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Abstract

The number of zeros and the distribution of the real part of non‐real zeros of the

derivatives of the Riemann zeta function have been investigated by Berndt, Levin‐

son, Montgomery, and Akatsuka. Berndt, Levinson, and Montgomery investigated
the general case, meanwhile Akatsuka gave sharper estimates for the first derivative

of the Riemann zeta function under the truth of the Riemann hypothesis. In this re‐

port, we introduce a generalization of the results of Akatsuka to the k‐th derivative

(for positive integer k) of the Riemann zeta function.

1 Introduction

Zeros of the derivatives of the Riemann zeta function  $\zeta$(s) have been studied for

about 80 years. In 1935, Speiser [Spe] showed that the Riemann hypothesis is equivalent
to the first derivative of the Riemann zeta function $\zeta$'(s) having no non‐real zeros in

{\rm Re}(s)<1/2 . This result is a breakthrough in the study of zeros of the Riemann zeta

function. Following the work of Speiser, Spira [Spi65, Spi70] studied the zero‐free regions
of higher order derivatives of the Riemann zeta function, we write $\zeta$^{(k)}(s) to denote the k‐

th derivative of the Riemann zeta function for positive integers k . These results encourage

further study in the zeros of $\zeta$^{(k)}(s) . For example, in 1970, Berndt [Ber] investigated the

number of zeros of $\zeta$^{(k)}(s) . He [Ber, Theorem] proved that for any positive integer k,

N_{k}(T)=\displaystyle \frac{T}{2 $\pi$}\log\frac{T}{4 $\pi$}-\frac{T}{2 $\pi$}+O(\log T) (1.1)

holds, where N_{k}(T) denotes the number of zeros of $\zeta$^{(k)}(s) with 0<{\rm Im}(s)\leq T ,
counted

with multiplicity. Furthermore, in 1973, Spira [Spi73] also studied the relation between

the zeros of $\zeta$'(s) and the Riemann hypothesis. In 1974, Levinson and Montgomery
[LM] studied many properties related to the distribution of zeros of $\zeta$^{(k)}(s) , including the

location of zeros. They [LM, Theorem 10] also showed that for any positive integer k,

$\zeta$^{(k)}($\rho$^{(k)})=0,0<$\gamma$^{(k)\prime}\displaystyle \leq T\sum_{$\rho$^{(k)}--$\beta$^{(k)}+i$\gamma$^{(k)}}($\beta$^{(k)}-\frac{1}{2})=\frac{kT}{2 $\pi$}\log\log\frac{T}{2 $\pi$}+\frac{1}{2 $\pi$}(\frac{1}{2}\log 2-k\log\log 2)T
-k\displaystyle \mathrm{L}\mathrm{i}(\frac{T}{2 $\pi$})+O(\log T)

(1.2)
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holds, where the sum is counted with multiplicity and

\displaystyle \mathrm{L}\mathrm{i}(x):=\int_{2}^{x}\frac{dt}{\log t}.
The above estimate shows how the real parts of non‐real zeros of $\zeta$^{(k)}(s) are distributed

around the critical line {\rm Re}(s)=1/2 . The zeros of $\zeta$^{(k)}(s) near the critical line were then

studied further by Conrey and Ghosh [CG] in 1989.

In 1996, Yildirim [Yi196, YilOO] investigated non‐real zeros of $\zeta$''(s) and $\zeta$'''(s) in the

region to the left of the critical line, that is in the region {\rm Re}(s)<1/2 . He succeeded in

showing that the Riemann hypothesis implies that $\zeta$''(s) and $\zeta$'''(s) each has only one pair
of non‐real zeros in {\rm Re}(s)<1/2 . Unfortunately, results analogous to Speiser�s [Spe] were

not obtained. Currently, no results similar to Speiser�s [Spe] are known for higher order

derivatives.

In 2012, Akatsuka [Aka, Theorems 1 and 3] improved each of the error term of the

results obtained by Berndt and by Levinson and Montgomery mentioned above (eq. (1.1)
and (1.2)) for the case k=1 under the assumption of the truth of the Riemann hypothesis.
He showed that

$\zeta$'( $\rho$,)=0,0<$\gamma$^{i_{\leq}}T\displaystyle \sum_{$\rho$'=$\beta$'+i$\gamma$'}($\beta$'-\frac{1}{2})=\frac{T}{2 $\pi$}\log\log\frac{T}{2 $\pi$}+\frac{1}{2 $\pi$}(\frac{1}{2}\log 2-\log\log 2)T
-\displaystyle \mathrm{L}\mathrm{i}(\frac{T}{2 $\pi$})+O((\log\log T)^{2})

and

N_{1}(T)=\displaystyle \frac{T}{2 $\pi$}\log\frac{T}{4 $\pi$}-\frac{T}{2 $\pi$}+O(\frac{\log T}{(\log\log T)^{1/2}})
hold if the Riemann hypothesis is true. In this report, we are interested in investigating
Akatsuka�s method in the case when k\geq 2.

2 Some notation and main results

Before wc introduce our results, we define some notation.

In this report we denote by \mathbb{R} and \mathbb{C} the set of all real numbers and the set of all

complex numbers, respectively. Throughout this report, the letter k is used as a fixed

positive integer, unless otherwise specified. For convenience, we let $\rho$^{(k)}=$\beta$^{(k)}+i$\gamma$^{(k)}
represent non‐real zeros of $\zeta$^{(k)}(s) .

Each of the following results introduced in this report is a generalization of Theorem 1,

Corollary 2, and Theorem 3 of [Aka], respectively. Note that each sum counts the non‐real

zeros of $\zeta$^{(k)}(s) with multiplicity and that O_{k} denotes the error terms which depend only
on k.

Theorem 1. Assume that the Riemann hypothesis is true. Then for any  T>4 $\pi$
,

we

have

 $\rho$^{(k)}--$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{0<$\gamma$^{(k)}\leq T}, ($\beta$^{(k)}-\displaystyle \frac{1}{2})=\frac{kT}{2 $\pi$}\log\log\frac{T}{2 $\pi$}+\frac{1}{2 $\pi$}(\frac{1}{2}\log 2-k\log\log 2)T
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-k\displaystyle \mathrm{L}\mathrm{i}(\frac{T}{2 $\pi$})+O_{k}((\log\log T)^{2}) .

Corollary 2. (Cf. [LM,
Theorem 3].) Assume that the Riemann hypothesis is true. Then

for 0<U<T (where T is restricted to satisfy  T>4 $\pi$), we have

 $\rho$^{(k)}=$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{T<$\gamma$^{(k)}\leq T+U}, ($\beta$^{(k)}-\displaystyle \frac{1}{2})=\frac{kU}{2 $\pi$}\log\log\frac{T}{2 $\pi$}+\frac{1}{2 $\pi$}(\frac{1}{2}\log 2-k\log\log 2)U

+O(\displaystyle \frac{U^{2}}{T\log T})+O_{k}((\log\log T)^{2}) .

Here the error term o(\displaystyle \frac{U^{2}}{T\log T}) holds uniformly, in other words, it does not depend on

any parameters.

Theorem 3. Assume that the Riemann hypothesis is true. Then for T\geq 2_{f} we have

N_{k}(T)=\displaystyle \frac{T}{2 $\pi$}\log\frac{T}{4 $\pi$}-\frac{T}{2 $\pi$}+O_{k}(\frac{\log T}{(\log\log T)^{1/2}}) ,

where N_{k}(T) is as defined in equation (1.1).

We write {\rm Re}(s) and {\rm Im}(s) (for any s\in \mathbb{C} ) as  $\sigma$ and  t respectively. We abbreviate

the Riemann hypothesis as RH, and finally, we define two functions F(s) and G_{k}(s) ,
as

follows:

F(s):=2^{s}$\pi$^{s-1}\displaystyle \sin(\frac{ $\pi$ s}{2}) $\Gamma$(1-s) , G_{k}(s):=(-1)^{k}\frac{2^{s}}{(\log 2)^{k}}$\zeta$^{(k)}(s) .

By the above definition of F(s) ,
we can check easily that the functional equation for  $\zeta$(s)

states

 $\zeta$(s)=F(s) $\zeta$(1-s) .

3 Sketch of proofs

In this report, we mainly give only sketch of the proofs. Refer to the original paper

[Sur] for the details.

3.1 Key lemmas

We first introduce a few lemmas and propositions which are analogues of those in

[Aka].

Lemma 3.1. There exists an a_{k}\geq 10 such that

|G_{k}(s)-1|\displaystyle \leq\frac{1}{2}(\frac{2}{3})^{ $\sigma$/2}
holds for any  $\sigma$\geq a_{k}.
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Proof. See [LM, inequality (3.2) (p. 54 \square 

Lemma 3.2. There exists a $\sigma$_{k}\leq-1 such that

|\displaystyle \sum_{j=1}^{k}\left(\begin{array}{l}
k\\
j
\end{array}\right)(-1)^{j-1}\frac{1}{\frac{F(k)}{F(k-,)}(s)}\frac{$\zeta$^{(j)}}{ $\zeta$}(1-s)|\leq 2^{ $\sigma$}
holds in the region  $\sigma$\leq$\sigma$_{k}, t\geq 2.

Proof. (Sketch)
We begin by estimating

\displaystyle \frac{F^{(k)}}{F(k-j)}(s) (j=1,2, \cdots, k)
in the region  $\sigma$<1, t\geq 2 . Using methods similar to [LM, pp. 54−55], we can show that

for any positive integer k
,

we can take $\sigma$_{k_{1}}\leq-1 sufficiently small (i.e. sufficiently large
in the negative direction) so that for any s with  $\sigma$\leq$\sigma$_{k_{1}} and t\geq 2 ,

we have

|\displaystyle \frac{F^{(k)}}{F(k-j)}(s)|\geq\frac{1}{2k}(\log(1- $\sigma$))^{j} . (3.1)

Next we estimate

\displaystyle \frac{$\zeta$^{(j)}}{ $\zeta$}(1-s) (j=1,2, \cdots, k) .

In the region  $\sigma$\leq-1, t\geq 2 ,
we can make use of the Dirichlet series of  $\zeta$(s) and $\zeta$^{(j)}(s) to

obtain

|\displaystyle \frac{$\zeta$^{(j)}}{ $\zeta$}(1-s)|\leq\frac{2^{ $\sigma$}}{2-\frac{$\pi$^{2}}{6}}(\frac{1}{2}(\log 2)^{j}+\sum_{l=0}^{j}\frac{(\log 2)^{j-l}\frac{j^{1}}{(j-l)!}}{(- $\sigma$)^{l+1}}\mathrm{I} (3.2)

Now combining inequalities (3.1) and (3.2), for  $\sigma$\leq$\sigma$_{k_{1}} and t\geq 2 ,
and noting that for

any positive integer k,

\displaystyle \lim_{ $\sigma$\rightarrow-\infty}\frac{2k}{2-\frac{$\pi$^{2}}{6}}\sum_{j=1}^{k}\left(\begin{array}{l}
k\\
j
\end{array}\right)\frac{1}{(\log(1- $\sigma$))^{j}}(\frac{1}{2}(\log 2)^{j}+\sum_{l=0}^{j}\frac{(\log 2)^{j-l}\frac{j!}{(j-l)^{1}}}{(- $\sigma$)^{l+1}}\mathrm{I}=0,
we can find $\sigma$_{k}\leq$\sigma$_{k_{1}}(\leq-1) such that

\displaystyle \frac{2k}{2-\frac{$\pi$^{2}}{6}}\sum_{j=1}^{k}\left(\begin{array}{l}
k\\
j
\end{array}\right)\frac{1}{(\log(1- $\sigma$))^{j}}(\frac{1}{2}(\log 2)^{j}+\sum_{l=0}^{j}\frac{(\log 2)^{j-l}\frac{j!}{(j-l)^{1}}}{(- $\sigma$)^{l+1}})\leq 1
holds for any  $\sigma$\leq$\sigma$_{k} . This implies our lemma. \square 

Now we fix the above a_{k} and $\sigma$_{k} to show the following lemma.

Lemma 3.3. Assume RH. Then there exists a t_{k}\displaystyle \geq\max\{a_{k}^{2}, -$\sigma$_{k}\} such that the following
conditions are satisfied:
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1. For any s satisfying $\sigma$_{k}\leq $\sigma$\leq 1/2 and t\geq t_{k}-1,

|\displaystyle \frac{F^{(k)}}{F}(s)|\geq 1
holds. Furthermore, we can take a branch of \log(F^{(k)}/F)(s) in that region such that

it is holomorphic there and

\displaystyle \frac{$\alpha$_{k} $\pi$}{6}<\arg\frac{F^{(k)}}{F}(s)<\frac{$\beta$_{k} $\pi$}{6}
holds, where

($\alpha$_{k}, $\beta$_{k})=\left\{\begin{array}{l}
(5, 7) if k is odd,\\
(-1,1) if k is even.
\end{array}\right.
2. For any s satisfying $\sigma$_{k}\leq $\sigma$<1/2 and t\geq t_{k}-1_{f}

\displaystyle \frac{$\zeta$^{(k)}}{ $\zeta$}(s)\neq 0
holds. Furthermore, we can take a branch of \log($\zeta$^{(k)}/ $\zeta$)(s) in that region such that

it is holomorphic there and

\displaystyle \frac{k $\pi$}{2}<\arg\frac{$\zeta$^{(k)}}{ $\zeta$}(s)<\frac{3k $\pi$}{2}
holds.

3. For all  $\sigma$\in \mathbb{R} , we have

 $\zeta$( $\sigma$+it_{k})\neq 0, $\zeta$^{(k)}( $\sigma$+it_{k})\neq 0.

Proof. (Sketch)
To prove condition 1, we apply Stirling�s formula and methods similar to the proof of

inequality (3.1). We can show that

F^{(k)}(s)=F(s)(- \displaystyle \log(1-s)+O(1))^{k}(1+O(\frac{1}{|\log s|^{2}})) (3.3)

holds in the region $\sigma$_{k}\leq $\sigma$\leq 1/2, t\geq 99 . Thus for any integer k\geq 1 ,
we can take some

t_{k_{1}}\geq 100 such that

|\displaystyle \frac{F^{(k)}}{F}(s)|\geq 1 (3.4)

holds for $\sigma$_{k}\leq $\sigma$\leq 1/2 and t\geq t_{k_{1}}-1.
We note from equation (3.3) that (F^{(k)}/F)(s)=(-1)^{k}(\log t)^{k}+O((\log t)^{k-1}) when

$\sigma$_{k}\leq $\sigma$\leq 1/2 and t\geq 99 . Consequently, for odd integer k\geq 1 ,
we can find t_{k_{2}}'\geq 100

sufficiently large such that

\displaystyle \frac{5 $\pi$}{6}<\arg\frac{F^{(k)}}{F}(s)<\frac{7 $\pi$}{6}
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holds for $\sigma$_{k}\leq $\sigma$\leq 1/2 and t\geq t_{k_{2}}'-1 . Similarly, when k is even, we can also find

t_{k_{2}}''\geq 100 large enough such that

-\displaystyle \frac{ $\pi$}{6}<\arg\frac{F^{(k)}}{F}(s)<\frac{ $\pi$}{6}
holds for $\sigma$_{k}\leq $\sigma$\leq 1/2 and t\geq t_{k_{2}}''-1 . Since all zeros and poles of F(s) lie on

\mathbb{R}, (F^{(k)}/F)(s) has no poles in t>0 . This along with inequality (3.4) implies that

\log(F^{(k)}/F)(s) is holomorphic in the region with this branch. We set

($\alpha$_{k}, $\beta$_{k}):=\left\{\begin{array}{ll}
(5,7), & \mathrm{i}\mathrm{f} k \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d},\\
(- 1,1), & \mathrm{i}\mathrm{f}\mathrm{k} \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n};
\end{array}\right.
and

t_{k_{2}}:=\left\{\begin{array}{ll}
t_{k_{2}}', & \mathrm{i}\mathrm{f} k \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d},\\
t_{k_{2}}'', & \mathrm{i}\mathrm{f} k \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}.
\end{array}\right.
From the above calculations, we find that \displaystyle \max\{t_{k_{1}}, t_{k_{2}}, a_{k}^{2}, -$\sigma$_{k}\} is a candidate for t_{k}.

Thus we have proven that t_{k}\displaystyle \geq\max\{a_{k}^{2}, -$\sigma$_{k}\} for which condition 1 holds exists. Since

we want t_{k} to also satisfy conditions 2 and 3, we need to examine those conditions to

completely prove the existence of t_{k}.

To prove condition 2, we first make use of the finiteness of the number of non‐real zeros

of $\zeta$^{(j)}(s) in the region  $\sigma$<1/2 under RH for any positive integer j (cf. [LM, Corollary
of Theorem 7 (p. 51 to find some t_{k_{3}} such that for all j=1,2, \cdots, k

,
we have

$\zeta$^{(j)}(s)\neq 0 (3.5)

in the region  $\sigma$<1/2, t\geq t_{k_{3}}-1.
Next we show that we can take a branch of \log($\zeta$^{(k)}/ $\zeta$)(s) in the region $\sigma$_{k}\leq $\sigma$<

1/2, t\geq t_{k_{4}}-1 for some t_{k_{4}}\geq 100 ,
so that it is holomorphic there and

\displaystyle \frac{k $\pi$}{2}<\arg\frac{$\zeta$^{(k)}}{ $\zeta$}(s)<\frac{3k $\pi$}{2}
holds there by making use of the following inequality

{\rm Re}(\displaystyle \frac{$\zeta$^{(j)}}{$\zeta$^{(j-1)}}(s))\leq-\frac{2}{9}\log|s|+O_{$\sigma$_{k}}(1)
which holds for any j=1 , 2, \cdots, k when $\sigma$_{k}\leq $\sigma$<1/2 and t\geq t_{k_{3}}-1 (see [LM, pp.

64−65]). We omit details of the proof here.

We then have \displaystyle \max\{t_{k_{1}}, t_{k_{2}}, t_{k_{3}}, t_{k_{4}}, a_{k}^{2}, -$\sigma$_{k}\} as a candidate for t_{k}.

Now we set t_{k_{5}} :=\displaystyle \max\{t_{k_{1}}, t_{k_{2}}, t_{k_{3}}, t_{k_{4}}, a_{k}^{2}, -$\sigma$_{k}\}.

Since we are assuming RH,  $\zeta$( $\sigma$+it)\neq 0 for any t>0 if  $\sigma$\neq 1/2.

According to [Spi65, Table 1 (p. 678) and Theorem 1], for any positive integer k,
we have

$\zeta$^{(k)}( $\sigma$+it)\neq 0 ( $\sigma$\geq 7k/4+2, t\in \mathbb{R}) .
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Since t_{k_{5}}\geq t_{k_{3}} ,
from (3.5), we have $\zeta$^{(k)}( $\sigma$+it)\neq 0 for  $\sigma$<1/2 and t\geq t_{k_{5}}.

Hence, for any positive integer k
,

we only need to find t_{k}\in[t_{k_{5}}+1, t_{k_{5}}+2] for which

 $\zeta$(1/2+it_{k})\neq 0 and $\zeta$^{(k)}( $\sigma$+it_{k})\neq 0 for 1/2\leq $\sigma$\leq 7k/4+2

hold.

Thus, we have shown that t_{k} defined above satisfies t_{k}\displaystyle \geq\max\{a_{k}^{2}, -$\sigma$_{k}\} and also

conditions 1 to 3. \square 

We now fix a_{k}, $\sigma$_{k} , and t_{k} which satisfy Lemmas 3.1, 3.2, and 3.3.

Now we give two bounds for— \arg $\zeta$( $\sigma$+iT)+\arg G_{k}( $\sigma$+iT) . We use methods similar

to [Aka, Lemmas 2.3, 2.4, 2.6]. We take the logarithmic branches of \log $\zeta$(s) and \log G_{k}(s)
such that they tend to 0 as  $\sigma$\rightarrow\infty and are holomorphic in \mathbb{C}\backslash \{ $\rho$+ $\lambda$| $\zeta$( $\rho$)=0 or \infty,  $\lambda$\leq

 0\} and \mathbb{C}\backslash { $\rho$^{(k)}+ $\lambda$|$\zeta$^{(k)}($\rho$^{(k)})=0 or \infty,  $\lambda$\leq 0 }, respectively. We write

‐ \displaystyle \arg $\zeta$( $\sigma$+iT)+\arg G_{k}( $\sigma$+iT)=\arg\frac{G_{k}}{ $\zeta$}( $\sigma$+iT) ,

where the argument on the right hand side is determined so that \log(G_{k}/ $\zeta$)(s) tends to

0 as  $\sigma$\rightarrow\infty and is holomorphic in \mathbb{C}\backslash { z+ $\lambda$|($\zeta$^{(k)}/ $\zeta$)(z)=0 or \infty,  $\lambda$\leq 0}.

Lemma 3.4. Assume RH and let T\geq t_{k} . Then for any $\epsilon$_{0}>0 satisfying $\epsilon$_{0}<(2\log T)^{-1}
(since T\geq t_{k}\geq 100, $\epsilon$_{0}<1/8) ,

we have for 1/2+$\epsilon$_{0}< $\sigma$\leq a_{k},

\displaystyle \arg\frac{G_{k}}{ $\zeta$}( $\sigma$+iT)=O_{a_{k},t_{k}}(\frac{\log\frac{\log T}{$\epsilon$_{0}}}{ $\sigma$-\frac{1}{2}-$\epsilon$_{0}})
We omit the proof of the above lemma (refer to [Sur, Lemma 2.3]).

Lemma 3.5. Assume RH and let A\geq 2 be fixed. Then there exists a constant C_{0}>0
such that

|$\zeta$^{(k)}( $\sigma$+it)|\displaystyle \leq\exp(C_{0}(\frac{(\log T)^{2(1- $\sigma$)}}{\log\log T}+(\log T)^{1/10}))
holds for T\geq t_{k}, T/2\leq t\leq 2T, 1/2-(\log\log T)^{-1}\leq $\sigma$\leq A.

Proof Referring to [Tit, (14.14.2), (14.14.5) and the first equation on p. 384], we can

show that

| $\zeta$( $\sigma$+it)|\displaystyle \leq\exp(C_{1}(\frac{(\log T)^{2(1- $\sigma$)}}{\log\log T})+(\log T)^{1/10}) (3.6)

holds for 1/2-2(\log\log T)^{-1}\leq $\sigma$\leq A+1, T/3\leq t\leq 3T for some constant C_{1}>0 (cf.
[Aka, pp. 2251−2252]).

Applying Cauchy�s integral formula, we see that

$\zeta$^{(k)}(s)=\displaystyle \frac{k!}{2 $\pi$ i}\int_{|z-s|= $\epsilon$}\frac{ $\zeta$(z)}{(z-s)^{k+1}}dz for 0< $\epsilon$<1/2

holds in the region defined by 1/2-(\log\log T)^{-1}\leq $\sigma$\leq A and T/2\leq t\leq 2T . Applying
inequality (3.6) and by taking  $\epsilon$=(2(\log\log T)^{1/k})^{-1}(<1/2) ,

we obtain Lemma 3.5. \square 
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Lemma 3.6. Assume RH and let T\geq t_{k} . Then for any 1/2\leq $\sigma$\leq 3/4 ,
we have

\displaystyle \mathrm{a}x\mathrm{g}G_{k}( $\sigma$+iT)=O_{a_{k}}(\frac{(\log T)^{2(1- $\sigma$)}}{(\log\log T)^{1/2}}) .

Proof The proof proceeds in the same way as the proof of Lemma 2.4 of [Aka]. Refer to

[Aka, pp. 2252−2253] for the detailed proof and use Lemma 3.5 above in place of Lemma

2.6 of [Aka]. \square 

Remark 1. The restrictions of the lower bound of T we gave in Lemmas 3.4, 3.5, and

3.6 are not essential, but they are sufficient for our needs.

3.2 Proof of Theorem 1

The following proposition gives the main term of Theorem 1.

Proposition 3.7. Assume RH. Take a_{k} and t_{k} which satisfy Lemmas 3.1 and 3.3 respec‐

tively. Then for T\geq t_{k} which satisfies $\zeta$^{(k)}( $\sigma$+iT)\neq 0 and  $\zeta$( $\sigma$+iT)\neq 0 for any  $\sigma$\in \mathbb{R},
we have

$\rho$^{(k)}--$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{0<$\gamma$^{(k)}\leq T}, ($\beta$^{(k)}-\displaystyle \frac{1}{2})=\frac{kT}{2 $\pi$}\log\log\frac{T}{2 $\pi$}+\frac{1}{2 $\pi$}(\frac{1}{2}\log 2-k\log\log 2)T-k\mathrm{L}\mathrm{i}(\frac{T}{2 $\pi$})

+\displaystyle \frac{1}{2 $\pi$}\int_{1/2}^{a_{k}} (- \arg $\zeta$( $\sigma$+iT)+\arg G_{k}( $\sigma$+iT))d $\sigma$+O_{k}(1) ,

where the logarithmic branches are taken as in Section 3.1 (see the paragraph preceding
Lemma 3.4).

We omit the proof (refer to [Sur, Proposition 2.2]). The proof of Theorem 1 is done

as follows.

First of all, we consider for T\geq t_{k} which satisfies $\zeta$^{(k)}( $\sigma$+iT)\neq 0 and  $\zeta$( $\sigma$+iT)\neq 0
for any  $\sigma$\in \mathbb{R} . From Lemma 3.4, we have

\displaystyle \int_{1/2+2$\epsilon$_{0}}^{a_{k}}\arg\frac{G_{k}}{ $\zeta$}( $\sigma$+iT)d $\sigma$\ll_{a_{k},t_{k}}\int_{1/2+2$\epsilon$_{0}}^{a_{k}}\frac{\log\frac{\log T}{$\epsilon$_{0}}}{ $\sigma$-\frac{1}{2}-$\epsilon$_{0}}d $\sigma$\ll_{a_{k}}\log\frac{\log T}{$\epsilon$_{0}}\log\frac{1}{$\epsilon$_{0}}.
Next, from Lemma 3.6,

\displaystyle \arg G_{k}( $\sigma$+iT)=O_{a_{k}}(\frac{(\log T)^{2(1- $\sigma$)}}{(\log\log T)^{1/2}}) for 1/2\leq $\sigma$\leq 3/4

and from equation (2.23) of [Aka, p. 2251] (cf. [Tit, equations (14.14.3) and (14.14.5)]),
RH implies that

\displaystyle \arg $\zeta$( $\sigma$+iT)=O(\frac{(\log T)^{2(1- $\sigma$)}}{\log\log T})
holds uniformly for 1/2\leq $\sigma$\leq 3/4 . Thus,

\displaystyle \int_{1/2}^{1/2+2$\epsilon$_{0}}\arg\frac{G_{k}}{ $\zeta$}( $\sigma$+iT)d $\sigma$\ll_{a_{k}}\frac{\log T}{(\log\log T)^{1/2}}$\epsilon$_{0}.
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Now we take $\epsilon$_{0}=(4\log T)^{-1}(<(2\log T)^{-1}) ,
then we have

\displaystyle \int_{1/2}^{a_{k}}\arg\frac{G_{k}}{ $\zeta$}( $\sigma$+iT)d $\sigma$\ll_{a_{k},t_{k}}(\log\log T)^{2}
Applying this to Proposition 3.7 and noting that a_{k} and t_{k} are fixed constants that depend
only on k

,
we have

$\rho$^{(k)}--$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{0<$\gamma$^{(k)}\leq T}, ($\beta$^{(k)}-\displaystyle \frac{1}{2})=\frac{kT}{2 $\pi$}\log\log\frac{T}{2 $\pi$}+\frac{1}{2 $\pi$}(\frac{1}{2}\log 2-k\log\log 2)T-k\mathrm{L}\mathrm{i}(\frac{T}{2 $\pi$})
+O_{k}((\log\log T)^{2}) .

(3.7)
For 4 $\pi$<T<t_{k} ,

we are adding some finite number of terms which depend on t_{k} , and

thus depend only on k so this can be included in the error term.

For T\geq t_{k} such that $\zeta$^{(k)}( $\sigma$+iT)=0 or  $\zeta$( $\sigma$+iT)=0 for some  $\sigma$\in \mathbb{R} , there is some

increment in the value of

$\rho$^{(k)}--$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{0<$\gamma$^{(k)}\leq T}, ($\beta$^{(k)}-\frac{1}{2})
as much as

$\rho$^{(k)}--$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{$\gamma$^{(k)}=T}, ($\beta$^{(k)}-\frac{1}{2})
.

We estimate this and show that this can be included in the error term of equation (3.7).
We start by taking a small 0< $\epsilon$<1 such that $\zeta$^{(k)}( $\sigma$+i(T\pm $\epsilon$))\neq 0 and  $\zeta$( $\sigma$+i(T\pm $\epsilon$))\neq 0
for any  $\sigma$\in \mathbb{R} . According to equation (3.7),

$\rho$^{(k)}=$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{0<$\gamma$^{(k)}\leq T\pm $\epsilon$}, ($\beta$^{(k)}-\displaystyle \frac{1}{2})=\frac{k(T\pm $\epsilon$)}{2 $\pi$}\log\log\frac{T\pm $\epsilon$}{2 $\pi$}+\frac{1}{2 $\pi$}(\frac{1}{2}\log 2-k\log\log 2)(T\pm $\epsilon$)

-k\displaystyle \mathrm{L}\mathrm{i}(\frac{T\pm $\epsilon$}{2 $\pi$})+O_{k}((\log\log T)^{2}) .

Thus,

$\rho$^{(k)}--$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{T- $\epsilon$<$\gamma$^{(k)}\leq T+ $\epsilon$'}($\beta$^{(k)}-\frac{1}{2})=\frac{k $\epsilon$}{ $\pi$}\log\log\frac{T}{2 $\pi$}+\frac{ $\epsilon$}{ $\pi$}(\frac{1}{2}\log 2-k\log\log 2)+O_{k}((\log\log T)^{2})
=O_{k}((\log\log T)^{2}) .

This implies

$\rho$^{(k)}--$\beta$^{(k)}+i$\gamma$^{(k)}\displaystyle \sum_{$\gamma$^{(k)}=T}, ($\beta$^{(k)}-\frac{1}{2})=O_{k}((\log\log T)^{2})
.

Therefore, this increment can also be included in the error term and the proof is complete.
\square 
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3.3 Proof of Corollary 2

This is an immediate consequence of Theorem 1. See [LM, p. 58 (the ending part of

Section 3 \square 

3.4 Proof of Theorem 3

Finally, we give the proof of Theorem 3. We first introduce the following proposition
which give the main term of our estimate.

Proposition 3.8. Assume RH. Take t_{k} which satisfies all conditions of Lemma 3.3. Then

for T\geq 2 which satisfies  $\zeta$( $\sigma$+iT)\neq 0 and $\zeta$^{(k)}( $\sigma$+iT)\neq 0 for all  $\sigma$\in \mathbb{R} , we have

N_{k}(T)=\displaystyle \frac{T}{2 $\pi$}\log\frac{T}{4 $\pi$}-\frac{T}{2 $\pi$}+\frac{1}{2 $\pi$}\arg G_{k}(\frac{1}{2}+iT)+\frac{1}{2 $\pi$}\arg $\zeta$(\frac{1}{2}+iT)+O_{k}(1) ,

where the arguments are determined as in Proposition 3. 7.

We omit the proof (refer to [Sur, Proposition 3.1]). The proof of Theorem 3 is as

follows.

Firstly we consider for T\geq 2 which satisfies $\zeta$^{(k)}( $\sigma$+iT)\neq 0 and  $\zeta$( $\sigma$+iT)\neq 0 for

any  $\sigma$\in \mathbb{R} . By Lemma 3.6,

\displaystyle \arg G_{k}(\frac{1}{2}+iT)=O_{a_{k}}(\frac{\log T}{(\log\log T)^{1/2}})
and again from equation (2.23) of [Aka, p. 2251], we have

\displaystyle \arg $\zeta$(\frac{1}{2}+iT)=O(\frac{\log T}{\log\log T}) .

Substituting these into Proposition 3.8, we obtain

N_{k}(T)=\displaystyle \frac{T}{2 $\pi$}\log\frac{T}{4 $\pi$}-\frac{T}{2 $\pi$}+O_{k}(\frac{\log T}{(\log\log T)^{1/2}}) .

Next, if  $\zeta$( $\sigma$+iT)=0 or $\zeta$^{(k)}( $\sigma$+iT)=0 for some  $\sigma$\in \mathbb{R} (T\geq 2) , then again we take

a small 0< $\epsilon$<1 such that $\zeta$^{(k)}( $\sigma$+i(T\pm $\epsilon$))\neq 0 and  $\zeta$( $\sigma$+i(T\pm $\epsilon$))\neq 0 for any  $\sigma$\in \mathbb{R} as

in the proof of Theorem 1. Then similarly, we can show that the increment of the value

of N_{k}(T) can be included in the error term of the above equation which completes the

proof. \square 
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