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1. INTRODUCTION

In this article, we survey and announce some new results which are obtained by using
Selberg�s orthogonality. The following contents are based on the author�s talk at the conference

�Analytic Number Theory and Related Areas�� in 2015, which was held at RIMS in Kyoto.
First we shall describe the definition of Selberg�s orthogonality and related things. Selberg

[28] introduced a class of Dirichlet series, which is called the Selberg class S . This class is

defined to be the set of Dirichlet series L(s)=\displaystyle \sum_{n=1}^{\infty}a_{L}(n)n^{-s} which satisfy, roughly, the

following axioms:

(i) Ramanujan bound: a_{L}(n)\ll_{ $\Xi$}n^{ $\epsilon$} for any  $\epsilon$>0,
(ii) Analytic continuation (except for a possible pole at s=1 ),

(iii) Functional equation,
(iv) Euler product expression.

For the precise definition of the class S and various results on S , see e.g. [28] and [22].
We denote by S\backslash \{1\} the set of all functions in the SelUerg class S except for the constant

function 1. A function L(s)\in S\backslash \{1\} is called primitive if it cannot be factored as a product of
two functions in S non‐trivially, which means that L(s)=L_{1}(s)L_{2}(s) with L_{1}(s) , L_{2}(s)\in S
implies L_{1}(s)=1 or L_{2}(s)=1 . Selberg [28] gave the following conjecture for the set of

primitive functions.

Conjecture 1 (Selberg orthonormality conjecture). For any two primitive functions L_{1}(s)=
\displaystyle \sum_{n=1}^{\infty}a_{L_{1}}(n)n^{-s}, L_{2}(s)=\displaystyle \sum_{n=1}^{\infty}a_{L_{2}}(n)n^{-s}\in S, we have

(1.1) \displaystyle \sum_{p\leq x}\frac{a_{L_{1}}(p)\overline{a_{L_{2}}(p)}}{p}=\left\{\begin{array}{ll}
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g} x+O(1) & if L_{1}(s)=L_{2}(s) ,\\
O(1) & if L_{1}(s)\neq L_{2}(s) ,
\end{array}\right.
as  x\rightarrow\infty . Here and below the letter  p denotes a prime number.

It is known that this conjecture implies several interesting consequences. See e.g. [22,
Section 3].

In this article we define Selberg�s orthogonality as follows.

Definition 1. Let \mathcal{D} be a sei of Dirichlet series. We say that D satisfies Selberg�s orthogonality
if for any two Dinchlet series D_{1}(s)=\displaystyle \sum_{n=1}^{\infty}a_{1}(n)n^{-s}, D_{2}(s)=\displaystyle \sum_{n=1}^{\infty}a_{2}(n)n^{-8} in \mathcal{D} we have

(1.2) \displaystyle \sum_{p\leq x}\frac{a_{1}(p)\overline{a_{2}(p)}}{p}=\left\{\begin{array}{ll}
c_{1}\log\log x+O(1) & if D_{1}(s)=D_{2}(s) ,\\
O(1) & if D_{1}(s)\neq D_{2}(s) ,
\end{array}\right.
as  x\rightarrow\infty , where  c_{1} is a positive constant depending on D_{1}(s) .

This article will give new applications of Selberg�s orthogonality to the following two topics:

(1) Zeros of the L‐function attached to a holomorphic cusp form for SL(2, \mathbb{Z}) ,
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(2) independence of general  L\sim‐functions (without assuming the Generalized Ramanujan
Conjecture).

See Theorems A and \mathrm{B} and Corollaries \mathrm{C} and \mathrm{D} below. We remark that actually, weaker
versions of (1.2) are sufficient for the proofs of those theorems.

We have also a new application of Selberg�s orthogonality to the topic:

(3) Sign changes of Fourier coefficients of a holomorphic cusp form (not necessarily a

Hecke eigen cusp form) for SL(2,\mathbb{Z}) .

This result was however omitted in the author�s talk and is omitted in this article also.

These three kinds of results (1) (2) and (3) (and their proofs) may be considered to indicate

that the L-‐functions attached to primitive cusp forms are independent in the theory of complex
analysis, in the theory of transcendental numbers and functions, and in the theory of Fourier

coefficients of cusp forms (i.e., Dirichlet coefficients of the associated L-‐functions), respectively.

2. ZEROS OF L-‐FUNCTIONS I

2.1. Dirichlet L‐functions. Let  $\chi$ be a primitive Dirichlet character and let  L(s,  $\chi$) denote

the associated Dirichlet  L\sim‐function, which is defined by

 L(s,  $\chi$) :=\displaystyle \sum_{n=1}^{\infty}\frac{ $\chi$(n)}{n^{s}} for {\rm Re} s>1.

If  $\chi$ is the principal character mod1 then  L(s,  $\chi$) is the Riemann zeta‐function  $\zeta$(s) . It is well

known that L(s,  $\chi$) has analytic continuation to the whole plane \mathbb{C} and a certain functional

equation whose critical line is {\rm Re} s=1/2 . Also, L(s,  $\chi$) has the Euler product expression

L(s,  $\chi$)=\displaystyle \prod_{p}(1-\frac{ $\chi$(p)}{p^{s}})^{-1} for {\rm Re} s>1.

This imphes that L(s,  $\chi$) has no zeros in the half‐plane {\rm Re} s>1.

We then have the following famous conjecture:

Conjecture 2 (Generalized Riemann Hypothesis for L(s,  $\chi$ Let  $\chi$ be a primitive Dirichlet

character. Then the Dirichlet  L ‐jfunction L(s,  $\chi$) has no zeros in the strip 1/2<{\rm Re} s<1.

2.2. The Davenport‐Heilbronn function. We now consider a function which has a func‐

tional equation similar to that of the Riemann zeta‐function  $\zeta$(s) but has zeros in the strip
{\rm Re} s>1/2 , i.e., does not satisfy an analogue of the Riemann hypothesis.

Inspired by the papers [6] [7] of Davenport‐Heilbrom, Titchmarsh [30, Chap. X, 10.25]
introduced the following function L(s) :

L(s)=\displaystyle \frac{1}{2}\sec $\theta$(e^{-i $\theta$}L(s,  $\chi$)+e^{i $\theta$}L(s, \overline{ $\chi$}))
=\displaystyle \frac{1}{1^{s}}+\frac{\tan $\theta$}{2^{s}}+\frac{-\tan $\theta$}{3^{s}}+\frac{-1}{4^{s}}+\frac{1}{6^{s}}+\cdots,

where  0< $\theta$<\displaystyle \frac{1}{4} $\pi$ is a real number satisfying \displaystyle \tan $\theta$=\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1} and L(s,  $\chi$) is the Dirichlet

L‐‐function mod5 given by

 L(s,  $\chi$)=\displaystyle \frac{1}{1^{s}}+\frac{i}{2^{s}}+\frac{-i}{3^{s}}+\frac{-1}{4^{s}}+\frac{1}{6^{s}}+\cdots
This function  L(s) is usually called the Davenport‐Heilbronn function (see [2, p. 239 We

note that L(s) is a linear combination of Dirichlet L‐functions. As in [30, Chap. X, 10.25],
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L(s) satisfies the functional equation

(\displaystyle \frac{5}{ $\pi$})^{ $\epsilon$/2} $\Gamma$(\frac{1}{2}+\frac{1}{2}s)L(s)=(\frac{5}{ $\pi$})^{1/2- $\epsilon$/2} $\Gamma$(1-\frac{1}{2}s)L(1-s) .

This functional equation is similar to that of the Riemann zeta‐function  $\zeta$(s) . Titchmarsh

[30, Chap. X, 10.25], however, showed the following result.

Theorem 1 (Titchmarsh). The function L(s) has infinitely many zeros in the half‐plane
{\rm Re} s>1 (as well as on the line {\rm Re} s=1/2).

Further, for the case of the strip 1/2<{\rm Re} s<1 , Voronin (see [12, p. 214, Theorem 1])
showed the following result, which is in contrast to Conjecture 2. Related results to Theorems
1 and 2 are given in, for example, [10] and [27].

Theorem 2 (Voromn). Let $\sigma$_{1} and $\sigma$_{2} be any real numbers with 1/2<$\sigma$_{1}<$\sigma$_{2}<1 . Then

the function L(s) has infinitely many zeros in the strip $\sigma$_{1}<{\rm Re} s< $\sigma$ 2.

3. ZEROS OF L‐FUNCTIONS II

3.1. L‐functions attached to cusp forms for SL(2, Z) . Let k\geq 12 be an even positive
integer. Let S_{k} denote the set of holomorphic cusp forms of weight k for SL(2, \mathbb{Z}) . Let

f(z)\in S_{k} . We write its Fourier expansion as

f(z)=\displaystyle \sum_{n=1}^{\infty}af(n)n^{(k-1)/2}e^{2 $\pi$ inz}.
Then the (normalized) L‐function L(s, f) attached to f(z) is defined by

L\displaystyle \{s, f):=\sum_{n=1}^{\infty}\frac{a_{f}(n)}{n^{s}}.
This function has analytic continuation to the whole plane \mathbb{C} and a certain functional equation
whose critical hne is {\rm Re} s=1/2.

Assume that f(z) is a Hecke eigen cusp form in S_{k} . Then L(s, f) has the Euler product
expression

L(s, f)=a_{f}(1)\displaystyle \prod_{p}(1-\frac{$\lambda$_{f}(p)}{p^{s}}+\frac{1}{p^{28}})^{-1}
where we write af(n)=af(1)$\lambda$_{f}(n) . We have the estimate

(3.1) |$\lambda$_{f}(p)|\leq 2 for every prime p,

due to Deligne. This Euler product expression implies that

(3.2) L(s, f) has no zeros in the half‐plane {\rm Re} s>1.

Further, it is believed that the following conjecture is true.

Conjecture 3 (Generalized Riemann Hypothesis for L(s, f If f(z)\in S_{k} is a Hecke eigen
cusp form, then the L‐function L(s, f) has no zeros in the strip 1/2<{\rm Re} s<1.

Next we shall consider the case that f(z) is not a Hecke eigen cusp form. In contrast to

(3.2), Conrey and Ghosh [5, Theorem 2] proved that L(s, $\Delta$^{2}) has infinitely many zeros in the

half‐plane {\rm Re} s>1 . Here, as usual, \triangle(z) denotes the function given by

 $\Delta$(z)=e^{2 $\pi$ iz}\displaystyle \prod_{n=1}^{\infty}(1-e^{2 $\pi$ inz})^{24},
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which belongs to S_{12} , so that \triangle(z)^{2} belongs to S_{24} . In general, Booker and Thorne [3] showed

the next theorem. These results are analogues of Theorem 1.

Theorem 3 (Booker & Thorne). Assume that f(z)\in S_{k} is not a Hecke eigen cusp form.
Then L(s, f) has infinitely many zeros in the half‐plane {\rm Re} s>1.

Later, Righetti [25] gave a related result on the existence of such zeros in the half‐plane of

absolute convergence for an axiomatically‐defined class of I,‐functions. One of the axioms of

this class is (a weak version of) Selberg�s orthogonality (1.2) given in Definition 1.

The first main theorem of the present article is the following, which concerns the existence

of zeros in the strip 1/2<{\rm Re} s<1 . This is in contrast to Conjecture 3.

Theorem A. Assume that f(z)\in S_{k} is not a Hecke eigen cusp form. Let  $\sigma$ 1 and $\sigma$_{2} be any

real numbers with 1/2<$\sigma$_{1}<$\sigma$_{2}<1 . Then L(s, f) has infinitely many zeros in the strip
$\sigma$_{1}<{\rm Re} s< $\sigma$ 2 . More precisely, we have

(3.3) N_{f}($\sigma$_{1}, $\sigma$_{2}, T)\gg f, $\sigma$ 1, $\sigma$ 2T as T\rightarrow\infty,

where N_{f}($\sigma$_{1},  $\sigma$ {}_{2}T) denotes the number of zeros  $\rho$ of  L(s, f) satisfying $\sigma$_{1}<{\rm Re} $\rho$< $\sigma$ 2 and

0<{\rm Im} $\rho$<T.

As an improvement of (3.3), it would be conjectured that

N_{f}($\sigma$_{1},  $\sigma$ {}_{2}T)=C_{f, $\sigma \sigma$}T1,2+o(T) as T\rightarrow\infty,

where C_{f, $\sigma$ 1, $\sigma$ 2} is some positive constant depending on f, $\sigma$_{1} and  $\sigma$ 2 . For related results, see

e.g. [8] and [14].
Let us now describe an outline of the proof of Theorem A. It is well known that the set

S_{k} is a linear space with \dim S_{k}<\infty . Let \mathcal{H}_{k} denote the set of normalized (i.e. af(1)=1 )
Hecke eigen cusp forms in S_{k} . Then \mathcal{H}_{k} is a basis of S_{k} . Therefore, if f(z)\not\equiv 0 is not a Hecke

eigen cusp form, then we can write

f(z)=$\alpha$_{1}f_{1}(z)+\cdots+$\alpha$_{r}f_{r}(z)
with r\geq 2 , nonzero complex numbers  $\alpha$ j and distinct forms f_{j}(z) in \mathcal{H}_{k} , and hence

(3.4) L(s, f)= $\alpha$ {}_{1}L(s, f_{1})+\cdots+$\alpha$_{r}L(s, f_{r}) .

Thus, value‐distriUution of the L‐‐function L(s, f) will be known from joint value‐distriUution

of L(s, f_{r})' \mathrm{s}.
As a related result to the proof of Theorem \mathrm{A} , the author [19] [18] proved the following

joint denseness theorem for the L‐functions L(s, f_{1}) , . . . , L(s, f_{r}) on a vertical hne in the strip
1/2<{\rm Re} s<1 . (The paper [18, Theorem 1.1] considers a more complicated case, precisely,
the case of the Rankin‐Selberg L‐functions L(s, f_{1}\otimes g) , \cdots ,  L(s, f_{r}\otimes g

Theorem 4 (Nagoshi). Let 1/2<$\sigma$_{0}<1 . Let f_{1}(z) , . . .

, f_{r}(z) be distinctfo7ms in \mathcal{H}_{k} . Then

the set

\{(L( $\sigma$ 0+it, f\mathrm{l}), \cdots, L( $\sigma$ 0+it, f_{r}))\in \mathbb{C}^{r} : t\in \mathbb{R}\}
is dense in \mathbb{C}^{r}.

We note that (a weak version of) Selberg�s orthogonality for L(s, f_{1}) , \cdots ,  L(s, f_{r}) is used in

the proof of Theorem 4.

Very roughly speaking, Theorem A is proved by combining arguments of the papers [3] [25]
(which deal with the case {\rm Re} s>1 ) and arguments of a proof of Theorem 4 (which handle

the case 1/2<{\rm Re} s<1 ; see also [12, Chap. VII, 3

We make a remark on mother proof of Theorem A. Recently, Lee, Nakamura and Pańkowski

[15, Theorem 1.2] obtained the so‐called joint universality for L-‐functions in the Selberg
class under a stronger version of Selberg�s orthonormality. (Note that the above  L\sim‐functions
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 L(s, f_{1}) , \cdots ,  L(s, f_{r}) satisfy this strong version of Selberg�s orthonormality.) This theorem

is a joint denseness result for L-‐functions in a certain set of holomorphic functions, whereas

Theorem 4 is a joint denseness result for L‐functions in \mathbb{C}^{r} . The proof of Theorem 4 (see
also [18, Theorem 1.1]) and that of their theorem [15, Theorem 1.2] are analogous to each

other. Using their theorem and (3.4), we can obtain the so‐called strong universality (see [29,
Section 11.3]) for the L‐‐function L(s, f) with f(z)(\not\equiv 0) being as in Theorem A. This strong
universality yields Theorem A.

4. HYPERTRANSCENDENCE OF AN L‐FUNCTION WITHOUT ASSUMING GRC

In this and the next section, we discuss differential independence properties for general
‐functions. In this section, we shall concentrate on the case of a single general L-‐function.

Let F be a field of meromorphic functions. A meromorphic function f(s) on \mathbb{C} is called

hypertranscendental over F , if y=f(s) does not satisfy any nontrivial algebraic differential

equation over F (that is, any equation of the form P(y, \displaystyle \oint, \ldots , y^{(n)})=0 , where n is a non‐

negative integer, and where P is a non‐zero polynomial in y, y , \cdots ,  y^{(n)} whose coefficients

belong to F). The field F is usuaJly required to be a differential field (that is, F is closed

under differentiation).
The following result was stated by Hilbert [9, p. 428] in 1900 in his famous lecture at the

ICM in Paris. His proof is based on a result of Hölder (which asserts that the Gamma function

 $\Gamma$(s) is hypertranscendental over \mathbb{C}(s) ) and an usual functional equation for  $\zeta$(s) .

Theorem 5 (Hilbert). The Riemann zeta‐function  $\zeta$(s) is hypertranscendental over the field
\mathbb{C}(s) of rational functions.

Another proof of Theorem 5 and a general result for a wide class of Dirichlet series were

obtained by Ostrowski [21].
Much later, from the viewpoint of value‐distribution of  $\zeta$(s) , Voronin [32] [12, p. 254] ob‐

tained yet another proof of Theorem 5 and the following stronger theorem, which is called

functional independence (in the sense of Voronin) of  $\zeta$(s) and its derivatives (see [29, p. 196

Voronin�s proof is based on his result [31] which asserts that if  $\sigma$ is a real number with

 1/2< $\sigma$\leq 1 then the set

(4.1) \{( $\zeta$( $\sigma$+it), $\zeta$'( $\sigma$+it), \ldots, $\zeta$^{(K)}( $\sigma$+it))\in \mathbb{C}^{K+1}:t\in \mathbb{R}\}
is dense in \mathbb{C}^{K+1}.

Theorem 6 (Voronin). Let K and N be non‐negative integers. Let H_{0} , \cdots

,  H_{N} : \mathbb{C}^{K+1}\rightarrow \mathbb{C}
be continuovs functions, not all identically zero. Then

\displaystyle \sum_{n=0}^{N}s^{n}H_{n}( $\zeta$(s), $\zeta$'(s), \ldots, $\zeta$^{(K)}(s))=0
does not hold identically for s\in \mathbb{C}\backslash \{1\}.

We introduced the L‐function L(s,  $\chi$) attached to a primitive Dirichlet character  $\chi$ in Sec‐

tion 2 and the  L‐function L(s, f) attached to a normalized Hecke eigen cusp form f(z)\in S_{k}
in Section 3. We now introduce a generalization of those functions. Let  $\pi$=\otimes_{p<\infty}$\pi$_{p} be an

irreducible cuspidal automorphic representation of GL_{m}(\mathrm{A}_{\mathbb{Q}}) with unitary central character,
where \mathbb{Q} denotes the field of rational numbers and \mathrm{A}_{\mathbb{Q}} its ring of adeles. The  L\sim‐function

 L(s,  $\pi$) attached to  $\pi$ is defined as an Euler product of the form

(4.2)  L(s,  $\pi$)=\displaystyle \prod_{p<\infty}\prod_{j=1}^{m}(1-\frac{$\alpha$_{ $\pi$}(p,j)}{p^{s}})^{-1}
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Here $\alpha$_{ $\pi$}(p,j)(1\leq j\leq m) are complex numbers defined in terms of certain parameters of $\pi$_{p}

(Satake parameters if $\pi$_{p} is unramified, and Langlands parameters in general). See e.g. [26].
The Generalized Ramanujan Conjecture (GRC) at non‐archimedean places for  $\pi$ is the

assertion that if  $\pi$_{p}(p<\infty) is unramified then

|$\alpha$_{ $\pi$}(p,j)|=1 for all 1\leq j\leq m.

This is verified for certain representations  $\pi$ (for example,  $\pi$ of  GL_{2}(\mathrm{A}_{\mathbb{Q}}) corresponding to a

cusp form in \mathcal{H}_{k} for SL(2,\mathbb{Z}) ; see (3.1)) but not in general.
It is proved (see e.g. [29, p. 283]) that if  $\pi$ satisfies the GRC (including the case of the

archimedean place), then  L(s,  $\pi$) has a denseness property as in (4.1) and hence we have an

analogue of Theorem 6 for L(s,  $\pi$) .

The author [20] recently obtained a certain type of functional difference‐differential inde‐

pendence for L(s,  $\pi$) , without any assumptions (such as assuming the GRC) on  $\pi$ , as in the

next theorem. Let  $\mu$ be any non‐negative integer,  h_{0}, h_{1} , .. ., h_{ $\mu$} be any real numbers with

h_{0}<h_{1}<\cdots<h_{ $\mu$} , and \mathrm{v}0, v_{1} , . . . , \mathrm{v}_{ $\mu$} be any non‐negative integers. We set

M:=\displaystyle \sum_{j=0}^{ $\mu$}($\nu$_{j}+1) .

Following Reich�s paper [24, p. 29], we say that a function  $\Phi$ : \mathbb{C}^{n}\rightarrow \mathbb{C} is �locaUy not trivial

if for every non‐empty open set U\subset \mathbb{C}^{n} the restriction of  $\Phi$ to  U is not identically zero. For

example, every holomorphic function  $\Phi$ : \mathbb{C}^{n}\rightarrow \mathbb{C} which is not identically zero is �locally not

trivial according to the identity theorem.

Theorem 7 (Nagoshi). Let  $\pi$ be an irreducible cuspidal automorphic representation  ofGL_{m}(\mathrm{A}_{\mathbb{Q}})
with unitary central character, where m is any positive integer. Let N be a non‐negative in‐

teger. Let $\Phi$_{N} : \mathbb{C}^{M}\rightarrow \mathbb{C} be a continuous and �locally not trivial� function. When N\geq 1 , for
each integer 0\leq n\leq N-1 let $\Phi$_{n} : \mathbb{C}^{M}\rightarrow \mathbb{C} be a continuous function. Then

\displaystyle \sum_{n=0}^{N}s^{n}$\Phi$_{n}(L(s+h_{0},  $\pi$), L(s+h_{0},  $\pi$), \cdots, L^{($\nu$_{0})}(s+h_{0},  $\pi$), L(s+h_{1},  $\pi$) ,

L^{( $\nu$)}1(s+h_{1},  $\pi$) , \cdots , L(s+h_{ $\mu$},  $\pi$) , \cdots , L^{($\nu$_{ $\mu$})}(s+h_{ $\mu$},  $\pi$))=0
does not hold identically for s\in \mathbb{C} with {\rm Re} s+h_{0}>1.

This theorem implies the following algebraic difference‐differential independence of L(s,  $\pi$)
over \mathbb{C}(s) and, in particular, the hypertranscendence (in the above sense) of L(s, $\pi$) over \mathbb{C}(s) ,
which is a generalization of Theorem 5.

Corollary 8. Let  $\pi$ be as in Theorem 7. Let

 P (s ; z\mathrm{l} , . .. , zM ) =\displaystyle \sum_{a1\cdots,a_{M}}C_{a_{1},\ldots,a_{M}}(s)z_{1}^{a_{1}}\cdots z_{M^{M}}^{a}
be a non‐zero polynomial in M‐variables z_{1} , .. ., Z_{M} whose coefficients C_{a_{1},\ldots,a}M(s) belong to

\mathbb{C}(s) . Then

P(s;L(s+h_{0},  $\pi$), L'(s+h_{0},  $\pi$), \cdots,L^{( $\nu$ 0)}(s+h_{0},  $\pi$), L(s+h_{1},  $\pi$) ,

\ldots, L^{($\nu$_{1})}(s+h_{1},  $\pi$) , \cdots, L(s+h_{ $\mu$},  $\pi$) , \cdots, L^{($\nu$_{ $\mu$})}(s+h_{ $\mu$},  $\pi$))=0
does not hold identically for s\in \mathbb{C} with {\rm Re} s+h_{0}>1 . In particular, L(s,  $\pi$) is hypertranscen‐
dental over \mathbb{C}(s) .

We can actually obtain the hypertranscendence of L(s,  $\pi$) over a certain field \mathcal{F}_{s} which

contains \mathbb{C}(s) . See [20].
The proof of Theorem 7 in [20] makes use of the following:
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The prime number theorem

\displaystyle \sum_{n\leq x} $\Lambda$(n)|a_{ $\pi$}(n)|^{2}\sim x (as  x\rightarrow\infty )

for  $\pi$ , where  $\Lambda$(n) denotes the von Mangoldt function and a_{ $\pi$}(p^{k}) :=\displaystyle \sum_{j=1}^{m}$\alpha$_{ $\pi$}(p,j)^{k}
(see [16]).
Towards the GRC, it is proved (see [26, Proposition A.l]) that there exists a positive
constant  $\theta$<1/2 (depending only on m) such that

|$\alpha$_{ $\pi$}(p,j)|\leq p^{ $\theta$}
for all primes p and 1\leq j\leq m.
Reich�s approach [24], which is from the viewpoint of the theory of value‐distribution

of Dirichlet series.

5. ALGEURAIC DIFFERENCE‐DIFFERENTIAL INDEPENDENCE OF

L-‐FUNCTIONS WITHOUT ASSUMING GRC

After obtaining Theorem 6, Voronin [33] gave a similar functional independence property
for any set of Dirichlet L‐functions L(s, $\chi$_{j}) with $\chi$_{j} �s being pairwise non‐equivalent Dirichlet

characters.

Further, the author [17] announced the following more general theorem. Let \mathcal{L} be the set

of Dirichlet series L(s)=\displaystyle \sum_{n=1}^{\infty}a_{L}(n)n^{-s} satisfying the following two axioms:

(i) Ramanujan bound: aL(n)\ll_{ $\Xi$}n^{ $\epsilon$} for any  $\epsilon$>0,
(ii) Polynomial Euler product expression: there exists a positive integer mL and complex

numbers  $\alpha$ L(p,j) , for all primes p and 1\leq j\leq m , such that

L(s)=\displaystyle \prod_{pj}\prod_{=1}^{L}m(1-\frac{ $\alpha$ L(p,j)}{p^{s}})^{-1}
We do not need to assume analytic continuation to the half‐plane {\rm Re} s\leq 1 and a functional

equation for L(s) .

Theorem 9 (Nagoshi). Let L_{1}(s) , . . . , L_{N}(s)\in \mathcal{L} be distinct Dirichlet series which satisfy

Selberg�s orthogonality. Let K be a positive integer. Then L_{1}(s) , . .. , L_{N}(s) , L_{1}^{(1)}(s) , . . .,

L_{N}^{(1)}(s) , . . ., L_{1}^{(K)}(s) , . . ., L_{N}^{(K)}(s) are functionally independent (in the sense of Voronin). In

particular, L_{1}(s) , \cdots ,  L_{N}(s) are algebraically differentially independent over \mathbb{C}(s) .

We actually can prove a stronger result. The proof makes use of value‐distribution of

functions in \mathcal{L} and their derivatives on the half‐plane {\rm Re} s>1 , and is analogous to that of

Theorem 4 above. See a forthcoming paper.
We shall now discuss new related results for a much larger class than \mathcal{L} , under Selberg�s

orthogonality. Let D denote the set of Dirichlet series D(s) which are absolutely convergent
if {\rm Re} s is sufficiently large. In particular, we do not assume the Ramanujan bound and hence

we can obtain Corollary \mathrm{D} below.

Conrey and Ghosh [4] showed essentially that if L_{1}(s) , . .., L_{N}(s)\in \mathcal{D} are distinct Dirichlet

series which satisfy Selberg�s orthogonality, then they are multiplicatively independent. This

result implies that if Selberg�s orthonormality conjecture (Conjecture 1) is true, then any

function in the Selberg class S has unique factorization into primitive functions up to the

order of factors. For an unconditional result on hnear independence for a large class, which

contains S , see [11].
The second main theorem of the present article is the following, which is stronger than the

above result of Conrey‐Ghosh.
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Theorem B. Let L_{1}(s) , \cdots ,  L_{N}(s)\in \mathcal{D} be distinct Dirichlet series which satisfy Selberg�s
orthogonality. Then L_{1}(s) ,

.

.., L_{N}(s) are algebraically difference‐differentially independent
over \mathbb{C}(s) (in the sense of Corollary 8).

Corollary C. Assume that Selberg�s orthonormality conjecture (Conjecture 1) is true. Then

the primitive functions in the Selberg dass S are algebraically difference‐differentially inde‐

pendent over \mathbb{C}(s) (in the sense of Corollary 8).

Remark 1. We recall that h_{\mathrm{j}} �s (in Corollary 8) are real numbers. For example, L(s,  $\chi$) and

L(s+i $\alpha$,  $\chi$) are distinct primitive functions in S , where  $\chi$ is a primitive Dirichlet character

\mathrm{m}\mathrm{o}\mathrm{d} q with q>1 and  $\alpha$\neq 0 is a real number. Therefore in Corollary \mathrm{C} it is not possible to

let the condition of h_{j} �s to be arbitrary distinct complex numbers.

It is known (see [1]) that the set of the L-‐functions L(s,  $\pi$) (given in (4.2)) for GL_{m}(\mathrm{A}_{\mathbb{Q}})
with 1\leq m\leq 4 satisfies Selberg�s orthogonality unconditionaly. Hence from Theorem \mathrm{B} we

have

Corollary D. The L‐functions L(s,  $\pi$) for GL_{m}(\mathrm{A}_{\mathbb{Q}}) with 1\leq m\leq 4 are algebraically
difference‐differentially independent over \mathbb{C}(s) (in the sense of Corollary 8).

Let us describe a sketch of the proof of Theorem B. For simplicity, we shall now show only
the weaker assertion that L_{1}(s) , . . ., L_{N}(s) are algebraically independent over \mathbb{C} . We use the

following result due to Popken [23] (see also [13, Theorem 1

Lemma 1 (Popken). Assume that Dirichlet series D_{1}(s)=\displaystyle \sum_{n=1}^{\infty}a_{1}(n)n^{-s} , \cdots ,  D_{r}(s)=
\displaystyle \sum_{n=1}^{\infty}a_{r}(n)n^{-s}\in \mathcal{D} are algebraically dependent over \mathbb{C} . Then there exist complex numbers

A_{j}(1\leq j\leq r) , not all zero, such that the relation

\displaystyle \sum_{j=1}^{r}A_{j}a_{j}(p)=0
holds for all primes p except for finitely many.

We write L_{j}(s)=\displaystyle \sum_{n=1}^{\infty}a_{j}(n)n^{-S} for each 1\leq j\leq N . Let (Bl, . .., B_{N} ) \in \mathbb{C}^{N} be arbitrary
with (Bl, . .., B_{N} ) \neq (  0, \ldots , O). Then, using Selberg�s orthogonality, we have

\displaystyle \sum_{p\leq x}\frac{|B_{1}a_{1}(p)+\cdots+B_{N}aN(p)|^{2}}{p}
=\displaystyle \sum_{p\leq x}\frac{\sum_{j=1}^{N}|B_{j}|^{2}|a_{j}(p)|^{2}+\sum_{j\neq k}B_{j}\overline{B_{k}}a_{j}(p)\overline{a_{k}(p)}}{p}
\gg\log\log x,

which goes to \infty as  x\rightarrow\infty . Hence, in particular,

 B_{1}a_{1}(p)+\cdots+B_{N}aN(p)\neq 0

for infinitely many primes p . This and Lemma 1 give the algebraic independence of L_{1}(s) ,

\cdots ,  L_{N}(s) over \mathbb{C} . Theorem \mathrm{B} is proved by extending this argument.
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