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Abstract

In this paper we investigate lower bounds for the numbers of nonzero digits of

p=adic algebraic numbers. As a consequence, we introduce criteria for the transcen‐

dence of certain power series and we give new examples of transcendental numbers.

1 Introduction

Many mathematicians have studied the transcendence of the values of analytic functions

f(z) at algebraic points. In this paper we consider the case where

f(z)=\displaystyle \sum_{n=0}^{\infty}s_{n}z^{n} , (1.1)

where (s_{n})_{n=0,1},\ldots is a bounded sequence of nonnegative integers. We denote by \mathcal{M}(\mathbb{Q})=
\{\infty\}\cup { p|p is prime} the set of the places of \mathbb{Q} . Let v\in \mathcal{M}(\mathbb{Q}) . We denote by \mathbb{C}_{v}\mathrm{a}
completion of an algebraic closure of \mathbb{Q}_{v} . If  v=\infty

,
then let |\cdot|_{\infty} be the usual Euclidean

norm on \mathbb{C} . In the case where v=p is a prime, |\cdot|_{p} denotes the p‐‐adic norm on \mathbb{C}_{p}
normalized so that |p|_{p}=p^{-1}.

Let v\in \mathcal{M}(\mathbb{Q}) be fixed. Let (v_{m})_{m=0,1},\ldots be a sequence of nonnegative integers satis‐

fying

 v_{m+1}>v_{m} (1.2)

for any sufficiently large m . Then the power series \displaystyle \sum_{m=0}^{\infty}z^{v_{m}} is rewritten as (1.1), where

s_{n}\in\{0 ,
1 \} for any sufFiciently large n . Corvaja and Zannier [9] proved for any algebraic

number  $\alpha$ with  0<| $\alpha$|_{v}<1 that if

\displaystyle \lim_{m\rightarrow}\inf_{\infty}\frac{v_{m+1}}{v_{m}}>1 , (1.3)

then \displaystyle \sum_{ $\tau$ n=0}^{\infty}$\alpha$^{v_{m}} is transcendental. However, the transcendence of \displaystyle \sum_{m=0}^{\infty}$\alpha$^{v_{m}} is generally
unknown if (1.3) does not hold. If  v=\infty and  $\alpha$=1/2 ,

then Bailey, Borwein, Crandall,
and Pomerance [4] improved the criteria by Corvaja and Zannier as follows: If

\displaystyle \lim_{m\rightarrow}\sup_{\infty}\frac{v_{m}}{m^{R}}=\infty (1.4)
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for any positive real number  R ,
then \displaystyle \sum_{m=0}^{\infty}2^{-v_{m}} is transcendental. The result above is

an application of the results on the binary expansions of algebraic irrational numbers.

In Section 2 we review known results on the  $\beta$‐expansions of algebraic numbers in

the case where  $\beta$ is a Pisot or Salem number. In particular, we introduce criteria for

the transcendence of power series in [11]. In Section 3 we investigate the digits of p‐‐adic
algebraic numbers. Consequently, we deduce criteria for the transcendence of the nadic
numbers, which gives new examples of transcendental numbers.

2 Criteria for transcendence related to  $\beta$‐expansion

In this section we denote the integral and fractional parts of a real number  x by \{x\}
and \lfloor x\rfloor , respectively. Let  $\beta$ be a real number greater than 1 and  T_{ $\beta$} : [0, 1]\rightarrow[0 , 1) the

 $\beta$‐transformation defined by
 T_{ $\beta$}(x)=\{ $\beta$ x\}.

Then the  $\beta$‐expansion of a real number  $\xi$\in[0 ,
1 ] is given by

 $\xi$=\displaystyle \sum_{n=1}^{\infty}t_{n}( $\beta$; $\xi$)$\beta$^{-n},
where  t_{n}( $\beta$; $\xi$)=\lfloor $\beta$ T_{ $\beta$}^{n-1}( $\xi$)\rfloor for any positive integer  n.

If  $\beta$=b is a rational integer, then the  $\beta$‐expansion of  $\xi$ coincides with the usual base‐b

expansion of  $\xi$ . In particular, the sequence (s_{n}(b; $\xi$))_{n=1,2},\ldots is ultimately periodic for any

rational number  $\xi$\in[0 ,
1 ] . Now we recall the definition of Pisot and Salem numbers.

Let  $\beta$>1 be an algebraic integer with conjugates $\beta$_{1}= $\beta$, $\beta$_{2} , . . .

, $\beta$_{d} . Then  $\beta$ is a Pisot

number if |$\beta$_{i}|<1 for any i with i\geq 2 . In particular, any rational integer b\geq 2 is a Pisot

number. On the other hand,  $\beta$ is a Salem number if |$\beta$_{i}|\leq 1 for any i with 2\leq i\leq d
and if there exists j with 2\leq\dot{j}\leq d such that |$\beta$_{j}|=1 . Schmidt [13] proved that if

the  $\beta$‐expansion of each rational number  $\xi$\in[0 , 1) is ultimately periodic, then  $\beta$ is a

Pisot or Salem number. In the rest of this section, we assume that  $\beta$ is a Pisot or Salem

number. Bertrand [5] and Schmidt [13] proved for any Pisot number  $\xi$ that any number

 $\xi$\in \mathbb{Q}( $\beta$)\cap[0 ,
1 ] has the ultimately periodic  $\beta$‐expansion. However, the periodicity of

the  $\beta$‐expansion of rational numbers of  $\xi$ is generally not known in the case where  $\beta$ is a

Salem number.

In this section we study the numbers of nonzero digits in the  $\beta$‐expansions of algebraic
numbers  $\xi$\leq 1 . Let

 $\nu$( $\beta$,  $\xi$;N) :=\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}\{n\in \mathbb{Z}|1\leq n\leq N, t_{n}( $\beta$; $\xi$)\neq 0\}

for any positive integer N . It is generally difficult to give the asymptotic behavior of the

function  $\nu$( $\beta$,  $\xi$;N) for fixed  $\beta$>1 and  $\xi$\leq 1 . For instance, consider the case where  $\beta$=b
is a rational integer. Borel [6] conjectured that any algebraic irrational number is normal.

If Borel�s conjecture is true, then we have

\displaystyle \lim_{N\rightarrow\infty}\frac{ $\nu$(b, $\xi$;N)}{N}=\frac{b-1}{b}(>0) .
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However, we know no example of a base b\geq 2 and an algebraic irrational number  $\xi$\leq 1
such that the inequality

\displaystyle \lim_{N\rightarrow}\sup_{\infty}\frac{ $\nu$(b, $\xi$;N)}{N}>0
has been proved.

In what follows, we introduce known results on the lower bounds for  $\nu$( $\beta$,  $\xi$;N) . Unless

otherwise specified,
�

 $\nu$( $\beta$,  $\xi$;N)\gg f(N) for any sufficiently large N�

implies that there

exist effectively computable positive constants C( $\beta$,  $\xi$) and C'( $\beta$,  $\xi$) depending only on  $\beta$
and  $\xi$ satisfying

 $\nu$( $\beta$,  $\xi$;N)\geq C( $\beta$,  $\xi$)f(N)
for any integer N\geq C'( $\beta$,  $\xi$) . Bugeaud [8] gave lower bounds for the digit changes in

the  $\beta$‐expansions of algebraic numbers  $\beta$ and  $\xi$ . In the case where  $\beta$ is a Pisot or Salem

number, using his results, we get the following: Let  $\xi$\in[0 ,
1 ] be an algebraic number.

Suppose that t_{n}( $\beta$; $\xi$)\neq t_{n+1}( $\beta$; $\xi$) for infinitely many n' \mathrm{s} . Then

 $\nu$( $\beta$,  $\xi$;N)\displaystyle \gg\frac{(\log N)^{3/2}}{(\log\log N)^{1/2}} (2.1)

for any sufficiently large N.

In the case where  $\beta$=2 ,
then Bailey, Borwein, Crandall and Pomerance [4] gave better

lower bounds as follows: For any algebraic irrational number  $\xi$ of degree  D
,

we have

 $\nu$(2,  $\xi$;N)\geq C_{1}( $\xi$)N^{1/D} (2.2)

for any integer N\geq C_{2}( $\xi$) ,
where C_{1}( $\xi$) is an effective positive constant and C_{2} is an

ineffective positive constant. C_{1}( $\xi$) and C_{2}( $\xi$) depend only on  $\xi$.
Consequently, we deduce the criteria for transcendence we mentioned in Section 1.

In fact, let (v_{m})_{rn=0,1},\ldots be a sequence of nonnegative integers satisfying (1.2) for any

sufficiently large integer  m and (1.4) for any positive real number R . Put $\xi$_{1} :=\displaystyle \sum_{m=0}^{\infty}2^{-v_{m}}.
Then we have, for an arbitrary positive real number  $\epsilon$,

\displaystyle \lim_{N\rightarrow}\inf_{\infty}\frac{ $\nu$(2,$\xi$_{1};N)}{N^{ $\epsilon$}}=0.
In particular, (2.2) does not hold for any positive integer D . Hence, $\xi$_{1} is transcendental.

Adamczewski, Faverjon [1] and Bugeaud [8] independently gave effective versions of

(2.2) for any integral base as follows: Let  $\beta$=b\geq 2 be any integer and  $\xi$\in[0 ,
1 ] an

irrational number of degree D . Then

 $\nu$(b,  $\xi$;N)\gg N^{1/D} (2.3)

for any sufficiently large N.

In the case where  $\beta$ is a general Pisot or Salem number, then an analogy of (2.2)
and (2.3) is obtained by the following criteria in [11]: Let  B be a positive integer and

(s_{n})_{n=0,1},\ldots a sequence of integers such that

 0\leq s_{n}\leq B
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for any nonnegative integer n . Put

 $\xi$:=\displaystyle \sum_{n=0}^{\infty}s_{n}$\beta$^{-n} (2.4)

and

\overline{ $\nu$}(N) :=\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}\{n\in \mathbb{Z}|0\leq n\leq N, s_{n}\neq 0\}.
Note that (2.4) is not generally the  $\beta$‐expansion of  $\xi$ . Suppose that  $\xi$ is an algebraic
number satisfying [\mathbb{Q}( $\beta$,  $\xi$) : \mathbb{Q}( $\beta$)]=D ,

where [L : K] denotes the degree of a field

extension K/L . Then there exist effectively computable positive constants C_{3}( $\beta$,  $\xi$, B)
and C_{4}( $\beta$,  $\xi$, B) depending only on  $\beta,\ \xi$ ,

and  B such that

\displaystyle \overline{ $\nu$}(N)\geq C_{3}( $\beta$,  $\xi$, B)\frac{N^{1/(2D-1)}}{(\log N)^{1/(2D-1)}} (2.5)

for any integer N with N\geq C_{4}( $\beta$,  $\xi$, B) . In particular, applying the case where (2.4) is

the  $\beta$‐expansion of  $\xi$ ,
we have

 $\nu$( $\beta$,  $\xi$;N)\displaystyle \gg\frac{N^{1/(2D-1)}}{(\log N)^{1/(2D-1)}}
for any sufficiently large N.

Moreover, we obtain criteria for the transcendence of power series as follows: Let again
(v_{m})_{m=0,1},\ldots be a sequence of nonnegative integers fulfilling (1.2) and (1.4). Then

$\xi$_{2} :=\displaystyle \sum_{m=0}^{\infty}$\beta$^{-v_{rn}} (2.6)

is transcendental. Note that (2.6) is not also generally the  $\beta$‐expansion of  $\xi$_{2} . In the case

where  $\beta$=b is a rational integer, then the criteria above were essentially obtained by
Bailey, Borwein, Crandall, and Pomerance [4]. The main purpose of this paper is to give
an analogy of (2.5) for p‐‐adic algebraic numbers.

We give examples of transcendental numbers. Put

 w_{m}:=\lfloor m^{\log m}\rfloor=\lfloor\exp((\log m)^{2})\rfloor (2.7)

for any  m\geq 1 and

 x_{m} :=\lfloor m^{\log\log m}\rfloor=\lfloor\exp((\log m)(\log\log m)))\rfloor (2.8)

for any  m\geq 3 . Then we have

\displaystyle \lim_{m\rightarrow\infty}\frac{w_{m}}{m^{R}}=\infty, \lim_{m\rightarrow\infty}\frac{x_{m}}{m^{R}}=\infty
for any positive real number  R . Hence,

y_{1}:=\displaystyle \sum_{m=1}^{\infty}$\beta$^{-w_{m}}, y_{2}:=\sum_{m=3}^{\infty}$\beta$^{-x_{m}}
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are transcendental for any Pisot or Salem number  $\beta$ . Note that (w_{m})_{m=1,2},\ldots and (x_{m})_{m=3,4},\ldots
do not satisfy (1.3) because

\displaystyle \lim_{m\rightarrow\infty}\frac{w_{m+1}}{w_{m}}=1, \lim_{m\rightarrow\infty}\frac{x_{m+1}}{x_{m}}=1.
Therefore, the transcendence of y_{1} and y_{2} is not obtained by the criteria by Corvaja and

Zannier in Section 1.

3 Review of p‐adic normal numbers

Let b be an integer greater than 1 and  $\xi$\leq 1 a real number. Recall that  $\xi$ is normal in

base‐b if the following property holds: Let  L be any positive integer and v any word from

the alphabet \{0, 1, . . . , b-1\} with length L . Then v appears in the base‐6 expansion of

 $\xi$ with average frequency tending to  b^{-L}
, namely, we have

\displaystyle \lim_{N\rightarrow\infty}\frac{\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}\{n|1\leq n\leq N,v=t_{n}(b; $\xi$)\ldots t_{n+L-1}(b; $\xi$)\}}{N}=\frac{1}{b^{L}}.
Ferrero and Washington [10] introduced the notion of joint normality of p‐‐adic integers,
where p is a prime number. For any  $\xi$\in \mathbb{Z}_{p} , we denote the p‐adic expansion by

 $\xi$=\displaystyle \sum_{n=0}^{\infty}t_{n}^{(p)}( $\xi$)p^{n},
where t_{n}^{(p)}( $\xi$)\in\{0, 1, . . . , p-1\} for any nonnegative integer n . For simplicity, put

t_{n,M}^{(p)}( $\xi$):=t_{n}^{(p)}( $\xi$)t_{n+1}^{(p)}( $\xi$)\ldots t_{n+M-1}^{(p)}( $\xi$)
for any integers n\geq 0 and M\geq 1 . In what follows, put

\mathcal{A}:=\{0, 1, . . . p-1\}.

Let $\xi$_{1} ,
. . .

, $\xi$_{r}\in \mathbb{Z}_{p} . We say that $\xi$_{1} ,
. . .

, $\xi$_{r} are jointly normal if the following property
holds: Let L be any positive integer and v_{1} ,

. . .

, v_{r} be any words from the alphabet \mathcal{A}

with length L . Then we have

\displaystyle \lim_{N\rightarrow\infty}\frac{\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}\{n|1\leq n\leq N,v_{i}=t_{n,L}^{(p)}($\xi$_{i})\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}i=1,\ldots,r\}}{N}=\frac{1}{p^{rL}}.
In the case of r=1

,
if  $\xi$ is jointly normal, then we call  $\xi$ normal. It is remarkable

that the notion of joint normality is applicable to Iwasawa theory. In fact, Ferrero and

Washington [10] used certain jointly normal numbers to verify that the Iwasawa invariant

 $\mu$_{p}(k) vanishes for any abelian number field k (see also [15]).
Moreover, Anglès [3] proposed a problem on the transcendence of the Iwasawa power

series modulo certain uniformization of \mathbb{Z}_{p}[ $\theta$] over \overline{\mathbb{F}_{p}}(T) ,
where \overline{\mathbb{F}_{p}} is an algebraic closure of

the finite field with p elements. Sun [14] proved the transcendence on this problem under
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the assumption that Borel�s conjecture on the normality of p‐‐adic algebraic irrational

number  $\xi$\in \mathbb{Z}_{p} holds.

Borel�s conjecture of \mathrm{p}‐adic version implies for each prime number p that any algebraic
irrational number  $\xi$\in \mathbb{Z}_{p} is normal. However, this conjecture has not also been proved.
For any  $\xi$\in \mathbb{Z}_{p} ,

we write the complexity function of the sequence (t_{n}^{(p)}( $\xi$))_{n=0,1},\ldots by

 P( $\xi$;N) :=\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}\{t_{n,N}^{(p)}( $\xi$)|n\in \mathbb{Z}, n\geq 0\}(N=1,2, . .

If  $\xi$ is normal, then we have  P( $\xi$;N)=p^{N} for any positive integer N . Adamczewski and

Bugeaud [2] verified for any algebraic irrational number  $\xi$\in \mathbb{Z}_{p} that

\displaystyle \lim_{N\rightarrow\infty}\frac{P( $\xi$;N)}{N}=\infty . (3.1)

In the same paper, they also investigated certain criteria for the transcendence of  p-‐adic

integers. For any finite word W=w_{1}\ldots w_{l} and any positive real number x
,

set

|W|:=l

and

W^{x}:=\displaystyle \frac{WW\ldots W}{\lfloor x\rfloor}W',
where W' is the prefix of W with length \lceil\{x\}|W|\rceil . We say for any  $\xi$\in \mathbb{Z}_{p} that  $\xi$ satisfies

Condition A if (t_{n}^{(p)}( $\xi$))_{n=0,1},\ldots is not ultimately periodic and if there exists a real number

 w>1 satisfying the following: there exist two sequences of finite words (U_{n})_{n=1,2},\ldots and

(V_{n})_{n=1,2},\ldots from the alphabet \mathcal{A} such that

1. U_{n}V_{n}^{w} is a prefix of the sequence (t_{n}^{(p)}( $\xi$))_{n=0,1},\ldots ;

2. (|U_{n}|/|V_{n}|)_{n=1,2},\ldots is bounded;

3. (|V_{n}|)_{n=1,2},\ldots is strictly increasing.

Adamczewski and Bugeaud [2] proved for any  $\xi$\in \mathbb{Z}_{p} that if  $\xi$ satisfies Condition \mathrm{A}
,
then

 $\xi$ is transcendental. Finally, we note that (3.1) and the above criteria for transcendence

are analogies of  $\beta$‐expansions of real numbers by a Pisot or Salem number  $\beta$ in [2].

4 Criteria for transcendence related to  p‐adic expan‐

sion

In this section, p and d denote a fixed prime number and a fixed positive integer, respec‐

tively. Put L :=\mathbb{Q}_{p}(p^{1/d}) . Then the extension L/\mathbb{Q}_{p} is totally ramified of degree d and

the ring of integers of L is \mathcal{O}=\mathbb{Z}_{p}(p^{1/d}) . For any  $\xi$\in \mathcal{O} , there exist a unique expansion

 $\xi$=\displaystyle \sum_{n=0}^{\infty}t_{n}^{(p)}( $\xi$)p^{n/d},
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where t_{n}^{(p)}( $\xi$)\in \mathcal{A}=\{0, 1, . . . , p-1\} for any n\geq 0 . Set

$\nu$^{(p)}( $\xi$;N) :=\mathrm{C}\mathrm{a}x\mathrm{d}\{n\in \mathbb{Z}|0\leq n\leq N, t_{n}^{(p)}( $\xi$)\neq 0\}.

We introduce an analogy of the lower bounds for  $\nu$( $\beta$,  $\xi$;N) in Section 2 as follows:

THEOREM 4.1. Let  $\xi$\in \mathcal{O} be an algebraic number of degree D. Assume that  t_{n}^{(p)}( $\xi$)\neq
 0 for infinitely many n' s . Then there exist effectively computable positive constants

C_{5}(p, d,  $\xi$) and C_{6}(p, d,  $\xi$) depending only on p, d and  $\xi$ such that

 $\nu$^{(p)}( $\xi$;N)\geq C_{5}(p, d,  $\xi$)N^{1/D}

for any integer N with N\geq C_{6}(p, d,  $\xi$) .

Applying Theorem 4.1, we obtain criteria for transcendence as follows: Let  $\xi$\in \mathcal{O}.
Suppose that t_{n}^{(p)}( $\xi$)\neq 0 for infinitely many n and that

\displaystyle \lim_{N\rightarrow}\inf_{\infty}\frac{$\nu$^{(p)}( $\xi$;N)}{N^{R}}=0
for any positive real number R . Then  $\xi$ is transcendental.

We give new examples of transcendental numbers in \mathcal{O} . Recall that (w_{m})_{m=1,2},\ldots and

(x_{m})_{m=3,4},\ldots are defined by (2.7) and (2.8), respectively. Then

\displaystyle \sum_{m=1}^{\infty}p^{w_{m}/d}, \sum_{rn=3}^{\infty}p^{x_{m}/d}
are transcendental.

References

[1] B. Adamczewski and C. Faverjon, Chiffres non nuls dans le développement en base

entière des nombres algébriques irrationnels, C. R. Acad. Sci. Paris, 350 (2012), 1‐4.

[2] B. Adamczewski and Y. Bugeaud, On the complexity of algeraic numbers I. Expan‐
sions in integer bases, Annals of Math. 165 (2007), 547‐565.

[3] B. Anglès, On the p‐‐adic Leopoldt transform of a power series, Acta Arith. 134

(2008), 349‐367.

[4] D. H. Bailcy, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary
expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16 (2004), 487‐518.

[5] A. Bertrand. Développements en base de Pisot et répartition modulo 1, C. R. Acad.

Sci. Paris Sér. A‐B, 285 (1977), A419‐A421.

[6] É. Borel, Sur les chiffres décimaux de \sqrt{2} et divers problèmes de probabilités en

chaîne, C. R. Acad. Sci. Paris 230 (1950), 591‐593.

137



[7] Y. Bugeaud, Distribution modulo one and diophantine approximation, Cambridge
Tracts in Math. 193, Cambridge, (2012).

[8] Y. Bugeaud, On the  $\beta$‐expansion of an algcbraic number in an algcbraic base  $\beta$,
Integers 9 (2009), 215‐226.

[9] P. Corvaja and U. Zannier, Some new applications of the subspace theorem, Com‐

positio Math. 131 (2002), 319‐340.

[10] B. Ferrero and L. C. Washington, The Iwasawa invariant $\mu$_{p} vanishes for abelian

number fields, Ann. of Math.109 (1979), 377—395.

[11] H. Kaneko, On the beta‐expansions of 1 and algebraic numbers for a Salem number

beta, to appear in Ergod. Theory and Dynamical Syst.

[12] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math.

Acad. Sci. Hung. 8 (1957), 477—493.

[13] K. Schmidt, On periodic expansions of Pisot and Salem numbers, Bull. London Math.

Soc. 12 (1980), 269‐278.

[14] H. S. Sun, Borel�s conjecture and the transcendence of the Iwasawa power series,
Proc. Amer. Math. Soc. 138 (2010), 1955‐1963.

[15] L. C. Washington, Introduction to Cyclotomic fields, Berlin‐Heidelberg‐New York,
Springer, 1982.

138


