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We use the following notations in this article.

\bullet \mathrm{N} : the set of positive integers,
\mathrm{N}_{0} : the set of non‐negative integers.

\bullet T=\{(x, y)\in \mathbb{R}^{2};x\geq y\geq 0\},
T_{\mathrm{N}_{0}}=T\cap(\mathrm{N}_{0}\times \mathrm{N}_{0})=\{(m,n)\in \mathbb{N}_{0}\times \mathbb{N}_{0};m\geq n\}.

\bullet  p : a given prime number.

-I_{p}=\{0, 1, . . . ,p-1\}.

\displaystyle \bullet$\theta$_{p}=\frac{\log\frac{p(p-1)}{2}}{\log p}.
The set T_{\mathrm{N}_{0}} can be regarded as Pascal�s triangle in the sense that each

point (m, n)\in T_{\mathrm{N}_{0}} corresponds to a binomial coefficient \left(\begin{array}{l}
rn\\
n
\end{array}\right) . We consider

the subset

Pas (p)=\{(m, n)\in T_{\mathrm{N}_{0}} ; \left(\begin{array}{l}
m\\
n
\end{array}\right)\not\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} p)\}
of T_{\mathrm{N}_{0}} . This set Pas (p) has �self similarity� as seen in Figure 1 and Figure
2.

Essouabri [1] introduced the zeta functions associated to Pas (p) and

proved some of their analytic properties. The zeta function associated to

Pas (p) is defined, for two‐variaule polynomials P, Q\in \mathbb{R}[X, Y] and s\in \mathbb{C},
by the following general Dirichlet series

Z_{p}(P, Q;s)=(m,n)\displaystyle \in \mathrm{P}\mathrm{a}\mathrm{s}(p)\sum_{P(m,n)\neq 0}\frac{Q(m,n)}{P(m,n)^{s/\deg P}},
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Figure 1: 0\leq m<16 in Pas (2) Figure 2: 0\leq m<27 in Pas (3)

where P(X, Y) satisfies the following two conditions:

\bullet  T‐ellipticity: Let P_{*}(X, Y) denote the highest degree part of P(X, Y) .

(That is, P_{*}(X, Y)\in \mathbb{R}[X, Y] is the unique homogeneous polynomial
such that \deg(P-P_{*})<\deg P , where \deg(0) :=-\infty. )
Then P_{*}(x, y)>0 for any (x, y)\in T\backslash \{(0,0)\}.

\bullet  T‐positivity: For any (x, y)\in T, we have P(x, y)\geq 0.

We do not decide the order of summation in the definition of Z_{p}(P, Q;s)
in this article, so that we only consider the absolute convergence. In other

words, we disregard the matter of conditional convergence of Z_{p}(P, Q;s) .

The series defining our zeta function Z_{p}(P, Q;s) absolutely and uniformly
converges at least on any compact set contained in the half‐plane \{{\rm Re}(s)>
2+\deg Q\} . The convergent region of Z_{p}(P, Q;s) can be actually larger than

this half‐plane. For example, when Q(X, Y)=1 , we have the abscissa of

absolute convergence $\sigma$_{a}=$\theta$_{p} of Z_{p}(P, 1;s) .

Essouabri proved that Z_{p}(P, Q;s) is meromorphically continued to the

whole plane \mathbb{C} . He also gave the following theorem on the poles of Z_{p}(P, Q;s) .

Theorem 1 (Essouabri, 2005 [1]). The meromorphic function on \mathbb{C} defined
by

Z_{p}(X, 1;s)=\displaystyle \sum_{m\neq 0}\frac{1}{m^{s}}(m,n)\in \mathrm{P}\mathrm{a}\mathrm{s}(p)
has at least two non‐real poles on its axis of absolute convergence \{{\rm Re}(s)=
$\theta$_{p}\}.
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The key in Essouabri�s proof of Theorem 1 is an estimate of the number

of points Pas (p) . Let

$\phi$_{p}^{*}(q)=\# { (m,n)\in Pas (p) ;  m=q}

and

 N_{p}^{*}(u)=\# { (m,n)\in Pas (p) ;  m<u} =\displaystyle \sum_{q=0}^{u-1}$\phi$_{p}^{*}(q)
for q\in \mathrm{N}_{0} and u\in \mathrm{N} , then Z_{p}(X, 1;s) can be written as an ordinary Dirichlet

series

Z_{p}(X, 1;s)=\displaystyle \sum_{q=1}^{\infty}\frac{$\phi$_{p}^{*}(q)}{q^{s}}
whenever Z_{p}(X, 1;s) absolutely converges. The summatory function N_{p}^{*}(u)
of coeffcients of Z_{p}(X, 1;s) is estimated that N_{p}^{*}(u)_{\wedge}^{\vee}u^{$\theta$_{p}} as  u\rightarrow\infty . On

the other hand, it is known that the limit value \displaystyle \lim_{u\rightarrow\infty}N_{p}^{*}(u)/u^{$\theta$_{\mathrm{p}}} does not

exist from former studies; Harborth [2] and Stolarsky [6] showed the case

when p=2 , and Stein [5] and Wilson [7] showed the general cases. We use

the fact that \displaystyle \lim_{u\rightarrow\infty}N_{p}^{*}(u)/u^{$\theta$_{\mathrm{p}}} does not exist and a Tauberian argument
to prove Theorem 1.

Theorem 1 can be extended to the cases of some other polynomials. The

following is the main theorem in this article.

Theorem 2 (I. [3]). (1) For any prime p ,
the meromorphic function

Z_{p}(X+Y, 1;s) has at least two non‐real poles on its axis of absolute con‐

vergence \{{\rm Re}(s)=$\theta$_{p}\}.
(2) The meromorphic function Z_{2}(X+2Y, 1;s) has at least two non‐real

poles on its axis of absolute convergence \{{\rm Re}(s)=$\theta$_{2}\}.

Theorem 2 can be proved by imitating Essouabri�s proof of Theorem 1.

Here is given just an outline of a proof of Theorem 2 in this article. For the

details of the proof, see [3]. To carry out the same argument as his, we need

to evaluate certain limit values hke \displaystyle \lim_{u\rightarrow\infty}N_{p}^{*}(u)/u^{$\theta$_{P}} . Let

 N_{p}(P;u)=\# { (m, n)\in Pas (p);P(m,n)<u}

for u\in \mathbb{N} and P\in \mathbb{R}[X, Y] satisfying T‐ellipticity and T‐positivity. Then

the following holds.

Theorem 3 (I. [3]). (1) For each prime p, it holds that N_{p}(X+Y;u)_{\wedge}^{\vee}u^{$\theta$_{\mathrm{p}}}
as  u\rightarrow\infty , however the limit value  1\mathrm{i}_{\mathrm{N}\mathrm{h}\rightarrow\infty}N_{p}(X+Y;u)/u^{$\theta$_{p}} does not exist.

(2) It holds that N_{2}(X+2Y;u)_{\wedge}^{\vee}u^{$\theta$_{2}} as  u\rightarrow\infty
,

however the limit vague

\displaystyle \lim_{u\rightarrow\infty}N_{2}(X+2Y;u)/u^{$\theta$_{2}} does not exist.
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To prove the absence of the limit values stated in Theorem 3, we observe

the coefficients of the ordinary Dirichlet series representation of Z_{p}(P, 1;s) ,

where P(X, Y)=X+Y or X+pY . Specffically, we can write

Z_{p}(P, 1;s)=\displaystyle \sum_{1}^{\infty}\frac{$\phi$_{p}(P;q)}{q^{s}}
with

$\phi$_{p}(P;q)=\# { (m, n)\in Pas (p) ;  P(m, n)=q}
for P(X, Y)=X+Y, X+pY when {\rm Re}(s)>$\theta$_{p}.

Appealing to Lucas� formula

\displaystyle \left(\begin{array}{l}
\sum_{i=0}^{h}m_{i}p^{i}\\
\sum_{i=0}^{h}n_{i}p^{i}
\end{array}\right)\equiv\prod_{i=0}^{h}\left(\begin{array}{l}
m_{i}\\
n_{i}
\end{array}\right) (\mathrm{m}\mathrm{o}\mathrm{d} p)(h\in \mathrm{N}_{0}, m_{i}, n_{i}\in I_{p}) ,

we have that

(\displaystyle \sum_{i=0}^{h}m_{i}p^{i}, \sum_{i=0}^{h}n_{i}p^{i})\in Pas (p)\Leftrightarrow m_{i}\geq n_{i} for i=0 , 1, . . .

, h . (1)

(We shall approve the situation in which the top digits n_{h}, n_{h-1}, \ldots, n_{h-k} of

are all 0 for some 0\leq k\leq h. )
Using this fact (1), we find the following recurrences on \{$\phi$_{p}(X+Y;q)\}_{q=0}^{\infty}

and \{$\phi$_{p}(X+pY;q)\}_{q=0}^{\infty} ;

\left\{\begin{array}{ll}
$\phi$_{p}(X+Y;r) & =\lfloor\frac{r}{2}+1\rfloor,\\
$\phi$_{p}(X+Y;pq+r) & =\lfloor\frac{r}{2}+1\rfloor$\phi$_{p}(X+Y;q)+\lfloor\frac{p-r}{2}\rfloor$\phi$_{p}(X+Y;q-1) ,
\end{array}\right.
(2)

\left\{\begin{array}{ll}
$\phi$_{p}(X+pY;r) & =1,\\
$\phi$_{p}(X+pY;pq+r) & =\sum_{a=0}^{r}$\phi$_{p}(X+pY;q-a) ,
\end{array}\right. (3)

hold for any r\in I_{p} and q\in \mathrm{N}_{0}.
Using that (P; pu)=\displaystyle \sum_{q=0}^{pu-1}$\phi$_{p}(P;q) and these recurrences (2), (3),

we have

N_{p} (X+Y;pu)=p^{$\theta$_{p}}N_{p}(X+Y;u)-B_{p}$\phi$_{p}(X+Y;u-1) ,

N_{p}(X+pY; pu)

=p^{$\theta$_{p}}N_{p}(X+pY;u)-\displaystyle \sum_{b=1}^{p-1}\frac{(p-b)(p-b+1)}{2}$\phi$_{p}(X+pY;u-b) , (4)
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where

B_{p}=\left\{\begin{array}{ll}
1 & (p=2) ,\\
\frac{(p-1)(p+1)}{4} & (p\geq 3) .
\end{array}\right.
We can compute the limit value \displaystyle \lim_{k\rightarrow\infty}N_{p}(P;p^{k}u)/(p^{k}u)^{$\theta$_{p}} for each  u\in

\mathbb{N} by the above formulas. To conclude the proof, we find (at least) two

distinct u�s which give distinct limit values \displaystyle \lim_{k\rightarrow\infty}N_{p}(P;p^{k}u)/(p^{k}u)^{$\theta$_{p}}.
The greater the modulus p gets, the more complicated the recurrences (3)

and (4) become. Therefore this method does not work in the general case.

Moreover, it is usually hard to produce the recurrence on \{$\phi$_{p}(P;q)\}_{q=0}^{\infty} even

if P(X+\mathrm{A}Y) with  $\lambda$\in \mathrm{N} . The author guesses that we need a quite different

method to treat more general cases.

Finally, let us see some connection between fractal geometry and the poles
of Z_{p} 1; s) on its axis of absolute convergence.

A bounded open set of \mathbb{R} is called a fractal string,  $\beta$

which is important
in fractal geometry. For a two‐variable polynomial  P\in \mathbb{R}[X, Y] satisfying
T‐ellipticity and T‐positivity, consider the family of pairwise disjoint open

intervals

\mathcal{L}_{P}= {  J_{m,n}\subset \mathbb{R};(m,n)\in Pas (p) ,  P(m, n)\neq 0},
labeled by the elements of Pas (p) with \mathrm{v}\mathrm{o}1_{1}(J_{m,n})=P(m, n)^{-2} , where \mathrm{v}\mathrm{o}1_{1}
denotes the Lebesgue measure on \mathbb{R} . Then

$\Omega$_{P}=\displaystyle \bigcup_{J\in \mathcal{L}_{P}}=\bigcup_{n($\tau$_{P(m,n)\neq 0}n)\in \mathrm{P}\mathrm{a}s(p)}J_{m,n}
forms a fractal string. The �geometric zeta function� of $\Omega$_{P} is given by

\displaystyle \sum_{J\in \mathcal{L}_{P}}\mathrm{v}\mathrm{o}1_{1}(J)^{-s}=Z_{p}(P, 1;2s\deg P)(s\in \mathbb{C}) .

The �Minkowski measurabiiity which is one of the geometric properties
of (the boundary of) a fractal string, is connected with the analytic informa‐

tion on the existence of non‐real poles of the geometric zeta function of the

corresponding fractal string on its axis of absolute convergence. In addition,
the Minkowski measurability of fractal string is relevant to the distribution

of non‐trivial zeros of the Riemann zeta function via spectrum theory. For

details of the theory of fractal strings, see [4] for example.
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