 $\delta$( $\epsilon$)=\displaystyle \inf\{1-\frac{\Vert x+y\Vert}{2} : \Vert x\Vert\leq 1, \Vert y\Vert\leq 1, \Vert x-y\Vert\geq $\epsilon$\}
for every  $\epsilon$ with  0\leq $\epsilon$\leq 2 . A Banach space E is said to be uniformly convex if  $\delta$( $\epsilon$)>0
for every  $\epsilon$> O. A uniformly convex Banach space is strictly convex and reflexive. We also

know that a uniformly convex Banach space has the Kadec‐Klee property, that is, x_{n}\rightarrow u

and \Vert x_{n}\Vert\rightarrow\Vert u\Vert imply  x_{n}\rightarrow u.

The duality mapping J from E into 2^{E^{*}} is defined by

Jx=\{x^{*}\in E^{*} : \{x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}

for every x\in E . Let U=\{x\in E : \Vert x\Vert=1\} . The norm of E is said to be Gâteaux
differentiable if for each x, y\in U , the limit

\displaystyle \lim_{t\rightarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}
exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single
valued mapping of E into E^{*} . We also know that E is reflexive if and only if J is surjective,
and E is strictly convex if and only if J is one‐to‐one. Therefore, if E is a smooth, strictly
convex and reflexive Banach space, then J is a single‐valued bijection and in this case, the

inverse mapping J^{-1} coincides with the duality mapping J. on E^{*} . For more details, see [18]
and [19]. We know the following result:
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Lemma 2.1 ([18]). Let E be a smooth Banach space and let J be the duality mapping on

E. Then, \langle x-y, Jx-Jy\rangle\geq 0 for all x, y\in E. Furthernore, if E is strictly convex and

\langle x-y , Jx—Jy\}=0 , then x=y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach

space E . Then we know that for any x\in E , there exists a unique element z\in C such that

\Vert x-z\Vert\leq\Vert x-y\Vert for all  y\in C . Putting z=P_{C}x , we call such a mapping P_{C} the metric

projection of E onto C.

Lemma 2.2 ([18]). Let E be a smooth, strictly convex and reflexive Banach space. Let C be

a nonempty, closed and convex subset of E and let x_{1}\in E and z\in C. Then, the following
conditions are equivalent:

(1) z=P_{C}x_{1} ;

(2) \langle z-y, J(x_{1}-z)\rangle\geq 0, \forall y\in C.

Let E be a Banach space and let A be a mapping of E into 2^{E^{*}} The effective domain of A

is denoted by \mathrm{d}\mathrm{o}\mathrm{m}(A) , that is, \mathrm{d}\mathrm{o}\mathrm{m}(A)=\{x\in E: Ax\neq\emptyset\} . A multi‐valued mapping A on

E is said to be monotone if \langle x-y, u^{*}-v^{*} ) \geq 0 for all x, y\in \mathrm{d}\mathrm{o}\mathrm{m}(A) , u^{*}\in Ax , and v^{*}\in Ay.
A monotone operator A on E is said to be maximal if its graph is not properly contained in

the graph of any other monotone operator on E . The following theorem is due to Browder

[4]; see also [19, Theorem 3.5.4].

Theorem 2.3 ([4]). Let E be a uniformly convex and smooth Banach space and let J be

the duality mapping of E into E^{*} . Let A be a monotone operator of E into 2^{E^{*}} Then A is

maximal if and only iffor any r>0, R(J+rA)=E^{*} , where R(J+rA) is the range of J+rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm and let A

be a maximal monotone operator of E into 2^{E^{*}} For all x\in E and r>0 , we consider the

following equation 0\in J(x_{r}-x)+rAx_{r} . This equation has a unique solution x_{r} . We define

J_{r} by x_{r}=J_{r}x . Such J_{r}, r>0 are called the metric resolvents of A . The set of null points of

A is defined by A^{-1}0=\{z\in E:0\in Az\} . We know that A^{-1}0 is closed and convex; see [19].
For a sequence \{C_{n}\} of nonempty, closed and convex subsets of a Banach space E

, define

s‐Lin C_{n} and w‐Lsn C_{n} as follows:  x\in s‐Lin  C_{n} if and only if there exists \{x_{n}\}\subset E such that

\{x_{n}\} converges strongly to x and x_{n}\in C_{n} for all n\in \mathrm{N} . Similarly,  y\in w‐Lsn  C_{n} if and only
if there exist a subsequence \{C_{n_{i}}\} of \{C_{n}\} and a sequence \{y_{i}\}\subset E such that \{y_{i}\} converges

weakly to y and y_{i}\in C_{n_{i}} for all i\in \mathrm{N} . If C_{0} satisfies

C_{0}= s‐Lni C_{n}= w‐Lns C_{n},

it is said that \{C_{n}\} converges to C_{0} in the sense of Mosco [14\mathrm{J} and we write C_{0}=
\displaystyle \mathrm{M}-\lim_{n\rightarrow\infty}C_{n} . It is easy to show that if \{C_{n}\} is nonincreasing with respect to inclusion, then

\{C_{n}\} converges to \displaystyle \bigcap_{n=1}^{\infty}C_{n} in the sense of Mosco. For more details, see [14]. The following
lemma was proved by Tsukada [30].
Lemma 2.4 ([30]). Let E be a uniformly convex Banach space. Let \{C_{n}\} be a sequence

of nonempty, closed and convex subsets of E. If C_{0}=M-\displaystyle \lim_{n\rightarrow\infty}C_{n} exists and nonempty,
then for each x\in E, \{P_{C_{n}}x\} converges strongly to P_{C_{0}}x , where P_{C_{n}} and P_{C_{0}} are the mertic

projections of E onto C_{n} and C_{0} , respectively.
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3 Iterative Results by Hybrid Methods

Let E be a smooth, strictly convex and reflexive Banach space and let  $\eta$ be a real number

with  $\eta$\in(-\infty, 1) . Then a mapping U:E\rightarrow E with  F(U)\neq\emptyset is called  $\eta$‐demimetric [22] if,
for any  x\in E and q\in F(U) ,

\displaystyle \langle x-q, J(x-Ux)\rangle\geq\frac{1- $\eta$}{2}\Vert x-Ux\Vert^{2},
where F(U) is the set of fixed points of U.

Examples. We know examples of  $\eta$‐demimetric mappings from [22].

(1) Let  H be a Hilbert space and let k be a real number with 0\leq k<1 . Let U be a strict

pseud‐contraction [5] of H into itself such that  F(U)\neq\emptyset . Then  U is k‐demimetric.

(2) Let H be a Hilbert space and let C be a nonempty subset of H . A mapping U : C\rightarrow H
is called generalized hybrid [10] if there exist  $\alpha$,  $\beta$\in \mathbb{R} such that

 $\alpha$\Vert Ux-Uy\Vert^{2}+(1- $\alpha$)\Vert x-Uy\Vert^{2}\leq $\beta$\Vert Ux-y\Vert^{2}+(1- $\beta$)\Vert x-y\Vert^{2}, \forall x, y\in H.

Such a mapping U is called ( $\alpha$,  $\beta$)‐generalized hybrid. If U is generalized hybrid and F(U)\neq\emptyset,
then U is 0‐demimetric.

(3) Let E be a strictly convex, reflexive and smooth Banach space and let C be a nonempty,
closed and convex subset of E . Let P_{C} be the metric projection of E onto C . Then P_{C} is

(-1)‐demimetric.

(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone

operator with  B^{-1}0\neq\emptyset . Let  $\lambda$>0 . Then the metric resolvent J_{ $\lambda$} is (-1) ‐demimetric.

Furthermore, we know an important result for demimetric mappings in a smooth, strictly
convex and reflexive Banach space.

Lemma 3.1 ([22]). Let E be a smooth, strictly convex and reflexive Banach space and let  $\eta$
be a real number with  $\eta$\in(-\infty, 1) . Let U be an  $\eta$ ‐demimetric mapping of  E into itself. Then

F(U) is closed and convex.

Using the hybrid methods in mathematical programming, we prove two strong convergence
theorems for finding a solution of the split common fixed point problem in Banach spaces.
Let E be a Banach space and let D be a nonempty, closed and convex subset of E. \mathrm{A}

mapping U : D\rightarrow E is called demiclosed if for a sequence \{x_{n}\} in D such that x_{n}\rightarrow p and

x_{n}-Ux_{n}\rightarrow 0, p=Up holds. The following theorems are proved by Takahashi [23].
Theorem 3.2 ([23]). Let E and F be uniformly convex and smooth Banach spaces and let

J_{E} and J_{F} be the duality mappings on E and F , respectively. Let  $\tau$ and  $\eta$ be real numbers

with  $\tau$,  $\eta$\in(-\infty, 1) . Let T : E\rightarrow E be a  $\tau$ ‐demimetric and demiclosed mapping and let

 U : F\rightarrow F be an  $\eta$ ‐demimetric and demiclosed mapping with  F(U)\neq\emptyset . Let  A:E\rightarrow F be

a bounded linear operator such that A\neq 0 and let A^{*} be the adjoint operator of A. Suppose
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that  F(T)\cap A^{-1}F(U)\neq\emptyset . Let  x_{1}\in E and let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=x_{n}-rJ_{E}^{-1}A^{*}J_{F}(Ax_{n} -- UAxn),\\
y_{n}=Tz_{n},\\
C_{n}=\{z\in E:\langle z_{n}-z, J_{E}(x_{n}-z_{n}))\geq 0\},\\
D_{n}=\{z\in E:2\langle z_{n}-z, J_{B}(z_{n}-y_{n})\rangle\geq(1- $\tau$)\Vert z_{n}-y_{n}\Vert^{2}\},\\
Q_{n}=\{z\in E:\langle x_{n}-z, J_{E}(x_{1}-x_{n})\rangle\geq 0\},\\
x_{n+1}=P_{C_{n}\cap D_{n}\cap Q_{n}}x_{1}, \forall n\in \mathbb{N},
\end{array}\right.
where 0<2r\Vert A\Vert^{2}\leq(1- $\eta$) . Then \{x_{n}\} converges strongly to a point z_{1}\in F(T)\cap A^{-1}F(U) ,

where z_{1}=P_{F(T)F(U)^{X}1}\cap A-1.
Theorem 3.3 ([23]). Let E and F be uniformly convex and smooth Banach spaces and let

J_{E} and J_{F} be the duality mappings on E and F
, respectively. Let  $\tau$ and  $\eta$ be real numbers

with  $\tau$,  $\eta$\in(-\infty, 1) . Let T : E\rightarrow E be a  $\tau$ ‐demimetric and demiclosed mapping and let

 U : F\rightarrow F be an  $\eta$ ‐demimetric and demiclosed mapping with  F(U)\neq\emptyset . Let  A : E\rightarrow F be

a bounded linear operator such that A\neq 0 and let A^{*} be the adjoint operator of A. Suppose
that  F(T)\cap A^{-1}F(U)\neq\emptyset . For  x_{1}\in E and C_{1}=E , let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=x_{n}-rJ_{E}^{-1}A^{*}J_{F}(Ax_{n} -- UAxn),\\
y_{n}=Tz_{n},\\
C_{n+1}=\{z\in C_{n}:\{z_{n}-z, J_{E}(x_{n}-z_{n})\}\geq 0\}\\
and 2\{z_{n}-z, J_{E}(z_{n}-y_{n}))\geq(1- $\tau$)\Vert z_{n}-y_{n}\Vert^{2}\},\\
x_{n+1}=P_{C_{n+1}}x_{1}, \forall n\in \mathbb{N},
\end{array}\right.
where 0<2r\Vert A\Vert^{2}\leq(1- $\eta$) . Then \{x_{n}\} converges strongly to a point z_{1}\in F(T)\cap A^{-1}F(U) ,

where z_{1}=P_{F(T)\cap A-1}x.

Using Theorems 3.2 and 3.3, we get strong convergence theorems which are connected

with the split common fixed point problems in Banach spaces. We know the following result

obtained by Marino and Xu [13]; see also [27].

Lemma 3.4 ([13]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset

of H and k be a real number with 0\leq k<1 . Let U:C\rightarrow H be a k ‐strict pseudo‐contraction.
If x_{n}\rightarrow z and x_{n}-Ux_{n}\rightarrow 0 , then z\in F(U) .

Theorem 3.5. Let H_{1} and H_{2} be Hidbert spaces. Let k be a real number with k\in[0 , 1). Let

T:H_{1}\rightarrow H_{1} be a nonexpansive mapping and let U : H_{2}\rightarrow H_{2} be a k ‐strict pseud‐contraction
with  F(U)\neq\emptyset . Let  A:H_{1}\rightarrow H_{2} be a bounded linear operator such that A\neq 0 and let A^{*} be

the adjoint operator of A. Suppose that  F(T)\cap A^{-1}F(U)\neq\emptyset . Let  x_{1}\in H_{1} and let \{x_{n}\} be a

sequence generated by

\left\{\begin{array}{l}
z_{n}=x_{n}-rA^{*}(Ax_{n} -- UAxn),\\
y_{n}=Tz_{n},\\
C_{n}=\{z\in H_{1}:\langle z_{n}-z, x_{n}-z_{n}\rangle\geq 0\},\\
D_{n}=\{z\in H_{1}:2\langle z_{n}-z, z_{n}-y_{n}\rangle\geq\Vert z_{n}-y_{n}\Vert^{2}\},\\
Q_{n}=\{z\in H_{1}:\langle x_{n}-z, x_{1}-x_{n})\geq 0\},\\
x_{n+1}=P_{C_{n}\cap D_{n}\cap Q_{n}}x_{1}, \forall n\in \mathbb{N},
\end{array}\right.
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where 0<2r\Vert A\Vert^{2}\leq(1-k) . Then \{x_{n}\} converges strongly to a point z_{1}\in F(T)\cap A^{-1}F(U) ,

where z_{1}=P-1.

Theorem 3.6. Let E and F be uniformly convex and smooth Banach spaces and let J_{E} and

J_{F} be the duality mappings on E and F , respectively. Let C and D be nonempty, closed and

convex subsets of E and F
, respectively. Let P_{C} and P_{D} be the metric projections of E onto C

and F onto D
, respectively. Let A : E\rightarrow F be a bounded linear operator such that A\neq 0 and

let A^{*} be the adjoint operator of A. Suppose that  C\cap A^{-1}D\neq\emptyset . For  x_{1}\in E and C_{1}=E , let

\{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=x_{n}-rJ_{E}^{-1}A^{*}J_{F}(Ax_{n}-P_{D}Ax_{n}) ,\\
y_{n}=P_{C}z_{n},\\
C_{n+1}=\{z\in C_{n}:\langle z_{n}-z, J_{E}(x_{n}-z_{n}))\geq 0\}\\
and \langle z_{n}-z, J_{E}(z_{n}-y_{n})\rangle\geq\Vert z_{n}-y_{n}\Vert^{2}\},\\
x_{n+1}=P_{C_{n+1}}x_{1}, \forall n\in \mathrm{N},
\end{array}\right.
where 0<r\Vert A\Vert^{2}\leq 1 . Then \{x_{n}\} converges strongly to a point z_{1}\in C\cap A^{-1}D , where

z_{1}=P_{C\cap A^{-1}D^{X}1}.

Theorem 3.7. Let E and F be uniformly convex and smooth Banach spaces and let J_{E} and

J_{F} be the duality mappings on E and F , respectively. Let G and B be maximal monotone

operators of E into E^{*} and F into F^{*} , respectively. Let J_{ $\lambda$} and Q_{ $\mu$} be the metric resolvents of
G for  $\lambda$>0 and B for  $\mu$>0 , respectively. Let A:E\rightarrow F be a bounded linear operator such

that A\neq 0 and let A^{*} be the adjoint operator of A. Suppose that  G^{-1}0\cap A^{-1}(B^{-1}0)\neq\emptyset . For

 x_{1}\in E and C_{1}=E, let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=x_{n}-rJ_{E}^{-1}A^{*}J_{F}(Ax_{n}-Q_{ $\mu$}Ax_{n}) ,\\
y_{n}=J_{ $\lambda$}z_{n},\\
C_{n+1}=\{z\in C_{n}:\langle z_{n}-z, J_{E}(x_{n}-z_{n})\rangle\geq 0\}\\
and \langle z_{n}-z, J_{E}(z_{n}-y_{n})\rangle\geq\Vert z_{n}-y_{n}\Vert^{2}\},\\
x_{n+1}=P_{C_{n+1}}x_{1}, \forall n\in \mathrm{N},
\end{array}\right.
where 0<r\Vert A\Vert^{2}\leq 1 and  $\lambda$,  $\mu$> O. Then the sequence \{x_{n}\} converges strongly to a point
z_{1}\in G^{-1}0\cap A^{-1}(B^{-1}0) , where z_{1}=P_{G^{-1}0\cap A-1}(B-1x.

4 Iterative Results by Mann and Halpern Iterat ons

In this section, we first prove a weak convergence theorem [24] of Mann�s type iteration for

the split common fixed point problem in Banach spaces.

Theorem 4.1 ([24]). Let H be a Hilbert space and let F be a smooth, strictly convex and

smooth Banach space. Let J_{F} be the duality mapping on F and let  $\eta$ be a real number with  $\eta$\in

(-\infty, 1) . Let T : H\rightarrow H be a nonexpansive mapping and let U : F\rightarrow F be an  $\eta$ ‐demimetric

and demiclosed mapping with  F(U)\neq\emptyset . Let  A : H\rightarrow F be a bounded linear operator such

that A\neq 0 and let A^{*} be the adjoint operator of A. Suppose  F(T)\cap A^{-1}F(U)\neq\emptyset . For any

 x_{1}=x\in H , define

x_{n+1}=$\beta$_{n}x_{n}+(1-$\beta$_{n})T(I-rA^{*}J_{F}(A-UA))x_{n}, \forall n\in \mathbb{N},
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where \{$\beta$_{n}\}\subset[0 , 1 ] and r\in(0, \infty) satisfy the following:

0<a\leq$\beta$_{n}\leq b<1 and 0<r\Vert AA^{*}\Vert<(1- $\eta$)

for some a, b\in \mathbb{R} . Then \{x_{n}\} converges weakly to a point z_{0}\in F(T)\cap A^{-1}F(U) , where

z_{0}=\displaystyle \lim_{n\rightarrow\infty}P_{F(\mathrm{T})\cap A^{-1}F(U)^{X}n}.
Next, we prove a strong convergence theorem [24] of Halpern�s type iteration for the split

common fixed point problem in Banach spaces.

Theorem 4.2 ([24]). Let H be a Hilbert space and let F be a smooth, strictly convex and

smooth Banach space. Let J_{F} be the duality mapping on F and let  $\eta$ be a real number with  $\eta$\in

(-\infty, 1) . Let T : H\rightarrow H be a nonexpansive mapping and let U : F\rightarrow F be an  $\eta$ ‐demimetric

and demiclosed mapping with  F(U)\neq\emptyset . Let  A : H\rightarrow F be a bounded linear operator such

that A\neq 0 and let A^{*} be the adjoint operator of A. Suppose  F(T)\cap A^{-1}F(U)\neq\emptyset . Let \{u_{n}\}
be a sequence in H such that u_{n}\rightarrow u . For x_{1}=x\in H , let \{x_{n}\}\subset H be a sequence generated
by

x_{n+1}=$\beta$_{n}x_{n}+(1-$\beta$_{n})($\alpha$_{n}u_{n}+(1-$\alpha$_{n})T(x_{n}-rA^{*}J_{F}(I-U)Ax_{n}))

for all n\in \mathrm{N}, where r\in(0, \infty) , \{$\alpha$_{n}\}\subset(0,1) and \{$\beta$_{n}\}\subset(0,1) satisfy

0<r\Vert AA^{*}\Vert<(1- $\eta$) , \displaystyle \lim_{n\rightarrow\infty}$\alpha$_{n}=0, \displaystyle \sum_{n=1}^{\infty}$\alpha$_{n}=oo and 0<a\leq$\beta$_{n}\leq b<1

for some a, b\in \mathbb{R} . Then \{x_{n}\} converges strongly to a point z_{0}\in F(T)\cap A^{-1}F(U) , where

z_{0}=P_{F(T)\cap A^{-1}F(U)}u.

Using Theorems 4.1 and 4.2, we get weak and strong convergence theorems which are con‐

nected with the split common fixed point problems in Banach spaces. We also know the

following result from Takahashi, Yao and Kocourek [29]; see also [10].

Lemma 4.3 ([29]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset

of H and let U : C\rightarrow H be generalized hybrid. If x_{n}\rightarrow z and x_{n}-Ux_{n}\rightarrow 0 , then z\in F(U) .

Theorem 4.4. Let H_{1} and H_{2} be Hilbert spaces. Let k be a real number with k\in[0 , 1). Let

T:H_{1}\rightarrow H_{1} be a nonexpansive mapping with  F(T)\neq\emptyset and let  U:H_{2}\rightarrow H_{2} be a k ‐strict

pseud‐contraction with  F(U)\neq\emptyset . Let  A : H_{1}\rightarrow H_{2} be a bounded hnear operator such that

A\neq 0 and let A^{*} be the adjoint operator of A. Suppose  F(T)\cap A^{-1}F(U)\neq\emptyset . For any

 x_{1}=x\in H_{1} , define

x_{n+1}=$\beta$_{n}x_{n}+(1-$\beta$_{n})T(I-rA^{*}J_{F}(A-UA))x_{n}, \forall n\in \mathbb{N},

where \{$\beta$_{n}\}\subset[0 , 1 ] and r\in(0, \infty) satisfy the following:

0<a\leq$\beta$_{n}\leq b<1 and 0<r\Vert AA^{*}\Vert<(1-k)

for some a, b\in \mathbb{R} . Then \{x_{n}\} converges weakly to a point z_{0}\in F(T)\cap A^{-1}F(U) , where

z_{0}=\displaystyle \lim_{n\rightarrow\infty}P_{F(T)\cap A^{-1}F(U)^{X}n}.
Theorem 4.5. Let H be a Hilbert space and let F be a smooth, strictly convex and reflexive
Banach space. Let J_{F} be the duality mapping on F. Let C and D be nonempty, closed and

convex subsets of H and F , respectively. Let P_{C} and P_{D} be the metric projections of H onto

C and F onto D , respectively. Let A : H\rightarrow F be a bounded linear operator such that A\neq 0
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and let A^{*} be the adjoint operator of A. Suppose  C\cap A^{-1}D\neq\emptyset . Let \{u_{n}\} be a sequence in

H such that u_{n}\rightarrow u . For x_{1}=x\in H , let \{x_{n}\}\subset H be a sequence generated by

x_{n+1}=$\beta$_{n}x_{n}+(1-$\beta$_{n})($\alpha$_{n}u_{n}+(1-$\alpha$_{n})P_{C}(x_{n}-rA^{*}J_{F}(I-P_{D})Ax_{n}))

for all n\in \mathrm{N}, where r\in(0, \infty) , \{$\alpha$_{n}\}\subset(0,1) and \{$\beta$_{n}\}\subset(0,1) satisfy

0<r\Vert AA^{*}\Vert<2, \displaystyle \lim_{n\rightarrow\infty}$\alpha$_{n}=0, \displaystyle \sum_{n=1}^{\infty}$\alpha$_{n}=\infty and  0<a\leq$\beta$_{n}\leq b<1

for a, b\in \mathbb{R} . Then \{x_{n}\} converges strongly to a point z_{0}\in C\cap A^{-1}D , where z_{0}=P_{C\cap A^{-1}D}u.

Theorem 4.6. Let H be a Hilbert space and let F be a uniformly convex and smooth Banach

space. Let J_{F} be the duality mapping on F. Let T and B be manmal monotone operators of
H into H and F into F^{*} , respectively. Let Q_{ $\mu$} be the resolvent of T for  $\mu$>0 and let J_{ $\lambda$} be

the metric resolvent of B for  $\lambda$>0 , respectively. Let A:H\rightarrow F be a bounded linear operator
such that A\neq 0 and let A^{*} be the adjoint operator of A. Suppose T^{-1}0\cap A^{-1}(B^{-1}0)\neq\emptyset.
Let \{u_{n}\} be a sequence in H such that u_{n}\rightarrow u . For x_{1}=x\in H , let \{x_{n}\}\subset H be a sequence

generated by

x_{n+1}=$\beta$_{n}x_{n}+(1-$\beta$_{n})($\alpha$_{n}u_{n}+(1-$\alpha$_{n})Q_{ $\mu$}(x_{n}-rA^{*}J_{F}(I-J_{ $\lambda$})Ax_{n}))

for all n\in \mathrm{N}, where r\in(0, \infty) , \{$\alpha$_{n}\}\subset(0,1) and \{$\beta$_{n}\}\subset(0,1) satisfv

0<r\Vert AA^{*}\Vert<2, \displaystyle \lim_{n\rightarrow\infty}$\alpha$_{n}=0, \displaystyle \sum_{n=1}^{\infty}$\alpha$_{n}=\infty and  0<a\leq$\beta$_{n}\leq b<1

for some a, b\in \mathbb{R} . Then \{x_{n}\} converges strongly to a point z_{0}\in T^{-1}0\cap A^{-1}(B^{-1}0) , where

z_{0}=P_{T^{-1}0\cap A-1}(-1.
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