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Abstract
In this paper we investigate lower bounds for the numbers of nonzero digits of
p-adic algebraic numbers. As a consequence, we introduce criteria for the transcen-
dence of certain power series and we give new examples of transcendental numbers.

1 Introduction

Many mathematicians have studied the transcendence of the values of analytic functions
f(2) at algebraic points. In this paper we consider the case where

f(z) = Z 5p2", (11)

where (Sp)n=0,1,.. s a bounded sequence of nonnegative integers. We denote by M(Q) =
{0} U {p | p is prime} the set of the places of Q. Let v € M(Q). We denote by C, a
completion of an algebraic closure of Q,. If v = oo, then let | - | be the usual Euclidean
norm on C. In the case where v = p is a prime, | - |, denotes the p-adic norm on C,
normalized so that |p|, = p~*.

Let v € M(Q) be fixed. Let (Um)m=01,.. be a sequence of nonnegative integers satis-
fying

U1 > U (1.2)

for any sufficiently large m. Then the power series > 7 2" is rewritten as (1.1), where
sn € {0,1} for any sufficiently large n. Corvaja and Zannier [9] proved for any algebraic
number a with 0 < ||, < 1 that if

lim inf 2™+ 5 1, (1.3)
m—oo U,

then >~  a“m is transcendental. However, the transcendence of Y o, o’ is generally
unknown if (1.3) does not hold. If v = co and a = 1/2, then Bailey, Borwein, Crandall,
and Pomerance [4] improved the criteria by Corvaja and Zannier as follows: If

lim sup ﬂ% =00 (1.4)
m—o0



for any positive real number R, then Y - 27~ is transcendental. The result above is
an application of the results on the binary expansions of algebraic irrational numbers.

In Section 2 we review known results on the f-expansions of algebraic numbers in
the case where 3 is a Pisot or Salem number. In particular, we introduce criteria for
the transcendence of power series in [11]. In Section 3 we investigate the digits of p-adic
algebraic numbers. Consequently, we deduce criteria for the transcendence of the p-adic
numbers, which gives new examples of transcendental numbers.

2 Ciriteria for transcendence related to S-expansion

In this section we denote the integral and fractional parts of a real number x by {z}
and |z, respectively. Let 8 be a real number greater than 1 and Tp : [0,1] — [0,1) the
[S-transformation defined by

Tp(z) = {Bz}.
Then the S-expansion of a real number £ € [0,1] is given by

[e¢]

£=) ta(B;6)B,

n=1

where t,(8;€) = L,BT[?*I(QJ for any positive integer n.

If B = b is a rational integer, then the S-expansion of £ coincides with the usual base-b
expansion of . In particular, the sequence (s, (b;€))n=1,2,.. is ultimately periodic for any
rational number £ € [0,1]. Now we recall the definition of Pisot and Salem numbers.
Let 8 > 1 be an algebraic integer with conjugates 8; = 3, fs,...,84. Then g is a Pisot
number if |3;] < 1 for any ¢ with ¢ > 2. In particular, any rational integer b > 2 is a Pisot
number. On the other hand, 8 is a Salem number if |3;| < 1 for any 7 with 2 < i < d
and if there exists j with 2 < j < d such that |8;] = 1. Schmidt [13] proved that if
the B-expansion of each rational number ¢ € [0,1) is ultimately periodic, then f§ is a
Pisot or Salem number. In the rest of this section, we assume that g is a Pisot or Salem
number. Bertrand [5] and Schmidt [13] proved for any Pisot number £ that any number
¢ € Q(B) N[0,1] has the ultimately periodic S-expansion. However, the periodicity of
the S-expansion of rational numbers of £ is generally not known in the case where g is a
Salem number.

In this section we study the numbers of nonzero digits in the S-expansions of algebraic
numbers & < 1. Let

v(B,6;N) :==Card{n € Z |1 <n < N,t,(5;¢) # 0}

for any positive integer N. It is generally difficult to give the asymptotic behavior of the
function v (4, &; N) for fixed § > 1 and € < 1. For instance, consider the case where 8 = b
is a rational integer. Borel [6] conjectured that any algebraic irrational number is normal.
If Borel’s conjecture is true, then we have

v(b,&; N) _ b; 1(> 0).
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However, we know no example of a base b > 2 and an algebraic irrational number £ <1
such that the inequality ( )

. v(b,§; N

111151 jo‘ip N >0
has been proved.

In what follows, we introduce known results on the lower bounds for v(3, £; N). Unless
otherwise specified, "v(8,£; N) > f(N) for any sufficiently large N” implies that there
exist effectively computable positive constants C(8,¢) and C'(8,€) depending only on §
and & satisfying

v(B,GN) = C(B,8)f(N)
for any integer N > C’(8,£). Bugeaud [8] gave lower bounds for the digit changes in
the (B-expansions of algebraic numbers 8 and £. In the case where  is a Pisot or Salem
number, using his results, we get the following: Let £ € [0,1] be an algebraic number.
Suppose that t,(8; &) # tn,+1(8; &) for infinitely many n’s. Then

(log N)*/2

—_— 2.1
(loglog N)'/2 2.1)

v(B,&N) >

for any sufficiently large N.
In the case where 8 = 2, then Bailey, Borwein, Crandall and Pomerance [4] gave better
lower bounds as follows: For any algebraic irrational number £ of degree D, we have

v(2,€6 N) > Cy(§)NV/P (2.2)

for any integer N > C5(§), where C;(§) is an effective positive constant and C; is an
ineffective positive constant. C1(£) and Cy(§) depend only on &.

Consequently, we deduce the criteria for transcendence we mentioned in Section 1.
In fact, let (vm)m=o1,.. be a sequence of nonnegative integers satisfying (1.2) for any
sufficiently large integer m and (1.4) for any positive real number R. Put & := Y o 27",
Then we have, for an arbitrary positive real number ¢,

lim inf ———V(Z’ & V)

N—oo Ne¢ =0

In particular, (2.2) does not hold for any positive integer D. Hence, &; is transcendental.

Adamczewski, Faverjon [1] and Bugeaud [8] independently gave effective versions of
(2.2) for any integral base as follows: Let § = b > 2 be any integer and £ € [0,1] an
irrational number of degree D. Then

v(b,&; N) > NYP (2.3)

for any sufficiently large N.

In the case where f is a general Pisot or Salem number, then an analogy of (2.2)
and (2.3) is obtained by the following criteria in [11]: Let B be a positive integer and
(Sn)n=0,1,... a sequence of integers such that

0<s,<B
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for any nonnegative integer n. Put
o0
¢ = Z s 87" (2.4)
n=0

and
U(N):=Card{n € Z|0<n < N,s, # 0}

Note that (2.4) is not generally the S-expansion of £&. Suppose that £ is an algebraic
number satisfying [Q(8,€) : Q(B)] = D, where [L : K] denotes the degree of a field
extension K/L. Then there exist effectively computable positive constants C3(8,&, B)
and Cy(B, €, B) depending only on 3.£, and B such that

N1/(2D-1)

U(N) > Cs(8,¢, B)W

(2.5)

for any integer N with N > C4(8,&, B). In particular, applying the case where (2.4) is
the f-expansion of £, we have

N1/(2D-1)

V(8,6 N) > Gog ny7as—

for any sufficiently large N.
Moreover, we obtain criteria for the transcendence of power series as follows: Let again
(Um)m=0,1,... be a sequence of nonnegative integers fulfilling (1.2) and (1.4). Then

Li=) B (2.6)
m=0

is transcendental. Note that (2.6) is not also generally the S-expansion of £;. In the case
where = b is a rational integer, then the criteria above were essentially obtained by
Bailey, Borwein, Crandall, and Pomerance [4]. The main purpose of this paper is to give
an analogy of (2.5) for p-adic algebraic numbers.

We give examples of transcendental numbers. Put

Wi = |M'E™ | = |exp ((logm)?)] (2.7)
for any m > 1 and
T = |m€'8™ | = |exp ((log m)(log logm))) | (2.8)
for any m > 3. Then we have

. Wm . T
lim — =o0, lim — =00
m—o0 M, m—00 mR

for any positive real number R. Hence,

oo

Y= Zﬁ_wm,yz = Z g
m=1

m=3
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are transcendental for any Pisot or Salem number 3. Note that (w)m=1,2,... and (Zm)m=s.4,..
do not satisfy (1.3) because

. Wm+1 Tm+41
lim —2t mtl . 1.

=1, lim
m—00 Wy, m—0oo I,

Therefore, the transcendence of y; and y» is not obtained by the criteria by Corvaja and

Zannier in Section 1.

3 Review of p-adic normal numbers

Let b be an integer greater than 1 and £ < 1 a real number. Recall that £ is normal in
base-b if the following property holds: Let L be any positive integer and v any word from
the alphabet {0,1,...,b — 1} with length L. Then v appears in the base-b expansion of
¢ with average frequency tending to b~%, namely, we have

im Card{n |1 <n< No=t,0;9) ... thrr-1(5;6)} 1

A N A

Ferrero and Washington [10] introduced the notion of joint normality of p-adic integers,
where p is a prime number. For any £ € Z,, we denote the p-adic expansion by

£=Y P,
n=0

where ¢ (&) € {0,1,...,p — 1} for any nonnegative integer n. For simplicity, put
tn(€) = 1P ©OTH (€)1l 1 (6)
for any integers n > 0 and M > 1. In what follows, put
A:={0,1,...,p—1}.

Let &,...,& € Zy,. We say that &,...,& are jointly normal if the following property
holds: Let L be any positive integer and vy, ..., v, be any words from the alphabet A
with length L. Then we have

Card{n|1§n§N,vi:tff)L(§i) foranyi=1,...,r} 1

m .
N—c0 N prL

In the case of r = 1, if £ is jointly normal, then we call £ normal. It is remarkable
that the notion of joint normality is applicable to Iwasawa theory. In fact, Ferrero and
Washington [10] used certain jointly normal numbers to verify that the Iwasawa invariant
pp(k) vanishes for any abelian number field k (see also [15]).

Moreover, Angles [3] proposed a problem on the transcendence of the Iwasawa power
series modulo certain uniformization of Z,[6] over F,(T'), where F,, is an algebraic closure of
the finite field with p elements. Sun [14] proved the transcendence on this problem under



the assumption that Borel’s conjecture on the normality of p-adic algebraic irrational
number £ € Z, holds.

Borel’s conjecture of p-adic version implies for each prime number p that any algebraic
irrational number £ € Z, is normal. However, this conjecture has not also been proved.

For any £ € Z,, we write the complexity function of the sequence (tr(fl7 ) (&))n=0,1,... by
P(&N) := Card{t®)(€) |[n € Z,n >0} (N =1,2,...).

If £ is normal, then we have P(&; N) = p for any positive integer N. Adamczewski and
Bugeaud [2] verified for any algebraic irrational number £ € Z, that

PN
lim PG N) = 0. (3.1)
N—oo
In the same paper, they also investigated certain criteria for the transcendence of p-adic
integers. For any finite word W = w; ... w; and any positive real number z, set

|W|:=1

and
T .__ U
W* .= WVVL.J..WW,
where W' is the prefix of W with length [{z}|/W|]. We say for any ¢ € Z, that & satisfies
Condition A if (tg’ ) (€))n=0,1,... s not ultimately periodic and if there exists a real number
w > 1 satisfying the following: there exist two sequences of finite words (Uy)n=12,... and
(V)n=12,... from the alphabet A such that

1. U,V is a prefix of the sequence ( (#) (€))n=01,.;
2. (|Un|/|Val)n=12,.. is bounded;
3. (|Val)n=1,2,.. is strictly increasing.

Adamczewski and Bugeaud [2] proved for any § € Z, that if £ satisfies Condition A, then
¢ is transcendental. Finally, we note that (3.1) and the above criteria for transcendence
are analogies of S-expansions of real numbers by a Pisot or Salem number £ in [2].

4 Criteria for transcendence related to p-adic expan-
sion

In this section, p and d denote a fixed prime number and a fixed positive integer, respec-
tively. Put L := Q,(p*/?). Then the extension L/Q, is totally ramified of degree d and
the ring of integers of L is O = Z,(p'/?). For any ¢ € O, there exist a unique expansion

E=> O
n=0
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where t,(f)(f) e A={0,1,...,p—1} for any n > 0. Set
VP (g;N) := Card{n € Z| 0 < n < N, t)(€) # 0}.
We introduce an analogy of the lower bounds for v(3,£; N) in Section 2 as follows:

THEOREM 4.1. Let £ € O be an algebraic number of degree D. Assume that @ (&) #
0 for infinitely many n’s. Then there exist effectively computable positive constants
Cs(p,d, &) and Cy(p, d, &) depending only on p,d and £ such that

v (& N) > Cs(p,d, )NV
for any integer N with N > Cq(p, d, £).

Applying Theorem 4.1, we obtain criteria for transcendence as follows: Let £ € O.
Suppose that s )(5) # 0 for infinitely many n and that

g YOG N)
ey 0

for any positive real number R. Then £ is transcendental.
We give new examples of transcendental numbers in O. Recall that (wm)m=12,.. and
(Tm)m=s.4,.. are defined by (2.7) and (2.8), respectively. Then

ipmm/d) ipzm/d
m=1 m=3

are transcendental.
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