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1. INTRODUCTION

Let ( $\Omega$,\mathcal{A}, m) be a positive measure space. For 1\leq p<\infty, IP denotes the

space of measurable functions f on  $\Omega$ for which \displaystyle \int_{ $\Omega$}|f|^{\mathrm{p}}dm<\infty and  L^{\infty} denotes

the space of essentially‐bounded measurable functions on  $\Omega$ . A lot of effort has

been devoted to the study of pointwise ergodic theorems for linear operators on  L^{1}.
The classical pointwise ergodic theorem is due to Hopf: If m is finite and T is a

positive linear operator on L^{1} with \Vert T\Vert\leq 1 and T\mathrm{l}=1
, then for each f\in L^{1} , the

limit \displaystyle \lim_{n\rightarrow\infty}n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(w) exists almost everywhere on  $\Omega$ . Meanwhile, the

problem concerning non‐linear operators in  L^{1} has been ignored. It is, however,
known that in [11], Krengel constructed an order‐preserving non‐linear operator T

in L^{1} with T0=0 which is nonexpansive in L^{p} for  1\leq p\leq\infty and a bounded

function  f^{*}\geq 0 such that the Cesàro means n^{-1}\displaystyle \sum_{k=0}^{n-1}(T^{k}f^{*})(w) diverge on a set

of positive measure, concluding that the theorem of Hopf fails to extend to non‐

linear operators in L^{1}
, although the possibility of positive results for specific classes

of non‐linear operators remains.

In this paper, we summarize the arguments presented in [17] about almost ev‐

erywhere convergence of ergodic averages of order‐preserving operators on L^{1} . We

first give an elementary proof for the theorem of Hopf in the sense that it receives

a general treatment in the context of fixed point theory and the theory of means

on semigroups. The argument allows us to show a pointwise ergodic theorem for

certain order‐preserving operators on L^{1}.

2. PRELIMINARIES

Throughout the paper, let \mathbb{N}, \mathrm{N}+ and \mathbb{R} denote the set of positive integers, the

set of non‐negative integers and the set of real numbers, respectively. Let \{E, F\}
be the duality between vector spaces E and F over \mathbb{R} . For each y\in F , we define

a linear form f_{y} on E by f_{y}(x)=\langle x, y\rangle(x\in E) . Then,  $\sigma$(E, F) denotes the

weak topology on E generated by the family \{f_{y} : y\in F\} and  $\tau$(E, F) denotes

the Mackey topology on E with respect to \langle E,  F\rangle , that is, the topology of uniform

convergence on the circled, convex,  $\sigma$(F, E)‐compact subsets of F . Let (E,\mathfrak{T}) be

a locally convex space. Then, the topological dual of E is denoted by E' . The

bilinear form (x, f)\mapsto f(x) on E\times E' defines a duality \{E, E The weak topology
 $\sigma$(E, E') on E generated by E' is called the weak topology of E (associated with

\mathfrak{T} if this distinction is necessary). The topological dual of E under the Mackey
topology \prime r(E', E) is denoted by E_{ $\tau$}'.

The vector space of bounded sequences x=(x_{n})_{n\geq 0} of real numbers is denoted

by l^{\infty} ; under the norm x=(x_{n})\displaystyle \mapsto\Vert x\Vert=\sup_{n\geq 0}|x_{n}|,  $\iota$\infty is a Banach space. \mathrm{A}

linear functional  $\mu$ on  l^{\infty} is said to be a mean on \mathrm{N}_{+} if \Vert $\mu$\Vert= $\mu$(e)=1 , where

e_{n}=1 for each  n\in \mathrm{N}+\cdot For each  k\in \mathrm{N}+ , we define a point evaluation  $\delta$(k) by
 $\delta$(k)x=x_{k} for each x\in l^{\infty} . A convex combination of point evaluations is called
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a finite mean on \mathbb{N}_{+} . As is well known, a linear functional  $\mu$ on  l^{\infty} is a mean on

\mathbb{N}+\mathrm{i}\mathrm{f} and only if \displaystyle \inf_{n\geq 0}x_{n}\leq $\mu$(x)\leq\sup_{n>0}x_{n} for each x\in l^{\infty} . If  $\mu$ is a mean on

\mathrm{N}+ and x\in l^{\infty} , then we often write $\mu$_{n}(x_{n}\overline{)} for the value  $\mu$(x) . A mean  $\mu$ on \mathbb{N}_{+} is

said to be a Banach limit if $\mu$_{n}(x_{n})=$\mu$_{n}(x_{n+1}) for each x\in l^{\infty} ; for more details,
see [2, 24].

Let E be a locally convex space and let  $\mu$ be a mean on \mathbb{N}+\cdot We denote by
 l_{c}^{\infty}(E) the vector space of sequences x=(x_{n})_{n\geq 0} of elements of E for which the

closure of convex hull of \{x_{n} : n=0, 1, . . .\} is weakly compact; for each x\in l_{c}^{\infty}(E) ,

the closed, convex circled hull of \{x_{n} : n=0, 1, . . .\} is also weakly compact.
For each x\in l_{c}^{\infty}(E) , we define a continuous linear functional  $\tau$( $\mu$)x on E_{ $\tau$}' by
 $\tau$( $\mu$)x : x'\mapsto$\mu$_{n}\langle x_{n},  x'\rangle for each  x'\in E' . Then, it follows from the separation
theorem that  $\tau$( $\mu$)x is an element of E and is contained in the closure of convex

hull of \{x_{n} : n=0, 1, \cdots\} . We denote by  $\tau$( $\mu$) the linear operator of l_{c}^{\infty}(E)
into E that assigns to each x\in l_{c}^{\infty}(E) a unique element  $\tau$( $\mu$)x of E such that

$\mu$_{n}\{x_{n}, x'\}=\langle $\tau$( $\mu$)x, x'\} for each x'\in E' . The operator  $\tau$( $\mu$) is called the vector‐

valued mean on \mathrm{N}+ (generated by  $\mu$ if explicit reference to  $\mu$ is needed); for details,
see [23, 24, 8, 16]. Note that it is also a vector‐valued mean in the sense of Goldberg
and Irwin [6]. An  x\in l_{c}^{\infty}(E) is said to have the mean value if there exists an element

p of E such that p= $\tau$( $\mu$)x for each Banach limit  $\mu$ . The element  p is called the

mean value of x ; see [19, 13, 2].
Let C be a closed convex subset of a locally convex space E

, let T be a mapping
of C into itself and let  $\mu$ be a mean on \mathrm{N}_{+} . If x\in C , then \mathcal{O}(x) denotes the orbit of

x under T , that is, the set \{T^{n}x : n=0, 1, \cdots\} . We suppose that for some x\in C,
the closure of convex hull of \mathcal{O}(x) is weakly compact. Putting  $\phi$(x)=(T^{n}x)_{n\geq 0},
we simply write T( $\mu$)x in place of  $\tau$( $\mu$)( $\phi$(x)) . An element p of E is said to be the

mean value of x under T if p is the mean value of  $\phi$(x) , that is, p=T( $\mu$)x for each

Banach limit  $\mu$ . Whenever the closure of convex hull of \mathcal{O}(x) is weakly compact for

each x\in C , we denote by T( $\mu$) the mapping of C into itself that assigns to each

x\in C a unique element T( $\mu$)x of C such that $\mu$_{n}\langle T^{n}x,x' } =\langle T( $\mu$)x, x' } for each

x'\in E' , and T is said to have the mean values on C if for each x\in C , there exists

the mean value of x under T ; see [21, 14].
Throughout the paper, let ( $\Omega$, \mathcal{A}, m) denote a positive measure space with  $\sigma$-

algebra A and measure m , and let \mathcal{F} denote the family of measurable subsets of  $\Omega$

with finite measure. Then, \mathcal{F} is ordered by set inclusion in the sense that E is less

than F(E, F\in \mathcal{F}) if and only if E\subset F , so that each finite subset of \mathcal{F} has the least

upper bound. For  1\leq p<\infty , let  L^{p} denote the space of measurable functions f on

 $\Omega$ for which \displaystyle \Vert f\Vert_{p}=(\int_{ $\Omega$}|f|^{p}dm)^{\frac{1}{\mathrm{p}}}<\infty and let  L^{\infty} denote the space of measurable

functions f on  $\Omega$ for which \displaystyle \Vert f\Vert_{\infty}=\inf_{N}\sup_{w\in $\Omega$\backslash N}|f(w)|<\infty , where  N ranges
over the null subsets of  $\Omega$ . For  1\leq p\leq\infty , the topology on  L^{p} generated by the

metric (f, g)\mapsto\Vert f-g\Vert_{p} is sometimes called the L^{p}‐norm topology and L^{p} is ordered

by defining f\leq g(f,g\in L^{p}) to mean that f(x)\leq g(x) almost everywhere on  $\Omega$,
so that IP becomes a Banach lattice. Let T be an operator on L^{1} . Then, T is said

to be order‐preserving if f\leq g(f, g\in L^{1}) implies Tf\leq Tg . Whenever T is linear,
T is order‐preserving if and only if T is positive. For each f\in L^{1} , a measurable

function M_{\infty}f on  $\Omega$ is defined by (M_{\infty}f)(s)=\displaystyle \sup_{n\geq 1}n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(s)(s\in $\Omega$) .

Let \mathcal{L}_{loc}^{1} be the vector space of measurable functions f on  $\Omega$ for which \Vert f\Vert_{E,1}=
\displaystyle \int_{E}|f|dm<\infty for each  E\in \mathcal{F} and let \mathcal{N}_{lo\mathrm{c}} be the vector subspace of \mathcal{L}_{loc}^{1} consisting
of measurable functions f on  $\Omega$ for which \Vert f\Vert_{E,1}=0 for each E\in \mathcal{F} . If [f] denotes

the equivalence class of an f\in \mathcal{L}_{loc}^{1} mod \mathcal{N}_{lo\mathrm{c}} , then [f]=[g](f,g\in \mathcal{L}_{loc}^{1}) means

that f(x)=g(x) almost everywhere on E for each E\in \mathcal{F} . Whenever m is  $\sigma$-

finite, [f]=[g](f, g\in \mathcal{L}_{loc}^{1}) if and only if f(x)=g(x) almost everywhere on  $\Omega$.

In the sequel, we shall assume that the measure space ( $\Omega$, \mathcal{A}, m) is  $\sigma$ ‐finite unless
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explicitly specified. For each  E\in \mathcal{F}, [f]\mapsto\Vert f\Vert_{E,1} is a semi‐norm on the quotient
space \mathcal{L}_{loc}^{1}/\mathcal{N}_{loc} , which becomes a locally convex space, denoted by L_{loc}^{1} , under

the separated locally convex topology generated by the semi‐norms [f]\mapsto\Vert f\Vert_{E,1}
(E\in \mathcal{F}) . Every element of L_{loc}^{1} is considered as a measurable function f on  $\Omega$ for

which \Vert f\Vert_{E,1}<\infty for each  E\in if no confusion will occur. If  m is finite, then L_{loc}^{1}
equals L^{1} . Note that L^{1} is a dense subspace of L_{loc}^{1} and hence L^{1} itself is a locally
convex space in which the family of sets of the form U(E;r)=\{f\in L^{1} : \Vert f\Vert_{E,1}<r\}
(E\in \mathcal{F}, r>0) is a neighborhood base at 0 for the separated locally convex topology

 $\tau$ on  L^{1} . If a subset C of L^{1} is uniformly integrable and bounded relative to the

L^{1} ‐norm topology, then C is relatively (sequentially) compact relative to the weak

topology of L^{1} associated with  $\tau$ ; for details, see also [16, 18]. In the sequel,  L^{1} is

assumed to be a Banach space unless explicitly specified.
Let C be a closed convex subset of a Banach space and let T be a mapping

of C into itself. If x\in C , then  $\omega$(x) denotes the set of weak cluster points of

\{T^{n}x : n=0, 1, . . .\} . An element p of C is said to be a fixed point of T if Tp=p.
If \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for each  x, y\in C , then T is said to be nonexpansive. Let

D be a subset of C . If for each x, y\in D , the limit \displaystyle \lim_{n\rightarrow\infty}\Vert T^{n+h}x-T^{n+k}y\Vert exists

uniformly in  h, k\in \mathrm{N}+ , then T is called asymptotically isometric on D . Let T be

a nonexpansive mapping of C into itself. Then, T is said to be almost periodic at

an x\in C if the orbit \mathcal{O}(x) of x under T is relatively compact. If for each x\in C, T

is almost periodic at x , then T is called almost periodic; for details, see [14]. Let

\{x_{n}\} be a sequence of E and let x\in E . Then, x_{n} is said to converge strongly to x

if \Vert x_{n}-x\Vert\rightarrow 0 as  n\rightarrow\infty . If  A is a subset of E , then \overline{\mathrm{c}\mathrm{o}}A denotes the closure of

convex hull of A.

3. ALMOST EVERYWHERE CONVERGENCE OF ERGODIC AVERAGES FOR LINEAR

OPERATORS

In this section, we give an alternative proof for the classical pointwise ergodic
theorem of Hopf in the context of fixed point theory and the theory of means on

semigroups by means of the maximal ergodic theorem of Hopf.
The following result is well known as the mean ergodic theorem for linear oper‐

ators on Banach spaces; see also [24].

Theorem 1 (Kakutani and Yosida). Let E be a Banach space and let T be a linear

operator on E with \Vert T\Vert\leq 1 . If for some x\in E , the orbit \mathcal{O}(x) of x under T\dot{u}

relatively weakly compact, then the Cesàro means n^{-1}\displaystyle \sum_{k=0}^{n-1}T^{k}x converge strongly
to a fixed point p of T. In this case, p=T( $\mu$)x for each Banach limit  $\mu$.

Proposition 1. Let T be an operator on L^{1} . Iffor some f\in L^{1} , the Cesàro means

n^{-1}\displaystyle \sum_{k=0}^{n-1}T^{k}f
converge strongly or in the separated locally convex topology on L^{1} generated by the

semi‐norms f\mapsto\Vert f\Vert_{E,1}(E\in \mathcal{F}) , then there exists a Banach limit  $\mu$ such that

 T( $\mu$)f is well‐defined and

\displaystyle \lim_{n\rightarrow}\inf_{\infty}n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(s)\leq(T( $\mu$)f)(s)\leq\lim\sup n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(s)n\rightarrow\infty
a.e.  on $\Omega$.

Remark 1. It is suggested in Proposition 1 that the function T( $\mu$)f is a candi‐

date for the limit function in almost everywhere convergence of the Cesàro means
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n^{-1}\displaystyle \sum_{k=0}^{n-1}T^{k}f . It suffices to show

\displaystyle \lim_{n\rightarrow}\sup_{\infty}(n^{-1}\sum_{k=0}^{n-1}T^{k}f-T( $\mu$)f)\leq 0 and \displaystyle \lim_{n\rightarrow}\sup_{\infty}(T( $\mu$)f-n^{-1}\sum_{k=0}^{n-1}T^{k}f)\leq 0
a.e. on  $\Omega$ in order to prove that \displaystyle \lim_{n\rightarrow\infty}n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(s)=(T( $\mu$)f)(s) a.e. on

 $\Omega$ under the assumption of Proposition 1.

Lemma 1. Let  T be a linear operator on L^{1} with \Vert Tf\Vert_{\infty}\leq\Vert f\Vert_{\infty}(f\in L^{1}) . Then,
for each f\in L^{1}\cap L^{\infty} and g in the convex hull of the orbit \mathcal{O}(f) of f under T,

\displaystyle \lim_{n\rightarrow\infty}\Vert n^{-1}\sum_{k=0}^{n-1}T^{k}f-n^{-1}\sum_{k=0}^{n-1}T^{k}g\Vert_{\infty}=0.
The following result is a version of the maximal ergodic theorem of Hopf; see

also [10].

Theorem 2. Let T be an order‐preserving operator on L^{1} with \Vert Tf\Vert_{1}\leq\Vert f\Vert_{1}
(f\in L^{1}) such that T(f+g)\geq Tf+Tg and \Vert Tf-Tg\Vert_{\infty}\leq\Vert f-g\Vert_{\infty}(f, g\in L^{1}) .

Then, for each f\in L^{1} and  $\alpha$>0,

m\{M_{\infty}f> $\alpha$\}\leq$\alpha$^{-1}\Vert f\Vert_{1},
where (M_{\infty}f)(s)=\displaystyle \sup_{n\geq 1}n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(s)(s\in $\Omega$) .

The next lemma follows from Lemma 1 and Theorem 2.

Lemma 2. Let T be a positive linear operator on L^{1} with \Vert T\Vert\leq 1 and \Vert Tf\Vert_{\infty}\leq
\Vert f\Vert_{\infty}(f\in L^{1}) . Then, for each f\in L^{1}\cap L^{\infty} and g in the closure K(f) of convex

hull of the orbit \mathcal{O}(f) of f under T,

n^{-1}\displaystyle \sum_{k=0}^{n-1}(T^{k}f)(s)-n^{-1}\sum_{k=0}^{n-1}(T^{k}g)(s)\rightarrow 0
a.e . on  $\Omega$ as  n\rightarrow\infty . Moreover, if  m is finite, then

\displaystyle \lim_{n\rightarrow\infty}n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(s)=(T( $\mu$)f)(s)
a.e . on  $\Omega$ , where  $\mu$ is a Banach limit. In this case,  T( $\mu$)f is a fixed point of T.

Proof. Let f\in L^{1}\cap L^{\infty} and let g\in K(f) . For each n\in \mathbb{N} , put $\lambda$_{n}=n^{-1}\displaystyle \sum_{k=0}^{n-1} $\delta$(k) .

Then, it follows from Lemma 1 and Theorem 2 that for each h in the convex hull

of \mathcal{O}(f) and  $\alpha$>0,

T($\lambda$_{n})f-T($\lambda$_{n})g=T($\lambda$_{n})f-T($\lambda$_{n})h+T($\lambda$_{n})(h-g)

\leq T($\lambda$_{n})f-T($\lambda$_{n})h+M_{\infty}(h-g)

and hence

m\displaystyle \{\lim_{n\rightarrow}\sup_{\infty}(T($\lambda$_{n})f-T($\lambda$_{n})g)> $\alpha$\}\leq m\{M_{\infty}(h-g)> $\alpha$\}\leq$\alpha$^{-1}\Vert h-g\Vert_{1}.
So, we have m\displaystyle \{\lim\sup_{n\rightarrow\infty}(T($\lambda$_{n})f-T($\lambda$_{n})g)>0\}=0 . Similarly, we also have

m\displaystyle \{\lim\sup_{n\rightarrow\infty}(T($\lambda$_{n})g-T($\lambda$_{n})f)>0\}=0 . This implies \displaystyle \lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)-
(T($\lambda$_{n})g)(s)=0 a.e. on  $\Omega$ for each  f\in L^{1}\cap L^{\infty} and g\in K(f) . If m is finite and

 $\mu$ is a Banach limit, then it follows from Theorem 1 that a fixed point  T( $\mu$)f of T

is contained in K(f) . Hence, we have \displaystyle \lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)=(T( $\mu$)f)(s) a.e. on  $\Omega$

for each  f\in L^{1}\cap L^{\infty}. \square 
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Remark 2. Under the assumption of Lemma 2, it is known that if m is infinite

 $\sigma$‐finite, then for each  f\in L^{1} , a fixed point T( $\mu$)f of T is contained in the closure

of convex hull of the orbit \mathcal{O}(f) of f under T with respect to the separated locally
convex topology on L^{1} generated by the semi‐norms f\mapsto\Vert f\Vert_{E,1}(E\in \mathcal{F}) ; see also

[16].

Theorem 3 (Hopf). Let m be finite and let T be a positive linear operator on L^{1}
with \Vert T\Vert\leq 1 and T\mathrm{l}=1 . Then, for each f\in L^{1},

\displaystyle \lim_{n\rightarrow\infty}n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(s)=(T( $\mu$)f)(s)
a.e . on  $\Omega$ , where  $\mu$ is a Banach limit. In this case,  T( $\mu$)f is a fixed point of T.

Proof. Let  $\mu$ be a Banach limit and let  f\in L^{1} . For each n\in \mathbb{N} , put $\lambda$_{n}=

n^{-1}\displaystyle \sum_{k=0}^{n-1} $\delta$(k) . Then, T( $\mu$) is a linear operator on L^{1} with \Vert T( $\mu$)\Vert\leq 1 . It follows

from Lemma 2 and Theorem 2 that for each g\in L^{1}\cap L^{\infty} and  $\alpha$>0,

T($\lambda$_{n})f-T( $\mu$)f

=T($\lambda$_{n})f-T($\lambda$_{n})g+T($\lambda$_{n})g-T( $\mu$)g+T( $\mu$)g-T( $\mu$)f

\leq M_{\infty}(f-g)+T($\lambda$_{n})g-T( $\mu$)g+T( $\mu$)(g-f)

and hence

m\displaystyle \{\lim_{n\rightarrow}\sup_{\infty}(T($\lambda$_{n})f-T( $\mu$)f)>2 $\alpha$\}\leq m\{M_{\infty}(f-g)> $\alpha$\}+m\{T( $\mu$)(g-f)> $\alpha$\}
\leq$\alpha$^{-1}\Vert f-g\Vert_{1}+$\alpha$^{-1}\Vert T( $\mu$)(g-f)\Vert_{1}
\leq 2$\alpha$^{-1}\Vert f-g\Vert_{1}.

So, we have m\displaystyle \{\lim\sup_{n\rightarrow\infty}(T($\lambda$_{n})f-T( $\mu$)f)>0\}= O. Similarly, we also have

m\displaystyle \{\lim\sup_{n\rightarrow\infty}(T( $\mu$)f-T($\lambda$_{n})f)>0\}= O. This implies \displaystyle \lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)=
(T( $\mu$)f)(s) a.e. on  $\Omega$ for each  f\in L^{1}. \square 

In the case of  $\sigma$ ‐finite measure spaces, we obtain the following result concerning
the ergodicity of linear operators  T on L^{1} in the sense that for each f\in L^{1} , the

Cesàro means n^{-1}\displaystyle \sum_{k=0}^{n-1}T^{k}f converge to a fixed point of T in a separated locally
convex topology on L^{1} ; see also [16].

Theorem 4. Let T be a positive linear operator on L^{1} with \Vert T\Vert\leq 1 and \Vert Tf\Vert_{\infty}\leq
\Vert f\Vert_{\infty}(f\in L^{1}) . Then, for each f\in L^{1} , the Cesdro means

n^{-1}\displaystyle \sum_{k=0}^{n-1}T^{k}f
converge to a fixed point T( $\mu$)f of T in the separated locally convex topology  $\tau$ on

 L^{1} generated by the semi‐norms f\mapsto\Vert f\Vert_{E,1}(E\in \mathcal{F}) , where  $\mu$ is a Banach limit.

Proof. Let  $\mu$ be a Banach limit and let  f\in L^{1}\cap L^{\infty} . For each n\in \mathbb{N} , put

$\lambda$_{n}=n^{-1}\displaystyle \sum_{k=0}^{n-1} $\delta$(k) . We have \displaystyle \lim_{n\rightarrow\infty}\Vert T($\lambda$_{n})f-T( $\mu$)f\Vert_{2}=0 from Theorem 1 and

the convexity theorem of Riesz and Thorin. Let \{$\lambda$_{n_{k}}\} be a subsequence of \{$\lambda$_{n}\}.
Then, there exists a subsequence \{$\lambda$_{n}k_{l}\} of \{$\lambda$_{n}k\} such that \displaystyle \lim_{t\rightarrow\infty}(T($\lambda$_{n_{k_{l}}})f)(s)=
(T( $\mu$)f)(s) a.e. on  $\Omega$ . Since the orbit \mathcal{O}(f) of f under T is uniformly integrable
and bounded relative to the L^{1} ‐norm topology, T($\lambda$_{n_{k_{l}}})f converges in  $\tau$ to  T( $\mu$)f
as  l\rightarrow\infty by virtue of the convergence theorem of Vitali. Hence,  T($\lambda$_{n})f converge
in  $\tau$ to  T( $\mu$)f . It is easy to show that for each f\in L^{1}, T($\lambda$_{n})f converge in  $\tau$ to

 T( $\mu$)f , for T( $\mu$) is a linear operator on L^{1} with \Vert T( $\mu$)\Vert\leq 1. \square 
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4. ALMOST EVERYWHERE CONVERGENCE OF ERGODIC AVERAGES FOR CERTAIN

ORDER‐PRESERVING OPERATORS

In this section, we show a pointwise ergodic theorem for certain order‐preserving
operators on L^{1} , by applying similar arguments to those used in the previous section

to such operators on L^{1}.

Theorem 5. Let C be a closed convex subset of a Banach space and let T be a

nonexpansive mapping of C into itself which is almost periodic at some x\in C.

Then, T is asymptotically isometric on \{x\} and the. Cesàro means n^{-1}\displaystyle \sum_{k=0}^{n-1}T^{k}x
converge strongly to a point p of C. In this case, p=T( $\mu$)x for each Banach limit

 $\mu$.

Remark 3. Let C be a closed convex subset of a Banach space. If T is a contractive

mapping of C into itself, that is, there exists a non‐negative number r<1 such

that \Vert Tx-Ty\Vert\leq r\Vert x-y\Vert for each  x, y\in C , then T is almost periodic. For the

details of Theorem 5, see also [14].

Lemma 3. If a subset C of L^{1}\cap L^{\infty} is relatively compact in L^{1} and bounded in

L^{\infty}
, then C is relatively compact in L^{2}.

Remark 4. In Lemma 3, let D be a subset of C . If D_{1} and D_{2} are the closures of D

in L^{1} and L^{2} respectively, then D_{1}=D_{2}\subset L^{1}\cap L^{2} , for D_{1} is closed relative to the

separated locally convex topology on L^{1} generated by the semi‐norms f\mapsto\Vert f\Vert_{E,1}
(E\in \mathcal{F}) . For compactness in L^{1} , see also [5, 3, 18].

Proposition 2 (Bruck). Let C be a bounded, closed convex subset of a uniformly
convex Banach space and let T be a nonexpansive mapping of C into itself which is

asymptotically isometric on \{x\} for some x\in C . Then, \overline{co}w(x) is invariant under

T
, that is, T(\overline{co} $\omega$(x))\subset\overline{co}\mathrm{w}(x) and T is affine on \overline{co} $\omega$(x) , where  $\omega$(x)\dot{u} the set

of weak cluster points of \{T^{n}x : n=0, 1, . ..\}.

Theorem 6 (Krengel and Lin). If T is an order‐preseruing nonexpansive operator
on L^{1} with T0=0 and \Vert Tf-Tg\Vert_{\infty}\leq\Vert f-g\Vert_{\infty}(f, g\in L^{1}\cap L^{\infty}) , then T is

nonexpansive in IP for 1<p<\infty.

Theorem 7. Let T be an order‐preserving, almost periodic operator on L^{1} with

T0=0 such that \Vert Tf-Tg\Vert_{1}\leq\Vert f-g\Vert_{1} and \Vert Tf-Tg\Vert_{\infty}\leq\Vert f-g\Vert_{\infty}(f, g\in L^{1}) .

If T(f+g)\geq Tf+Tg(f,g\in L^{1}) and there exists an r>0 such that T^{n}f‐Tng \leq

 rT^{n}(f-g)(f, g\in L^{1}) for each n\in \mathbb{N}+ , then for each f\in L^{1},

\displaystyle \lim_{n\rightarrow\infty}n^{-1}\sum_{k=0}^{n-1}(T^{k}f)(s)=(T( $\mu$)f)(s)
a.e . on  $\Omega$ , where  $\mu$ is a Banach limit. In this case,  T( $\mu$)f is a fixed point of T.

Sketch of proof. Let  $\mu$ be a Banach limit and let  f\in L^{1}\cap L^{\infty} . For each n\in \mathrm{N} , put

$\lambda$_{n}=n^{-1}\displaystyle \sum_{k=0}^{n-1} $\delta$(k) . Then, it follows ffom Theorem 2 that for each  $\alpha$>0, k\in \mathrm{N}+
and g in the closure C(f) of the orbit \mathcal{O}(f) of f under T,

T($\lambda$_{n})f-T($\lambda$_{n})g=T($\lambda$_{n})f-T($\lambda$_{n})(T^{k}f)+T($\lambda$_{n})(T^{k}f)-T($\lambda$_{n})g
\leq T($\lambda$_{n})f-T($\lambda$_{n})(T^{k}f)+rT($\lambda$_{n})(T^{k}f-g)
\leq T($\lambda$_{n})f-T($\lambda$_{n})(T^{k}f)+rM_{\infty}(T^{k}f-g)

and hence

m\displaystyle \{\lim_{n\rightarrow}\sup_{\infty}(T($\lambda$_{n})f-T($\lambda$_{n})g)> $\alpha$\}\leq m\{M_{\infty}(T^{k}f-g)>r^{-1} $\alpha$\}\leq r$\alpha$^{-1}\Vert T^{k}f-g\Vert_{1}
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from \displaystyle \lim_{n\rightarrow\infty}\Vert T($\lambda$_{n})f-T($\lambda$_{n})(T^{k}f)\Vert_{\infty}=0 . So, we have m\displaystyle \{\lim\sup_{n\rightarrow\infty}(T($\lambda$_{n})f-
T($\lambda$_{n})g)>0\}= O. This implies \displaystyle \lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)-(T($\lambda$_{n})g)(s)=0 a.e. on

 $\Omega$ for each  g\in C(f) . It follows from Theorem 5, Lemma 3, Proposition 2 and

Theorem 6 that since a closed ball \{g\in L^{2} : \Vert g\Vert_{2}\leq\Vert f\Vert_{2}\} in L^{2} is invariant under

T, T is affine on the closure K(f) of convex hull of  $\omega$(f) . Let g=\displaystyle \sum_{i=1}^{N}$\alpha$_{i}g_{i} with

g_{i}\in $\omega$(f)\subset C(f) and \displaystyle \sum_{i=1}^{N}$\alpha$_{i}=1(0<$\alpha$_{i}<1) . Then,

\displaystyle \lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)-(T($\lambda$_{n})g)(s)=\sum_{i=1}^{N}$\alpha$_{i}\lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)-(T($\lambda$_{n})g_{i})(s)=0
a.e. on  $\Omega$ . From Theorem 2 and Theorem 5, we have \displaystyle \lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)-
(T($\lambda$_{n})h)(s)=0 a.e. on  $\Omega$ for each  h in K(f) and hence \displaystyle \lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)=
(T( $\mu$)f)(s) a.e. on  $\Omega$ , for  T( $\mu$)f is a fixed point of T and T( $\mu$)f\displaystyle \in\bigcap_{n\geq 0}\overline{\mathrm{c}\mathrm{o}}\{T^{k}f :

k\geq n\}=K(f) . Since T( $\mu$) is nonexpansive in L^{1} , it is verified as in proof of

Theorem 3 that \displaystyle \lim_{n\rightarrow\infty}(T($\lambda$_{n})f)(s)=(T( $\mu$)f)(s) a.e. on  $\Omega$ for each  f\in L^{1}. \square 
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