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Abstract

In this paper we consider a broad class of mappings containing Kannan mappings
and contratively generalized hybrid mappings. Then we deal with fixed point the‐

orems for such a mapping. Using these results, we show directly well‐known fixed

point theorems in complete metric spaces.

1 Introduction

Let (X, d) be a metric space. A mapping T from X into itself is said to be contractive

if there exists k wirh k\in[0 , 1) such that

d(Tx , Ty)\leq kd(x, y)

for any x, y\in X . Such a mapping is called a k‐contractive mapping. A mapping T from

X into itself is said to be Kannan [5] if there exists k with k\displaystyle \in[0, \frac{1}{2} ) such that

d(Tx , Ty)\leq k(d(x, Tx)+d(y, Ty))

for any x, y\in X . A mapping T from X into itself is said to be contractively nonspreading
[1,4, 9] if there exists k with k\displaystyle \in[0, \frac{1}{2} ) such that

d(Tx , Ty)\leq k(d(x, Ty)+d(y,Tx))

for any x, y\in X . A mapping T from X into itself is said to be contractively hybrid [3] if

there exists k with k\displaystyle \in[0, \frac{1}{3}) such that

d(Tx,Ty)\leq k(d(Tx, y)+d(Ty, x)+d(x,y))

for any x, y\in X . Recently, Hasegawa, Komiya and Takahashi [3] introduced the concept
of contratively generalized hybrid mappings on metric spaces and studied the fixed point
theorems for such mappings on complete metric spaces. A mapping T from X into itself is

said to be contratively generalized hybrid if there exist  $\alpha$,  $\beta$, r\in \mathbb{R} with r\in[0 , 1) such that

 $\alpha$ d(Tx, Ty)+(1- $\alpha$)d(x, Ty)\leq r( $\beta$ d(Tx,y)+(1- $\beta$)d(x,y))
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for any x, y\in X . Such a mapping is called an ( $\alpha,\ \beta$, r)‐contratively generalized hybrid
mapping; see also Kocourek, Takahashi and Yao [7] for such a mapping in Hilbert spaces.
For instance, if  $\alpha$=1 and  $\beta$=0 , then an ( $\alpha,\ \beta$,r)‐contratively generalized hybrid mapping
is contractive; if  $\alpha$=1+r and  $\beta$=1 , then an ( $\alpha,\ \beta$, r)‐contratively generalized hybrid
mapping is contractively nonspreading; if  $\alpha$=1+\displaystyle \frac{r}{2} and  $\beta$=\displaystyle \frac{1}{2} , then an ( $\alpha,\ \beta$,r)‐contratively
generalized hybrid mapping is contractively hybrid; see Hasegawa, Komiya and Takahashi

[3].
In this paper, motivated by Hasegawa, Komiya and Takahashi [3], we consider a broad

class of mappings containing Kannan mappings and contratively generalized hybrid map‐

pings. Then we deal with fixed point theorems for such a mapping. Using these results,
we show directly well‐known fixed point theorems in complete metric spaces.

2 Preliminaries

We know the following Caristi�s fixed point theorem which was generalized by Takahashi

[8].

Theorem 2.1. Let (X, d) be a complete metric space, let  $\psi$ be a proper, bounded below,
and lower semicontinuous mapping from  X into (-\infty, \infty], and let  T be a mapping from X

into itself. Suppose that

d(x,Tx)+ $\psi$(Tx)\leq $\psi$(x)

for any x\in X . Then T has a fxed point.

Let \ell\infty be the Banach space of bounded sequences with supremum norm. Let  $\mu$ be an

element of (\ell^{\infty})^{*} , which is the dual space of  p\infty . Then we denote by  $\mu$(x) the value of  $\mu$ at

 x=(x_{1}, x_{2}, \ldots)\in\ell\infty . Sometimes we denote by $\mu$_{n}(x_{n}) the value  $\mu$(x) . A linear functional

 $\mu$ on \ell\infty is called a mean if  $\mu$(e)=\Vert $\mu$\Vert=1 , where e=(1,1, . . A mean  $\mu$ is called a

Banach limit on \ell\infty if $\mu$_{n}(x_{n+1})=$\mu$_{n}(x_{n}) . We know that there exists a Banach limit on

 p\infty . If  $\mu$ is a Banach hmit on  p\infty , then

\displaystyle \lim_{n\rightarrow}\inf_{\infty}x_{n}\leq$\mu$_{n}(x_{n})\leq\lim_{n\rightarrow}\sup_{\infty}x_{n}
holds for any x= (x_{1}, x2, ..)\in\ell\infty . In particular, if  x=(x_{1}, x_{2}, \ldots)\in p\infty and  x_{n}\rightarrow a\in \mathbb{R},
then we obtain $\mu$_{n}(x_{n})=a . See [8] for the proof of existence of a Banach limit and its

other elementary properties.
Moreover we use the following lemma and theorem showed by Hasegawa, Komiya and

Takahashi [3].

Lemma 2.1. Let (X, d) be a metric space, let \{x_{n}\} be a bounded sequence in X
, let  $\mu$ be

a mean on \ell\infty and let  g be a mapping from X into \mathbb{R} defined by

g(x)=$\mu$_{n}d(x_{n}, x)

for any x\in X . Then g is continuous.
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Theorem 2.2. Let (X, d) be a complete metric space, let  $\mu$ be a mean on \ell\infty and let  T be

a mapping from X into itself. Suppose that there exist a real number r with 0\leq r<1 and

z\in X such that \{T^{n}z|n\in \mathbb{N}\cup\{0\}\} is bounded and

$\mu$_{n}d(T^{n}z ,
Tx)\leq r$\mu$_{n}d(T^{n}z,x)

for any x\in X . Then the following hold:

(i) T has a unique fixed point u\in X ;

(ii) u=\displaystyle \lim_{n\rightarrow\infty}T^{r $\iota$}x for any x\in X.

3 Fixed point theorems

In this section we consider an ( $\alpha,\ \beta$,  $\gamma$,  $\delta,\ \epsilon$,  $\zeta$)‐contractively widely more generalized hy‐
brid mapping from a metric space X into itself; see also Kawasaki and Takahashi [6] for

such a mapping in Hilbert spaces.

Definition 3.1. Let (X, d) be a metric space and let T be a mapping from X into itself.

We say that T is contractively widely more generalized hybrid if T satisfies the following
condition: there exist real numbers  $\alpha$,  $\beta$,  $\gamma$,  $\delta$,  $\epsilon$ and  $\zeta$ such that

ad(Tx, Ty)+ $\beta$ d(x, Ty)+ $\gamma$ d(Tx, y)+ $\delta$ d(x, y)+ $\epsilon$ d(x, Tx)+ $\zeta$ d(y, Ty)\leq 0

for any x, y\in X . Such a mapping T is called an ( $\alpha,\ \beta,\ \gamma$,  $\delta$, \mathrm{e},  $\zeta$)‐contractively widely more

generalized hybrid mapping.

Firstly we consider criteria for an ( $\alpha$,  $\beta,\ \gamma$,  $\delta$,  $\epsilon$,  $\zeta$)‐contractively widely more generalized
hybrid mapping T from a metric space X into itself such that \{T^{n}x|n\in \mathrm{N}\cup\{0\}\} is a

Cauchy sequence for any x\in X.

Lemma 3.1. Let (X, d) be a metric space and let T be an ( $\alpha$,  $\beta,\ \gamma$,  $\delta$,  $\epsilon$,  $\zeta$) ‐contractively
widely more generalized hybrid mapping from X into itself satisfying (B1), (B2) or (B3):

(B1)  $\alpha$+ $\beta$+ $\zeta$\geq 0 and  $\alpha$+2\displaystyle \min\{ $\beta$, 0\}+ $\delta$+ $\epsilon$+ $\zeta$>0;

(B2)  $\alpha$+ $\gamma$+ $\epsilon$\geq 0 and  $\alpha$+2\displaystyle \min\{ $\gamma$, 0\}+ $\delta$+ $\epsilon$+ $\zeta$>0 ;

(B3) 2 $\alpha$+ $\beta$+ $\gamma$+ $\epsilon$+ $\zeta$\geq 0 and  $\alpha$+\displaystyle \min\{ $\beta$+ $\gamma$, 0\}+ $\delta$+ $\epsilon$+ $\zeta$>0.

Then \{T^{ $\tau \iota$}x|n\in \mathbb{N}\cup\{0\}\} is a Cauchy sequence for any x\in X.

Using Lemma 3.1, we obtain directly the following theorem.

Theorem 3.1. Let (X, d) be a complete metric space and let T be an ( $\alpha,\ \beta,\ \gamma$,  $\delta,\ \epsilon$,  $\zeta$)-
contractively widely more generalized hybrid mapping from X into itself satisfying (B1),
(B2) or (B3). Then for any x\in X there exists \displaystyle \lim_{n\rightarrow\infty}T^{n}x.
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Remark 3.1. Let (X, d) be a metric space and let \{x_{n}|n\in \mathrm{N}\cup\{0\}\} be a Cauchy sequence
in X . Then \{x_{n}|n\in \mathbb{N}\cup\{0\}\} is bounded. Indeed, since \{x_{n}|n\in \mathbb{N}\cup\{0\}\} is a Cauchy
sequence, for any positive number  $\rho$ there exists  N\in \mathbb{N} such that  d(x_{m}, x_{n})< $\rho$ for any

 m, n\geq N . Put M=\displaystyle \max\{d(x_{0},x_{N}), \cdots, d(x_{N-1}, x_{N}),  $\rho$\} . Then d(x_{n}, x_{N})\leq \mathrm{M} for any

n\in \mathrm{N}\cup\{0\}.

Using Theorem 2.1, we show the following fixed point theorem.

Theorem 3.2. Let (X, d) be a complete metric space and let T be an ( $\alpha$,  $\beta,\ \gamma$,  $\delta,\ \epsilon$,  $\zeta$)-
contractively widely more generalized hybrid mapping from X into itself satisfying (C1),
(C2) or (C3):

(C1)  $\zeta$>0, a+ $\beta$\geq 0 and  $\alpha$+ $\beta$+ $\gamma$+ $\delta$+2\displaystyle \min\{ $\epsilon$, 0\}\geq 0 ;

(C2)  $\epsilon$>0,  $\alpha$+ $\gamma$\geq 0 and  $\alpha$+ $\beta$+ $\gamma$+ $\delta$+2\displaystyle \min\{ $\zeta$, 0\}\geq 0;

(C3)  $\epsilon$+ $\zeta$>0, 2 $\alpha$+ $\beta$+ $\gamma$\geq 0 and  $\alpha$+ $\beta$+ $\gamma$+ $\delta$\geq 0.

Then T has a fixed point if and only if there exists z\in X such that \{T^{n}z|n\in \mathrm{N}\cup\{0\}\} is

bounded. In particular, if  $\alpha$+ $\beta$+ $\gamma$+ $\delta$>0 , then T has a unique fixed point.

Using Lemma 3.1, Remark 3.1 and Theorem 3.2, we obtain the following fixed point
theorem.

Theorem 3.3. Let (X, d) be a complete metric space and let T be an ( $\alpha$,  $\beta,\ \gamma$,  $\delta$,  $\epsilon$,  $\zeta$)-
contractively widely more generalized hybrid mapping from X into itself satisfying the fol‐
lowing:

(B) one of (B1), (B2) and (B3) holds;

(C) one of (C1), (C2) and (C3) holds.

Then T has a fixed point. In particular, if  $\alpha$+ $\beta$+ $\gamma$+ $\delta$>0 , then T has a unique fixed
point.

Using Theorem 2.2, we show the following fixed point theorem.

Theorem 3.4. Let (X, d) be a complete metric space and let T be an ( $\alpha$,  $\beta,\ \gamma$,  $\delta,\ \epsilon$,  $\zeta$)-
contractively widely more generalized hybrid mapping from X into itself satisfying (\mathrm{H}1)_{f}
(H2) or (H3):

(H1)  $\alpha$+ $\beta$+ $\zeta$>0 and  $\alpha$+ $\beta$+ $\gamma$+ $\delta$+2\displaystyle \min\{ $\epsilon$, 0\}+2\min\{ $\zeta$, 0\}>0;

(H2)  $\alpha$+ $\gamma$+ $\epsilon$>0 and  $\alpha$+ $\beta$+ $\gamma$+ $\delta$+2\displaystyle \min\{ $\epsilon$, 0\}+2\min\{ $\zeta$, 0\}>0;

(H3) 2 $\alpha$+ $\beta$+ $\gamma$+ $\epsilon$+ $\zeta$>0 and  $\alpha$+ $\beta$+ $\gamma$+ $\delta$+2\displaystyle \min\{ $\epsilon$+ $\zeta$, 0\}>0.

Then T has a fixed point if and only if there exists z\in X such that \{T^{ $\gamma \iota$}z|n\in \mathbb{N}\cup\{0\}\} is

bounded. Moreover the following hold:
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(i) T has a unique fixed point u\in X ;

(ii) u=\displaystyle \lim_{n\rightarrow\infty}\mathcal{I}^{m}x for any x\in X.

Using Lemma 3.1, Remark 3.1 and Theorem 3.4, we obtain the following fixed point
theorem.

Theorem 3.5. Let (X, d) be a complete metric space and let T be an ( $\alpha$,  $\beta,\ \gamma$,  $\delta$,  $\epsilon$,  $\zeta$)-
contractively widely more generalized hybrid mapping from X into itself satisfying the fol‐
lowing:

(B) one of (B1), (B2) and (B3) holds;

(H) one of (H1), (H2) and (H3) holds.

Then the following hold:

(i) T has a unique fixed point u\in X_{f}.

(ii) u=\displaystyle \lim_{n\rightarrow\infty}T^{n}x for any x\in X.

Moreover, if (B) is satisfied, we also show the following fixed point theorem.

Theorem 3.6. Let (X, d) be a complete metric space and let T be an ( $\alpha$,  $\beta,\ \gamma$,  $\delta,\ \epsilon$,  $\zeta$)-
contractively widely more generalized hybrid mapping from X into itself satisfying (\mathrm{B})_{f} and

one of (M1), (M2) and (M3):

(M1)  $\alpha$+ $\beta$+ $\zeta$>0_{J}.

(M2)  $\alpha$+ $\gamma$+ $\epsilon$>0 ;

(M3) 2 $\alpha$+ $\beta$+ $\gamma$+ $\epsilon$+ $\zeta$>0.

Then T has a fixed point. In particular, if  $\alpha$+ $\beta$+ $\gamma$+ $\delta$>0 , then the following hold:

(i) T has a unique fixed point u\in X_{f}.

(ii) u=\displaystyle \lim_{n\rightarrow\infty}T^{n}x for any x\in X.

4 Applications
Theorem 4.1. Let (X, d) be a complete metric space and let T be a contractively generalized
hybrid mapping form X into itself, that is, there exist  $\alpha$,  $\beta$, r\in \mathbb{R} with 0\leq r<1 such that

 $\alpha$ d(Tx,Ty)+(1- $\alpha$)d(x, Ty)\leq r( $\beta$ d(Tx, y)+(1- $\beta$)d(x, y))

for any x, y\in X . Suppose that  $\alpha$>r(1+| $\beta$|) . Then the following hold:

(i) T has a unique fixed point u\in X ;
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(ii) u=\displaystyle \lim_{n\rightarrow\infty}T^{n}x for any x\in X.

Theorem 4.2. Let (X, d) be a complete metric space and let T be a mapping form X into

itself satisfying there exist  $\epsilon$,  $\zeta$\in \mathbb{R} such that  $\epsilon$+ $\zeta$<1 and

d(Tx , Ty )\leq $\epsilon$ d(x,Tx)+ $\zeta$ d(y , Ty)

for any x, y\in X . Then the following hold:

(i) T has a unique fixed point u\in X ;

(ii) u=\displaystyle \lim_{n\rightarrow\infty}T^{n}x for any x\in X.
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