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Abstract. In this article, motivated by split feasibility problems and split common null
point problems in Hilbert spaces, we first introduce the concept of nonlinear operators in
Banach spaces which covers strict pseud-contractions and generalized hybrid mappings in
Hilbert spaces, and the metric projections and the metric resolvents in Banach spaces. Then
we consider split common fixed point problems with the operators in Banach spaces. Using
hybrid methods, Mann’s type iterations and Halpern’s type iterations, we prove weak and
strong convergence theorems for finding solutions of split common fixed point problems in
Banach spaces. Furthermore, using these results, we get well-known and new results which
are connected with split feasibility problems and split common null point problems in Banach
spaces.
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1 Introduction

Let H; and Hs be two real Hilbert spaces. Let D and @@ be nonempty, closed and convex
subsets of H; and Hs, respectively. Let A : H; — Hs be a bounded linear operator. Then the
split feasibility problem [7) is to find z € H; such that z € DNA~1Q. Byrne, Censor, Gibali and
Reich [6] also considered the following problem: Given set-valued mappings A : H; — 281,
and B : Hy — 292 respectively, and a bounded linear operator T : H; — H,, the split
common null point problem is to find a point z € H; such that

z€ A7'0n B0,

where A~10 and B0 are null point sets of A and B, respectively. Defining U = A*(I— Pp)A
in the split feasibility problem, we have that U : H; — H; is an inverse strongly monotone
operator [1], where A* is the adjoint operator of A and Py is the metric projection of Hs onto



Q. Furthermore, if D N A~1Q is nonempty, then z € DN A~1Q is equivalent to
z= PD(I - )\A*(I - PQ)A)Z,

where A > 0 and Pp is the metric projection of H; onto D. By using such results regarding
nonlinear operators and fixed points, many authors have studied split feasibility problems and
split common null point problems in Hilbert spaces, for instance, [1, 6, 8, 28].

In this article, motivated by split feasibility problems and split common null point problems
in Hilbert spaces, we first introduce the concept of nonlinear operators in Banach spaces which
covers strict pseud-contractions and generalized hybrid mappings in Hilbert spaces, and the
metric projections and the metric resolvents in Banach spaces. Then we consider split common
fixed point problems with the operators in Banach spaces. Using hybrid methods, Mann’s type
iterations and Halpern’s type iterations, we prove weak and strong convergence theorems for
finding solutions of split common fixed point problems in Banach spaces. Furthermore, using
these results, we get well-known and new results which are connected with split feasibility
problems and split common null point problems in Banach spaces.

2  Preliminaries

Let E be a real Banach space with norm || - || and let E* be the dual space of E. We denote
the value of y* € E* at z € E by (z,y*). When {z,} is a sequence in E, we denote the strong
convergence of {z,} to z € E by x, — z and the weak convergence by z,, — z. The modulus
0 of convexity of F is defined by

. T+
o0 =int {1~ 125 caf < 1,11 < 1 - w12 ]

for every e with 0 < ¢ < 2. A Banach space E is said to be uniformly convex if §(¢) > 0
for every € > 0. A uniformly convex Banach space is strictly convex and reflexive. We also
know that a uniformly convex Banach space has the Kadec-Klee property, that is, z, — u
and ||z, || = ||u|| imply z, — u.

The duality mapping J from E into 2E” is defined by

Jz ={z* € E* : (z,2") = |lz||” = |]=*|*}

for every x € E. Let U = {z € E : ||z|| = 1}. The norm of FE is said to be Gateaux
differentiable if for each z,y € U, the limit

ozt tyl = |a
t—0 t

exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single-
valued mapping of E into E*. We also know that F is reflexive if and only if J is surjective,
and F is strictly convex if and only if J is one-to-one. Therefore, if F is a smooth, strictly
convex and reflexive Banach space, then J is a single-valued bijection and in this case, the
inverse mapping J~! coincides with the duality mapping J, on E*. For more details, see [18]
and [19]. We know the following result:
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Lemma 2.1 ([18]). Let E be a smooth Banach space and let J be the duality mapping on
E. Then, {(x —y,Jz — Jy) > 0 for all z,y € E. Furthermore, if E is strictly convezx and
(z—y,Jr— Jy) =0, then z = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach
space E. Then we know that for any x € E, there exists a unique element z € C such that
|z — 2|| < ||z — y| for all y € C. Putting z = Pox, we call such a mapping Po the metric
projection of E onto C.

Lemma 2.2 ([18]). Let E be a smooth, strictly convex and reflexive Banach space. Let C be
a nonemply, closed and convex subset of E and let x1 € E and z € C. Then, the following
conditions are equivalent:

(1) z = Poxy;
(2) (z—y,J(z1—2)) >0, VyeC.

Let E be a Banach space and let A be a mapping of F into 2E”. The effective domain of A
is denoted by dom(A), that is, dom(A) = {z € F : Az # #}. A multi-valued mapping A on
E is said to be monotone if (z — y, u* —v*) > 0 for all z,y € dom(A), u* € Az, and v* € Ay.
A monotone operator A on F is said to be maximal if its graph is not properly contained in
the graph of any other monotone operator on E. The following theorem is due to Browder
[4]; see also [19, Theorem 3.5.4].

Theorem 2.3 ([4]). Let E be a uniformly convex and smooth Banach space and let J be
the duality mapping of E into E*. Let A be a monotone operator of E into 2. Then A is
mazimal if and only if for any r > 0, R(J+rA) = E*, where R(J+71A) is the range of J+rA.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm and let A
be a maximal monotone operator of E into 2E”. For all z € E and r > 0, we consider the
following equation 0 € J(z, — z) + rAz,. This equation has a unique solution z,. We define
Jr by z, = Jrz. Such J,.,7 > 0 are called the metric resolvents of A. The set of null points of
A is defined by A~'0={z € E: 0 € Az}. We know that A0 is closed and convex; see [19].

For a sequence {C,} of nonempty, closed and convex subsets of a Banach space E, define
s-Li,, Cp, and w-Ls,, Cy, as follows: = € s-Li, C,, if and only if there exists {z,} C F such that
{z,} converges strongly to z and z,, € C, for all n € N. Similarly, y € w-Ls,, C,, if and only
if there exist a subsequence {Cy,} of {C,} and a sequence {y;} C E such that {y;} converges
weakly to y and y; € Cy, for all i € N. If Cy satisfies

Co = sLiC, = w-LsC,,
n n

it is said that {C,} converges to Cp in the sense of Mosco [14] and we write Cp =
M-lim,,_,oc Cp. It is easy to show that if {C,,} is nonincreasing with respect to inclusion, then
{Cy} converges to (-, Cy in the sense of Mosco. For more details, see [14]. The following
lemma was proved by Tsukada [30].

Lemma 2.4 ([30]). Let E be a uniformly convex Banach space. Let {C,} be a sequence
of nonempty, closed and convexr subsets of E. If Cy =M-lim,,_,, C, erists and nonempty,
then for each x € E, {Pc,x} converges strongly to Pg,z, where Pc, and Pg, are the mertic
projections of E onto C,, and Cy, respectively.

120



3 lterative Results by Hybrid Methods

Let E be a smooth, strictly convex and reflexive Banach space and let 7 be a real number
with 7 € (—oc0,1). Then a mapping U : E — E with F(U) # 0 is called n-demimetric [22] if,
for any z € E and ¢q € F(U),

1—
(¢ =g, J(@ = Ua)) = — "o - Ual?,
where F(U) is the set of fixed points of U.
Examples. We know examples of 7-demimetric mappings from [22].

(1) Let H be a Hilbert space and let k be a real number with 0 < k < 1. Let U be a strict
pseud-contraction [5] of H into itself such that F(U) # @. Then U is k-demimetric.

(2) Let H be a Hilbert space and let C' be a nonempty subset of H. A mappingU : C — H
is called generalized hybrid [10] if there exist «, 8 € R such that

alUz — Uyll* + (1 - a)llz - Uy|® < BllUz — y[> + (1 = B)llz ~ y|?, Vz,y € H.

Such a mapping U is called (e, §)-generalized hybrid. If U is generalized hybrid and F(U) # 0,
then U is O-demimetric.

(3) Let E be a strictly convex, reflexive and smooth Banach space and let C be a nonempty,
closed and convex subset of E. Let Pc be the metric projection of F onto C. Then P¢ is
(—1)-demimetric.

(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone
operator with B=10 # 0. Let A > 0. Then the metric resolvent Jy is (—1)-demimetric.

Furthermore, we know an important result for demimetric mappings in a smooth, strictly
convex and reflexive Banach space.

Lemma 3.1 ([22]). Let E be a smooth, strictly convez and reflexive Banach space and let
be a real number with n € (—o00,1). Let U be an n-demimetric mapping of E into itself. Then
F(U) is closed and convez.

Using the hybrid methods in mathematical programming, we prove two strong convergence
theorems for finding a solution of the split common fixed point problem. in Banach spaces.
Let E be a Banach space and let D be a nonempty, closed and convex subset of E. A
mapping U : D — E is called demiclosed if for a sequence {z,} in D such that z, — p and
%y — Uzyp — 0, p = Up holds. The following theorems are proved by Takahashi [23].

Theorem 3.2 ([23]). Let E and F be uniformly conver and smooth Banach spaces and let
JEg and Jr be the duality mappings on E and F, respectively. Let T and n be real numbers
with 7,n € (—o00,1). Let T : E — E be a T-demimetric and demiclosed mapping and let
U:F — F be an n-demimetric and demiclosed mapping with F(U) # (. Let A: E — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A. Suppose
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that F(T)NA7YF(U) # 0. Let x1 € E and let {z,} be a sequence generated by

(zn =z, — rJg' A*Jp(Az, — UAz,),
Yn = T2y,
Cn={2€E:(2n—2Jp(@n—2)) > 0}1
Dn={2€ E:2(zn—2,Jp(2n —yn)) = (1 —7)||2n - ynllz},
Qrn={2€ E: (x, — 2,Jg(z1 — z,)) > 0},
 Zn+1 = PC,,nD..nQnml, Vn € N,

where 0 < 2r||A|> < (1 —n). Then {z,} converges strongly to a point 2z, € F(T)N A~ F(U),
where z = PF(T)nA-lF(U)a;l-

Theorem 3.3 ([23]). Let E and F be uniformly conver and smooth Banach spaces and let
Jg and Jp be the duality mappings on E and F, respectively. Let T and n be real numbers
with 7,n € (—00,1). Let T : E — E be a T-demimetric and demiclosed mapping and let
U:F — F be an n-demimetric and demiclosed mapping with F(U) # 0. Let A: E — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A. Suppose
that F(T) N A™YF(U) # 0. For z1 € E and C, = E, let {z,} be a sequence generated by

Zp = Tp — rJElA*Jp(Aa:n —UAz,),
Yn = Tzp,
Crt1={2€ Cpn : (zn — 2, Je(Trn, — z,)) > 0}
and  2(zn ~ 2, Jg(2n — Yn)) > (1 = 7)|2n — ynllz}a
Tnt1 = PCn_H-Tla Vn € N,

where 0 < 27| A||? < (1 —n). Then {z,} converges strongly to a point z, € F(T)NA—1F(U),
where z] = PF(T)ﬁA—lF(U)xl-
Using Theorems 3.2 and 3.3, we get strong convergence theorems which are connected

with the split common fixed point problems in Banach spaces. We know the following result
obtained by Marino and Xu [13]; see also [27].

Lemma 3.4 ([13]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset
of H and k be a real number with0 < k < 1. Let U : C — H be a k-strict pseudo-contraction.
If zp, — z and z, — Uz, — 0, then z € F(U).

Theorem 3.5. Let Hy and Hy be Hilbert spaces. Let k be a real number with k € [0,1). Let
T : Hy — H; be a nonexpansive mapping and let U : Hy — Hy be a k-strict pseud-contraction
with F(U) # 0. Let A: Hy — H; be a bounded linear operator such that A # 0 and let A* be
the adjoint operator of A. Suppose that F(T)NA™1F(U) # 0. Let x; € Hy and let {z,} be a
sequence generated by

(2 = Tp, — TA*(Azn, — UAzy),

Yn = T'zp,

Cn={z€ Hy: {2 — 2,Tpn — 25) > 0},

Dy ={z € H1: 2(zn — 2,20 — Yn) > |20 — yn|*},
Qn={z€ Hy:(zn— 2,21 —z,) >0},

\Tn+1 = Pc,0D.nQ,T1, VN €N,
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where 0 < 2r||A||2 < (1 — k). Then {z,} converges strongly to a point z; € F(T)NA~F(U),
where 21 = PF(T)nA—lp(U).’L‘l .

Theorem 3.6. Let E and F be uniformly conver and smooth Banach spaces and let Jg and
Jr be the duality mappings on E and F, respectively. Let C and D be nonempty, closed and
convez subsets of E and F', respectively. Let Po and Pp be the metric projections of E onto C
and F onto D, respectively. Let A: E — F be a bounded linear operator such that A # 0 and
let A* be the adjoint operator of A. Suppose that CNA™'D # 0. Forz; € E and C, = E, let
{zn} be a sequence generated by

Zp = Tp — rngA*JF(A:cn — PpAz,),
Yn = Pon,
Cot1={2€Cn: (2n — 2, Jp(Tn — zn)) > 0}
and (20 — 2, JE(2n — yn)) > ||lzn — ynll*},
T4l = PCn+1$1’ Vn €N,

where 0 < 7||A|? < 1. Then {z,} converges strongly to a point z; € C N A~'D, where
21 = Pona-1p®1.

Theorem 3.7. Let E and F be uniformly conver and smooth Banach spaces and let Jg and
Jr be the duality mappings on E and F, respectively. Let G and B be mazimal monotone
operators of E into E* and F into F*, respectively. Let Jy and Q,, be the metric resolvents of
G for A > 0 and B for p > 0, respectively. Let A : E — F be a bounded linear operator such
that A # 0 and let A* be the adjoint operator of A. Suppose that G0N A=1(B~10) # @. For
z1 € E and Cy = E, let {z,} be a sequence generated by

Zn = Tp — TJE-IA*JF(AiL'n - QuAzy),
Yn = JIZn,
Cry1={2€Cp: (2n — 2, Je(Tn — 2z,)) > 0}
and <zn — 2 JE(zn - yn)) > “zn - ynllg}a
Tnt+1 = FPo,., 71, VYn €N,

where 0 < r||A[|2 < 1 and A\, > 0. Then the sequence {x,} converges strongly to a point
2 € G_IOOA_I(B"IO), where z1 = Pg—1(mA—1(B—10)£I:1.

4 [terative Results by Mann and Halpern lterations

In this section, we first prove a weak convergence theorem [24] of Mann’s type iteration for
the split common fixed point problem in Banach spaces.

Theorem 4.1 ([24]). Let H be a Hilbert space and let F' be a smooth, strictly convez and
smooth Banach space. Let Jp be the duality mapping on F' and let n be a real number with n €
(—00,1). Let T : H — H be a nonezpansive mapping and let U : F — F be an n-demimetric
and demiclosed mapping with F(U) # 0. Let A: H — F be a bounded linear operator such
that A # 0 and let A* be the adjoint operator of A. Suppose F(T)N A~1F(U) # (. For any
1 = € H, define

Tyl = PnTn + (1 — ﬂn)T(I —rA*Jrp(A - UA))wn, Vn € N,

123



where {B,} C [0,1] and r € (0,00) satisfy the following:
0<a<pBp<b<l and 0<r|AA"| < (1—-n)

for some a,b € R. Then {z,} converges weakly to a point 2o € F(T) N A~1F(U), where
20 = limy—s00 Pp(T)na-1 FU)Tn-

Next, we prove a strong convergence theorem [24] of Halpern’s type iteration for the split
common fixed point problem in Banach spaces.

Theorem 4.2 ([24]). Let H be a Hilbert space and let F be a smooth, strictly conver and
smooth Banach space. Let Jr be the duality mapping on F' and let 1) be a real number with n €
(—00,1). Let T : H — H be a nonezpansive mapping and let U : F — F be an n-demimetric
and demiclosed mapping with F(U) # 0. Let A: H — F be a bounded linear operator such
that A # 0 and let A* be the adjoint operator of A. Suppose F(T)N A F(U) # 0. Let {u,}
be a sequence in H such that u, — u. For z1 =z € H, let {z,} C H be a sequence generated
by
Tn41 = Bnn + (1= Bn) (antn + (1 — an)T(zn — rA*Jp(I — U)Az,,))

for all n € N, where r € (0,00), {an} C (0,1) and {B,} C (0,1) satisfy

o
0<r||AAY|| < (1 —n), Jgrgoan=0, Zlan=oo and 0<a<pfB,<b<1
n=
for some a,b € R. Then {z,} converges strongly to a point zg € F(T) N A~*F(U), where
20 = PF(T)nA—lF(U)U-
Using Theorems 4.1 and 4.2, we get weak and strong convergence theorems which are con-

nected with the split common fixed point problems in Banach spaces. We also know the
following result from Takahashi, Yao and Kocourek [29]; see also [10].

Lemma 4.3 ([29]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset
of H and let U : C — H be generalized hybrid. If z,, = z and £, — Uz, — 0, then z € F(U).

Theorem 4.4. Let Hy and Hy be Hilbert spaces. Let k be a real number with k € [0,1). Let
T : Hy — Hy be a nonexpansive mapping with F(T) # 0 and let U : Hy — Ha be a k-strict
pseud-contraction with F(U) # 0. Let A : Hy — Hy be a bounded linear operator such that
A # 0 and let A* be the adjoint operator of A. Suppose F(T) N A~1F(U) # 0. For any
x1 =T € Hy, define

Znt1 = Bnn + (1 — ,Bn)T(I —rA*Jr(A - UA))zn, Vn € N,
where {Br} C [0,1] and r € (0,00) satisfy the following:
0<a<pB,<b<1l and 0<r||AA*|| <(1-k)
for some a,b € R. Then {z,} converges weakly to a point 20 € F(T) N A~1F(U), where

29 = limp—00 Pr(Tyna-1F(U) Tn-

Theorem 4.5. Let H be a Hilbert space and let F' be a smooth, strictly convex and reflexive
Banach space. Let Jr be the duality mapping on F. Let C and D be nonempty, closed and
convez subsets of H and F, respectively. Let Pc and Pp be the metric projections of H onto
C and F onto D, respectively. Let A: H — F be a bounded linear operator such that A # 0
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and let A* be the adjoint operator of A. Suppose C N A™1D # (. Let {u,} be a sequence in
H such that u, — u. For xy =z € H, let {z,} C H be a sequence generated by

Tnt1 = Ppn + (1 - ﬂn) (anun + (1 - an)PC(xn - TA*JF(I - PD)Amn))

for all n € N, where r € (0,00), {an} C (0,1) and {Br} C (0,1) satisfy

o0
0<r|AA*|<2, lim ap=0, Y on=00 and 0<a<fn<b<l
n—r00

n=1
for a,b € R. Then {z,} converges strongly to a point 2o € CNA~1D, where zg = Pona-1pu.

Theorem 4.6. Let H be a Hilbert space and let F be a uniformly convex and smooth Banach
space. Let Jp be the duality mapping on F. Let T and B be mazimal monotone operators of
H into H and F into F*, respectively. Let Q, be the resolvent of T for p > 0 and let J be
the metric resolvent of B for A > 0, respectively. Let A: H — F be a bounded linear operator
such that A # 0 and let A* be the adjoint operator of A. Suppose T~10N A~*(B~10) # 0.
Let {un} be a sequence in H such that u, — u. Forzy =z € H, let {z,} C H be a sequence
generated by

Tpt1 = Bnn + (1 - B’n) (anun + (1 - an)Qu(zn - TA*JF(I - J,\)A(I:n))
for all n € N, where r € (0,00), {an} C (0,1) and {B,} C (0,1) satisfy

o0
0<r|Ad*|| <2, Jgngoanzo, Zanzoo and 0<a<pB,<b<1

n=1

for some a,b € R. Then {z,} converges strongly to a point 29 € T~*0N A~1(B~10), where
20 = PT-lonA—1(B—10)u.

References

[1] S. M. Alsulami and W. Takahashi, The split common null point problem for mazimal
monotone mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal. 15
(2014), 793-808.

[2] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approzimation of common fized
points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal.
67 (2007), 2350-2360.

[3] K. Aoyama, F. Kohsaka and W. Takahashi, Three generalizations of firmly nonexpan-
sive mappings: Their relations and continuous properties, J. Nonlinear Convex Anal. 10
(2009), 131-147.

[4] F. E. Browder, Nonlinear mazimal monotone operators in Banach spaces, Math. Ann.
175 (1968), 89-113.

(5] F. E. Browder and W. V. Petryshyn, Construction of fized points of nonlinear mappings
in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.

[6] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J.
Nonlinear Convex Anal. 13 (2012), 759-775.

[7) Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a
product space, Numer. Algorithms 8 (1994), 221-239.



[8] Y. Censor and A. Segal, The split common fized-point problem for directed operators, J.
Convex Anal. 16 (2009), 587—600.

[9] B. Halpern, Fized points of nonezpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-
961.

[10] P. Kocourek, W. Takahashi and J.-C. Yao, Fized point theorems and weak convergence
theorems for genelalized hybrid mappings in Hilbert space, Taiwanese J. Math. 14 (2010),
2497-2511.

[11] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and
nonstrictly conver minimization, Set-Valued Anal. 16 (2008), 899-912.

(12] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.

[13] G. Marino and H.-K. Xu, Weak and strong convergence theorems for strich pseudo-
contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.

[14] U. Mosco, Convergence of convez sets and of solutions of variational inequalities, Adv.
Math. 3 (1969), 510-585.

[15] K. Nakajo and W. Takahashi, Strong convergence theorems for nonezpansive mappings
and nonezpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379.

[16] S. Ohsawa and W. Takahashi, Strong convergence theorems for resolvents of mazimal
monotone operators in Banach spaces, Arch. Math. (Basel) 81 (2003), 439-445.

[17] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of prozimal point iterations
in a Hilbert space, Math. Programming Ser. A. 87 (2000), 189-202.

[18] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

[19] W. Takahashi, Convexr Analysis and Approzimation of Fized Points (Japanese), Yoko-
hama, Publishers, Yokohama, 2000.

[20] W. Takahashi, The split feasibility problem in Banach spaces, J. Nonlinear Convex Anal.
15 (2014), 1349-1355.

[21] W. Takahashi, The split common null point problem in Banach spaces, Arch. Math.
(Basel) 104 (2015), 357-365.

[22] W. Takahashi, The split common fized point problem and the shrinking projection method
in Banach spaces, J. Convex Anal., to appear.

[23] W. Takahashi, The split common fixed point problem and strong convegence theorems
by hybrid methods in Banach spaces, to appear.

[24] W. Takahashi, Mann and Halpern iterations for the split common fixed point problem in
Banach spaces, to appear.

[25] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid meth-
ods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341
(2008), 276-286.

[26] W. Takahashi and M. Toyoda, Weak convergence theorems for nonezpansive mappings
and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.

[27) W. Takahashi, N.-C. Wong and J.-C. Yao, Weak and strong mean convergence theorems
for extended hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 12 (2011),
553-575.

[28] W. Takahashi, H-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility
problems in Hilbert spaces, Set-Valued Var. Anal. 23 (2015), 205-221.

[29] W. Takahashi, J.-C. Yao and P. Kocourek, Weak and strong convergence theorems for gen-
eralized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010),
567-586.

[30] M. Tsukada, Convergence of best approrimations in a smooth Banach space, J. Approx.
Theory 40 (1984), 301-309.

126



