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ASYMPTOTIC EXPANSIONS FOR THE LAPLACE-MELLIN AND
RIEMANN-LIOUVILLE TRANSFORMS OF LERCH ZETA-FUNCTIONS
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ABSTRACT. This article summarizes the results appearing in the forthcoming paper [13].
For a complex variable s, and real parameters @ and A with @ > 0, the Lerch zeta- .

function ¢(s, a, X} is defined by the Dirichlet series }_;o, e(AM)(a+1)~* (Res > 1), and its
meromorphic continuation over the whole s-plane, where e(\) = €?***, and the domain
of the parameter a can be extended to the whole sector |argz| < .w. It is treated
in the present article several asymptotic aspects of the Laplace-Mellin and Riemann-

. Liouville (or Erdély-Kober) transforms of ¢(s, a, A), together with its slight modification
#*(s, a, \), both applied with respect to the (first) variable s and the (second) parameter
a. We shall show that complete asymptotic expansions exist for these objects when
the ‘pivotal parameter’ z of the transforms tends to both 0 and oo through the sector
| arg 2| < 7 (Theorems 1-8). It is further shown that our main formulae can be applied to
deduce certain asymptotic expansions for the weighted mean values of ¢*(s, a, A) through
arbitrary vertical half-lines in the s-plane (Corollaries 2.1 and 4.1), as well as to derive
several variants of the power series and asymptotic series for Euler’s gamma and psi
functions (Corollaries 8.1-8.8).

1. INTRODUCTION

Throughout the article, s is a complex variable, z a complex parameter, a and A real
parameters with a > 0, and the notation e(z) = €*™* is frequently used. The Lerch
zeta~function ¢(s, a, ) is defined by the Dirichlet series

o0
(1.1) #(s,0,0) = _e(\)(a+1)""  (Res>1),

1=0
and its meromorphic continuation over the whole s-plane; this reduces if A € Z to the
Hurwitz zeta-function {(s,a), and so ¢(s,1) = ((s) is the Riemann zeta-function. The
domain of the parameter a in (1.1) can be extended to the whole sector |argz| < =
through the procedure in [10], where it was shown for ¢(s,a + 2, A) (with a > 0) that the
unified treatment of its power series expansion (in the disk |z| < a), and of its asymptotic
series expansion (as z — oo through the sector |argz| < m) is possible by means of
Mellin-Barnes type integrals.

Let I'(s) denote the gamma function, o and 8 be complex numbers with Rea > 0
and Ref > 0, f(z) a function holomorphic in the sector |argz| < w, and write X, =
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max(0, X} for any X € R. We introduce here the Laplace-Mellin and Riemann-Liouville
(or Erdélyi-Kober) transforms of f(z), in the forms

(1.2) LMG f(T) = T@) / flzr)r* e "dr
and
(1.3) Rﬁz‘;’ff('r) = F(a);(,[;) / flzr)re (1 - )ﬁ lar

with the normalization gamma multiples, provided that the integrals converge; the factor
71 is inserted to secure the convergence of the integrals as 7 — 0%, while e™™ and
(1 = 7)271 have effects to extract the portions of f(7) corresponding to 7 = O(z). Let
d(\) denote the symbol which equals 0 or 1 according to A ¢ Z or A € Z. We further
introduce a slight modification ¢*(s, a, A) of ¢(s, z, A), defined by

1-s
s {g(s, 9-I=  itAez,

14 FoN) =50 -
§T #(s,2,\) otherwise,

in which the only (possible) singularity at s = 1 can be removed. Let f™)(s) for any entire
function f(s) denote its mth derivative if m =0, 1,2, ..., and further the nth primitive if
m = —n with n = 1,2, ..., defined inductively by

] 0400

(1.5)  fEm(s) = FE D) (w)dw = —/ oG +2)dz (n=1,2,...),
8+00 0

provided that the integral converges, where the path of integration is the horizontal line

segment.
It is the principal aim of the present article to treat asymptotic aspects of the Laplace-
Mellin and Riemann-Liouville transforms of the (modified) Lerch zeta-function, given by

(1.6) L:Mg‘;,.(gb‘)(m)(s +7a,A) = ﬁ / w(¢*)(m)(5 + 27,0, \)T* e "dr,
0
0 (¥ (m) _T@+h) (% ym a-1(1 _ p)f-1
(1.7) RLIE(")™(s+7,a,)) T(T®) Jo (@")™(s + 27,0, )T (1 — 1) dT,

for any m € Z, and

1 (o]
1.8 LM P(s,a+T7,A) = —/ s,a+ 21, \) T e dr,
(18) 9 )= /|« )

F(a +0)
()T (B)

where the conditions a > 1 and |arg z| < w/2 are required in (1.6) for convergence of the
integral, while @ > 0 and |argz| < 7/2 in (1.8). We shall present here that complete
asymptotic expansions exist for (1.6)—(1.9) when both 2 — 0 and z — oo through the
sector | argz| < .

We give here a brief overview of history of research relevant to asymptotic aspects of
“the integral transforms of zeta-functions.

(1.9) ’R,Ej;qu(s, a+T1A) = / é(s,a+ zr, \)r*~}(1 — 7)§ dr,



ASYMPTOTIC EXPANSIONS FOR LERCH ZETA-FUNCTIONS

The study of Laplace transforms for (the mean square of) {(s) seems to be initiated by
Hardy-Littlewood [5], who obtained the asymptotic relation

L1/2(6) = /Ooo C(% +it) %

say, in connection with the research of asymptotic aspects of the (upper-truncated) mean
square of ¢(s), in the form fOT |¢(1/2+1it)|?dt (as T — +o0). Wilton [16] then refined the
result above to
1. 1 log2mr—% 1 301
==logz — =—— —log¥% = +
L1/2(9) 5°g5 3 —}-O(\/3 og 3 (as § — 01),

where 7 is the Oth Euler-Stieljes constant (cf. [4, p.34, 1.12(17)]); the last O-term was
in fact replaced by a complete asymptotic expansion by Kéber [14], who showed, for any
integer N > 0,

2
e Ot dt ~ log% (as 6 — 07),

1 1 log2m— o N n 1 1
£1/2(6)=-510g5—T+a0+26 an+bnlog3+cnlog23

n=1
+0 <5N+1 log? %) (as § — 01),

where ag, ay, b, and ¢, (n = 1,2,...) are some constants. It was finally succeeded, through
rather more elementary arguments, by Atkinson [2] (among other things) in dropping the
terms with log?(1/8) in the asymptotic series above (i.e. ¢, = 0), and in improving the
error term to O{6"*1log(1/6)}.

In the mean time, a more general Laplace transform

£e) = [ lotp+ im)feeda

was treated in the late 1990’s by Jutila [8], who made a detailed study of £,(s) especially
on the critical line p = 1/2, while obtaining its asymptotic formula as s — 0 through
the sector |args| < n/2, and applied it to re-derive the classical (so-called) Atkinson’s
formula for the error term of the (upper-truncated) mean square of {(s) (cf. [3]). A further
study of £,(s) has been carried out by Kaéinskaité-Laurin¢ikas [9]. On the other hand,
the (lower-truncated) Mellin transform

Mi(s) = /1 Clo+io)Pa—ds  (k=1,2,...),

was explored by Ivié-Jutila-Motohashi [7], who applied it to investigate the higher power
moments (and in particular the eighth power moment) of {(s). A research subsequent to
[7] was due to Ivié [6], while Laurinéikas [15] made a detailed study of the case k =1
(i.e. the mean square case) of My ,(s).

Next let a, b, p and v be arbitrary real parameters, and v¥z2(s; a, b; 4, v; z) denote the
generalized Epstein zeta-function defined for Im z > 0 by

(=]

(1.10) Yga(s;a,b; u,v; 2) = Z’ e((a+m)p+ (b+n)v)

x la+m+ (b+n)z|™* (Res > 1),

and its meromorphic continuatioﬁ over the whole. s-plane, where the (possibly emerging)
singular term 0~2° is to be excluded; the particular case (a,b) € Z? and (u,v) = (0,0)
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reduces to the classical Epstein zeta-function (z2(s;z). The author [11] has shown that
complete asymptotic expansions exist for (z2(s; z) when Im z = y — +00, and also for the
Laplace-Mellin transform LM$, (z2(s; = + 4y) when Y — +o0o. The method developed
in [11] could be extended to show in (the subsequent paper) [12] that similar expansions
exist further for v2(s;a, b; p, v; z) when y — +00, as well as for the Riemann-Liouville
transform Rﬁ?/’gg“zz(s; T +iy) when Y — +o0.

The present article is organized as follows. Various complete asymptotic expansions,
together with their applications, for the transforms (1.6) and (1.7) are presented in the
next section, while those for (1.8) and (1.9) are given in Section 3. The final section is
devoted to stating several applications of our results to Euler’s gamma and psi functions.

2. STATEMENT OF RESULTS: THE FIRST VARIABLE

We first introduce the Riemann-Liouville type operators with the initial point at oo,
defined for any (r,s) € C? by

1 (o+)
2.1) I5:f(s) = W/ f(s+2)2"dz,

(oo}

provided that the integral converges, where the path of integration is a contour which
starts from oo, proceeds along the real axis to a small £ > 0, encircles the origin counter-
clockwise, and returns to co along the real axis; argz varies from 0 to 27 along the
contour.

The auxiliary zeta-function ¢%(s, a, ) is defined for any (r,s) € C?, for any real @ > 1
and for any A € R by

(2.2) #r(s,a,A) = I, ,9°(s,a,)),

which is crucial in describing the assertions on (1.6) and (1.7). We further let (s), =
I'(s +n)/I'(s) for any integer n denote the shifted factorial of s, and write

Qpy..ey Oy HT:IF(ah)
F(ﬂly"-,ﬂn) - H;::lr(ﬂk)

for complex numbers a4, and B (h=1,...,m; k=1,...,n).
We now state our results on the Laplace-Mellin transform (1.6) of ¢(s, a, A) with respect
to the first variable s.

Theorem 1. Let o and s be any complez numbers with Rea > 0, a and A any real
parameters with a > 1, and m any integer. Then for any integer N > 0 the formula
N-1
-1 n+m
(28 LML)+ =Y Ty
n=0

+ R, n(8,0,)2)

n' —n—m(s7 a? A)zn

holds in the sector |arg z| < w. Here R;m, ~N(8,a,; z) is the remainder term expressed by

a certain Mellin-Barnes type integral, and satisfies the estimate
(24) R} n (5,0, 2) = O{(| Im 5| 4 1) 2-ReeD) | N}

as z — 0 through |arg z| < m — § with any small § > 0, where the constant implied in the
O-symbol depends at most on a, a, Res, m, N and d.
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Theorem 2. Let a, s, a, A and m be as in Theorem 1. Then for any integer N > 0 the
formula

N-1 n
(2.5) LM (%) ™(s +17,0,)) = Z(“ - ;! —

n=0

¢a+n—m(s a, A)z.—m_n

+ R, n(5,0,);2)

holds in the sector |arg z| < m. Here R, n(s,a,}; z) is the remainder term ezpressed by
a certain Mellin-Barnes type integral, and satisfies the estimate

(2.6) R (8,0, 2 2) = O{(| Im 5] + 1)mex(®l2=Resl) || = Rea=N}

as z — o0 through |argz| < m — & with any small 6 > 0, where the constant implied in
the O-symbol depends at most on «, a, Res, m, N and d.

We write sgn X = X/|X| for any real X # 0. Then the case (s, z) = (0,it) with o, € R
of Theorem 2 asserts the following result.

Corollary 2.1. Let s, a, a, A and m be as in Theorem 1, and o any real number. Then
for any integer N > 0 the asymptotic ezpansion

n+m X
27) LM ("™ (o +ir,a,0) = Z( 1) % Gt (0, 8, ) (€™ E 2 g 7
n=0
+0(|t|-“ea-”>

holds as t — to00, where the constant implied in the O-symbol depends at most on ¢, o,
a, m and N.

We proceed to state our results on the Riemann-Liouville transform (1.7) of ¢(s, a, A)
with respect to the first variable s.

Theorem 3. Let o, 8 and s be any complez numbers with Rea. > 0 and Re 8 > 0, a and
X any real parameters with a > 1, and m any integer. Then for any integer N > 0 the
formula

N1 ntm( o
(28) REE($) (s + 70,0 = 3 L

n=0

+ RI,B,m’N(s, a,\; z)

Zn-m(8) @, A)2"

holds in the sector |argz| < w. Here R;ﬂ,m,N(s, a, \; z) 1s the remainder term expressed
by a certain Mellin-Barnes type integral, and satisfies the estimate

(2.9) R} pm(5,0,X;2) = O{(| Im s| + 1)72x(®l2-Rec 4|V}

as z — 0 through | arg z| < m — § with any small 6 > 0, where the constant implied in the
O-symbol depends at most on a, B, a, Res, m, N and J.

We write €(z) = sgn(arg z) for any complex z in the sectors 0 < |arg 2| < .
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Theorem 4. Let o, (3, s, a, A and m be as in Theorem 4. The for any integers N; > 0
( = 1,2) the formula

(2.10) RL: (8" ™(s +7,a,)
Ni-1
+ —e(2)mia c (__1)n+m( )n(l - ﬂ)n
= ("5 {2 a

x ¢Z+n—m(s7 a, )‘) (e“E(Z)m.Z)_a—n + R;a,ﬂ,m,Nl (S, a, )‘; z)}

n!

Na—1 n+m
+r(*+) es(zw{ 3 D00 o)

n=0
X ¢E+n—m(s +2,a, )‘)z_ﬁ—‘" + B0 pm,N (s,a, X z)}

holds in the sectors 0 < |arg z| < w. Here R}, 5., n.(5,a,\; 2) (j = 1,2) are the remainder
terms expressed by certain Mellin-Barnes type integrals, and satisfy the estimates

(2.11) Ry (8,8, X 2) = O{(| Tm s + 1)max(O2-ResD 5| ~Rea=ti}

and

(2.12) R;,a,ﬁ,m,Ng(s’ a, A, Z) = O{(I Im(s + z)l + 1)ma‘x(0’12_R£(3+z)j)lzl—Rﬁﬂ—N2}

both as z — oo through § < |argz| < m — § with any small § > 0. Here the constant
implied in the O-symbol in (2.11) depends at most on a, 3, a, Res, m, N; (j =1,2) and
4, while that in (2.12) at most on a, B, a, Res, Rez, m, N; (j = 1,2) and 6.

The case (s, z) = (0, 4t) with 0,7 € R of Theorem 4 above asserts the following result.

Corollary 4.1. Let o, 83, a, A be as in Theorem 2 and o any real number. Then for any
integers N; > 0 (j = 1,2) the asymptotic expansion

(218)  RLEF(¢")™(0 +1iT,a,))

= F(a -'g B) e_m"’sgnt{Ni_:l (—“1)n+m(:3n(1 — ﬂ)n

n=0

X Geetn-m (0, 8, X) (€7 E 2 [t]) =7 + O(ft[ ReoN 1)}

n!

+ F(a : ,3) eﬂiﬂsgnt{i%jl (—1)n+m(:6)n(1 —Q)n

n=0

X Gpin-m (0 +it, a, X) (™2}t 4 O(Itl“‘““””‘”"‘“"‘m)}

holds as t — 00, where the constants implied in the O-symbols depend at most on «, 3,
o, mand N; (j =1,2).
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3. STATEMENT OF RESULTS: THE SECOND PARAMETER

We next state our results on the Laplace-Mellin transform (1.8) of ¢(s, z, A) with respect
to the second parameter z.

Theorem 5. Let a be any complex numbers with Rea: > 0, a and A any real parameters
with a > 0. Then for any integer N > 0, in the region Res > 1 — N exzcept at s =1 the
formula

R ONE))

(3.1) LM d(s,a+T,)) =) ~———="g(s +n,a,0)2"
i “~ n!

+ R N(s,a,);2)
holds for |arg z| < w. Here R;N(s, a, \; 2) 1s the remainder term expressed by a certain
Mellin-Barnes type integral, and satisfies the estimate
(3.2) RI n(s,a,X2) = O(|z|V)
as z — 0 through | arg z| < m — & with any small § > 0, where the constant implied in the
O-symbol depends at most on a, a, s, N and 6.

Apostol [1] introduced the generalized Bernoulli polynomials B,(z,y) (n = 0,1,...)
defined for any complex z and y by the Taylor series expansion

ze”* i By(,9) n

z_ 1 1
ye* — 1 ~ nl

centered at 2 = 0. The function Bi(z,y), coincides with the usual Bernoulli polynomial
By(z) if y = 1, is a polynomial in z of degree k with coefficients in Q(y).

Theorem 6. Let «, s, a, X be as in Theorem 5. Then for any integer N > 0, in the
region Res > —N except at s € {a+1 |l € Z}, upon setting N' = N — |Re(a — s)|, the
formula

(33) ACM:;TQS(S, a+ Ty A)
N=1 ; .\n+1 o
- S e
n=—1 )
N'—1 n »
+ Z —(_l)ny(a)"l“(s B ‘; B n) d(s—a—n,a,N)z""
n=0 :

+ R, n(s,a, ) 2)
holds for |argz| < m. Here R, y(s,a,); z) is the remainder term expressed by a certain
Mellin-Barnes type integral, and satisfies the estimate
(34) R n(s,8,4;2) = O(|z|Re*~N)
in|argz| < w—4 for any small § > 0, where the constant implied in the O-symbol depends
at most on ¢, a, s, N and §.

Let 1(s) denote Euler’s psi function given by (4.1) below, and 7o(a,e())) the Oth
generalized Euler-Stieltjes constant defined by the Laurent series expansion

(3.5) #(s, a, ,\) = &(;i’;fi—’\—)l + 70(a, e(A)) + O(s — 1)
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centered at s = 1. We further define for any integers [ and n with n > —1 the coefficients
Cain(s,e(N)) by

Bo(a, e)){#(1) + (1) ~ ¥(a+1~ 1)}
+10(a, e(V) ifn =1,

Bnii(a, eA){¥(n+1) +¥(n+1+1)
—Ypla+1+n)} — (n+1)¢(-n,a,A) ifn>0,

(3.6) Cain(a, e(N)) =

where the prime on ¢ signifies hereafter that 8/9s. It is in fact possible to transfer from
the expansion in Theorem 6 to those for the excluded cases by taking the limits s — a 41
for any [ € Z.

Corollary 6.1. For any integer N > 0 the following asymptotic expansions hold as
z — oo through the sector |arg z| < ™ — § with any small § > 0:

iywhens=a+1(1=1,2,...),

(3.7 L',M‘z"..,qS(a +la+T1,M)
Z ~1)™(a+ l)n_,( —-1)! o1 — 1,0, \)z—o
'n—O

<1)“’“ @+Dn _atn
I"(a Z:(n-lrl'(n~i-l)' l

X {B,,+1 (a,e(A\)log z + Cyynla, e )} +O(|z|~Reat=Ny;
) when s = a—m (m=0,1,2,...),

(3.8) LMZ d(a—m,a+T,N)

- Z_( SHAC (nr—r:-)rllg?z Eo 1)' Bnii(a,e(X))z~otm"

()™~ (a—m),
I'(a) = (n+1){(n—m)!

X { Bny1(a,e(N)10g z + Co—mn(a, e(N) } + O(|z|~Rextm=N),

—a+m—n

—+

Here the constants implied in the O-symbols depend at most on o, a, I, m, N and §.

We proceed to state our results on the Riemann-Liouville transform (1.9) of ¢(s, 2, \)
with respect to the second parameter 2.

Theorem 7. Let a, B and s be complex numbers with Rea > 0 and Ref > 0, and a,
A real parameters with a > 0. Then for any integer N > 0, in the region Res > 1 — N
except at s = 1, the formula

(3.9) RLI $(s,a+T,)) = Z L (9n(@)n e +sﬁ))"(:,)"

n=0

+ Ra,,B,N(S’ a,\; 2)

o(s+mn,a,\)z"

42
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holds for |arg z| < 7. Here R 5 y(s,a,; 2) is the remainder term expressed by a certain
Mellin-Barnes type integral, and satisfies the estimate

(3.10) RY 5 n(s,0,%2) = O(|=")

as z — 0 through | arg z| < m — § with any small § > 0, where the constant implied in the
O-symbol depends at most on a, a, s, N and 6.

The limiting case N — +00 in Theorem 7 asserts the following result.

Corollary 7.1. Let a, 3, a, A be as in Theorem 7. Then we have in the disk |z] < a the
power series expansion, ercept at s =1,

(3.11) R d(sat ) =3 (_(%(‘2)’1(_“2’1

n=0
Theorem 8. Let o, 3, s, a, A be as in Theorem 7. Then for any integer N > 0, in the
region Res > —N except at s € {a +1 |l € Z}, upon setting N' = N — |Re(a — s) ], the
formula

(3.12) ’R,,C“"%(s a+71,A)
_ z ( 1 n+1(s)n (a —s—n,a+ B) Basi(a, (V) 2"

(s +n,a, )"

2 T+ ) \ma+pB-s—n
+ ; 1) (a)n ( _i’;Tg_i"’B)qS(s—a—n,a,/\)z”a~"

+ R;’ﬁ,N(s, a, \; 2)

holds for | arg z| < w. Here R 4 n(s,a, A; 2) is the remainder term expressed by a certain
Mellin-Barnes type integral, and satisfies the estimate

(3.13) R sn(s,0,052) = O(|z|Res—V)

as z — oo through |arg z| < m — § with any small § > 0, where the constant implied in
the O-symbol depends at most on o, a, N, s and §.

We next define for any integers ! and n with n > —1 the coefficients Cy g1n(a, e(X)) by
(3.14)  Capinla,e(X))
Bo(a,e(A){9(1) +9() - pla+1-1)

R —(B =1+ 1)} +0(a,e(N) ifn=-1,
Buii(a, eN){¥(n+ 1)+ ¢(n+1+1) —yp(a+1+n)
—p(B—1—n)} — (n+ 1)¢'(~n,a,N) ifn>0.

It is in fact possible to transfer from the expansion in Theorem 8 to those for the excluded
cases by taking the limits s — o+ for any [ € Z.

Corollary 8.1. For any integer N > 0 the following asymptotic expansions hold as
z — oo through the sector |arg z| < m = § with any small § > 0:
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i) whens=a+1(1=1,2,...),
(3.15) RL2E (o +1,a+T,))
2 (1) + Dpoy(l —n — 1)
=F(azﬁ) Z( ) (anTFzﬂl—(n) n-l) ¢l —n,a,N)z7*™"

-1 a+:3 N_,l (a+l)"l —a—l-n
+E0r (T >§_’1 ESTIN T ) 7y e L
X {Bay1(a,e(2))10g 2 + Co,gin(a, e(N) } + O(l2]~Reo==);
i) whens=a-m (m=0,1,2,...),

(3.16) RLIPH(a—m,a+ T, )

=r(*1%) ,,;1 e a1 21 g (a8

a (n+(B+m—n)

+ (—1)m+1r(°‘ + ﬂ) Nz—f (@ —m)n J—
@ /e~ (n+1)(n-m)I'(B+m—n)
X {Bny1(a, €(N)) log z + Cog —mn(a, e(N)) } + O(|z|~Reatm—H),

Here the constants implied in the O-symbols depend at most on «, 3, a, I, m, N and 6.

4. APPLICATIONS TO EULER’S GAMMA AND PSI FUNCTIONS
It is known that
) 1 I
(4.1) lim3{(s,2) - —= ¢ = —%(2) = —5=(2)  (larg2| <m)
8> s— r
(cf. [4, p.26,1.10(9)]). Then both the limiting cases s — 1 of Theorems 5 and 7 (when
A € Z) assert the following results.

Corollary 8.2. Let a, a be as in Theorem 5. Then for any integer N > 1, the asymptotic
eTpansion

N-—
(4.2) LM pla+T7) =9(a) = D (-1)*(@)al(1 +71,a)2" + O(2|")

n=1

holds as z — 0 through |arg z| < m — § with any small 6 > 0, where the constant implied
in the O-symbol depends at most on o, N and §.

Corollary 8.3. Let a, 8 and a be as in Theorem 7. Then for any N > 0, the asymptotic
expansion

(4.3) RLLEY(a+7) =p(a) — Z (= 12:(;;)" ¢(1+n,a)z" + O(|2|™)

holds as z — 0 through |arg z| < m — § with any small 6 > 0, where the constant implied
in the O-symbol depends at most on o, B, N and §.

The limiting case N — +o0 of Corollary 8.3 further asserts the following result.
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Corollary 8.4. Let a, 3 and a be as in Theorem 8. Then we have in the disk |z| < a the
Ppower Series eTpansion

o (=)@
44 RLEBY(a+ 1) = P(a) — CDM)n 14+n,a)2"
(4.4) rY(a+7)=1(a) ;(a+ﬂ)nC( )
We note that the formulae (4.2)—(4.4) are variants of the classical power series expansion
Ya+2)=v(@) - Y (-1 +na)" (2] <a)
n=1

(cf. [4, p.45, 1.17(5)] in which the case a = 1 is stated).

It is further known that
(4.5) %C(s, z) i = log{l\;gi;} (|arg 2| < )

(cf. [4, p.26, 1.10(10)]). Then both the limiting cases s — 0 (after differentiation) of
Theorems 6 and 8 (when A € Z) assert the following results.

Corollary 8.5. Let a and a be as in Theorem 6. Then for any integer N > 1, except the
case a =m (m=1,2,...), the asymptotic ezpansion, upon setting N' = N — |Rea],

(4.6) LMZ, logI'(a+T)
= az{logz + ¢¥(a+1) — 1} + Bi(a){log z + ¥(a)} + %log or

- 3 U Ble) ()

+ Z = “)“r(—a —n)¢(—a—n)z™" +0(|| ™)
n=0

holds as z — oo through | arg z| < m — & with any small § > 0, where the constant implied
in the O-symbol depends at most on o, N and §.

Corollary 8 6. Let o, B and a be as in Theorem 8. Then for any integer N > 1, except
the case a =m (m = 1,2,...), the asymptotic expansion, upon setting N' = N — |Req],

(4.7) RLZP log I'(a + 7)
= a‘fﬂ{logzw(aﬂ)—¢(a+ﬁ+1)— 1}

+ Bi(a){logz+(a) — y(a+H)} + 5 log2r

Z( )" B, a)l_,(a—n,a+ﬂ)z_n

n(n +1) a,a+pf-n

1)"(a np(—e—mat —a-n _
43 C @ (o m et B gpeme 01
n=0
holds as z — oo through | arg z| S m — 6 with any small § > 0, where the constant implied
in the O-symbol depends at most on a, 3, § and N.
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It is possible to transfer from the expansions in Corollaries 8.5 and 8.6 to those for the
excluded cases by taking the limits ¢« — m for any m = 1,2,.. ..

Corollary 8.7. Let a be a real parameter with a > 0, and m > 1 an integer. Then for
any integer N > 1 the asymptotic expansion

(4.8) LM logI'(a+T)

=mz{logz +¥(m+ 1) — 1} + By(a){log z + ¥(m)} + %log 2m

1 "y (m—n— 1) n
I & Z w1 orn(@)
+( )t S= L

(m—1)! &< n(n+1)(n— m)'

X [B,.H(a){logz +9Y(n—m+1)+ %} - (n+1){'(—n, a)]

+0(|2| ™ log|2])

holds as z — oo through the sector |argz| < m — § with any small § > 0, where the
constant implied in the O-symbol depends at most on a, m, N and d.

Corollary 8.8. Let a > 0 be a real parameter, 8 any complex number with Re 8 > 0, and
m > 1 an integer. Then for any integer N > 1 the asymptotic expansion

(4.9) RLP log I'(a +T)

= ﬁrizm{logz+¢(m+ 1) —p(B+m+1)—1}

+ Bi(a){log z + ¢¥(m)} + 1 log 2m

L LB +m) Y (- 1)n+1(m n-1! o
(m—l)' Zn(n+1 '(B+m—

—n

) n+1 (a‘)z

(~1)™'I(B+m) < 1

+ (m—1)! ;n(n+ 1)(n—m)!1"(,3—i—m—n)[ﬂ

X [Bn+1(a){logz+w(n—m+ )+ - —p(B+m—n)

- (a+ 1¢C-m,0)| + OV log )
holds as z — oo through the sector |argz] < m — § with any small § > 0, where the
constant implied in the O-symbol depends at most on a, 3, m, N and §.
We note that the formulae (4.8) and (4.9) are variants of the classical (shifted) Stirling’s
formula, for any NV > 1,
1
logI'(a+ 2) = zlogz —z+ By(a)logz + 5 log 27

1
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as z — oo through |arg 2| < 7 — § with any small § > 0 (cf. [4, p.48,1.18(12)]).
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