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Abstract
Let {a1(n)}n>1 be a purely periodic sequence of nonnegative integers, not identically zero,
and {a¢(n)}n>1 (€ = 2,3,...) be the sequences defined inductively by ae(n) := 3, ae-1(d)-
Then, for an arbitrary integer ¢ (J¢| > 1), the numbers

1 and iaz(n)q"" (£=2,3,...)

n=1

are linearly independent over Q. In particular, the numbers

1 and f:dg(n)q_" (£=2,3,...)

n=1

are linearly independent over Q, where dy(n) are generalized divisor functions.
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1 Introduction

For an integer £ > 1, we define the arithmetic function d¢(n) as the number of ordered factorization
of n into exactly £ factors, namely, the number of /-tuples of positive integers (d,...,ds) with
n = dj ---dg. For example, dj(n) = 1 (n > 1) and dz(n) denotes the number of positive divisors
of n. The arithmetic function dy(n) is sometimes called the generalized divisor function. For each
£ > 1, the functions dy(n) is multiplicative. Indeed, the function dy(n) is given by the Dirichlet
convolution
de(n) = (d *de-1)(n) = ) _dp-1(m) (n>1),
mln

where the sum is taken over all positive divisors m of n. This relation implies that the function
de(n) can be obtained from the Dirichlet series expression of the £th power of Riemann zeta function
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¢(s) =Y o2, 1/n%: -
(o)t = ; % (Res > 1).

Let {a1(n)}n>1 be a sequence of integers and {as(n)}n>1 (£ = 1,2,...) be the sequences defined

inductively by
ag(n) = Zag_l(m) (n >1). (1)
m|n
For example, the functions dy(n) (£ = 1,2,...) are generated from the unit function ai(n) = 1
(n > 1). Consider the power series

o
fol2) =) ae(n)z™ (£=1,2,...). 2
n=1
If {a1(n)}n>1 is a periodic sequence, then the functions (2) converge in |z| < 1, since ag(n) = O(n®)
for any € > 0 (see Lemma 3). Furthermore, the function fi1(z) is a rational function in 2 in the
region |z| < 1 and the functions fe(z) (£ =2,3,...) are expressed by (1) as Lambert series

2. ag_i(n)z"
fi(z) = ZT_—Z‘,,— (lz] < 1).
n=1
In 1948, Erdés [2] gave the irrationality of
[ <] oo 1
S =33
n=1 n=1

for any integer ¢ > 1 by showing that the g-adic expansion contains any arbitrary long string of
zeros without being identically zero from some point on. In [3], we generalized Erdés’ result as
follows:

Theorem A ([3, Theorem 1.1}) Let {a1(n)}n>1 be a purely periodic sequence of integers, not
identically zero, and {aa(n)}n>1 be a sequence defined by (1). Then the value

fla™) =2 eama™ = 30 255
n=1_ n=1
is irrational for any integer q (|| > 1).

In this paper, under the nonnegativity condition on {ai(n)}n>1, we generalize Theorem A by
proving the linear independence result for the values of the power series (2).
Throughout this paper, let ¢ be an integer with |g| > 1.

Theorem 1. Let {a1(n)}>1 be a purely periodic sequence of nonnegative integers, not identically
zero, and {ag(n)}n>1 (£ =2,3,...,m) be sequences defined by (1). Then the m numbers

1 and fi(g™H) = Zag(n)q_" (£=2,3,...,m) (3)
n=1

are linearly independent over Q.



Example 1. The m numbers

4 Sdmen =S %1 gy

1 and Y di(n)g —zq—n_—i‘ (£=2,3,...,m)
n=1 n=1

are linearly independent over Q.

Example 2. Let {a1(n)}n>1 be the sequence defined by a1(2k — 1) =1 and a1(2k) =0 for k > 1,

and {ag(n)}n>1 (£ =2,3,...) be the sequences defined by (1). Then the numbers

s POTI Y AR e
n=1 q " 1 n=1 7 1 n=1 7 1

are linearly independent over Q.

Remark 1. It should be noted that the proof of Theorem 1 is elementary in the sense that we do not
need a deep result about primes in arithmetic progressions by Alford, Granville, and Pomerance [1],
as in our previous paper (3] for example. This simplification is due to the nonnegativity condition
on {a1(n)}n>1.

2 Lemmas

In this section, we derive an upper bound for the summatory function of ag(n) over arithmetic
progressions (Lemma 4). Let d(n) := da(n) be the number of positive divisors of n.

Lemma 1. Let k > 1 be an integer. Then we have for N >1

N
Y d(n)* < (1+logN)*.

n=1 n

Proof. Since d(mf) < d(m)d(£) for any integers m and £, we have

N d(n)k N 4 N d(n)k-1
y UL T sy A

n=1 n=1m|n m=1 | 1<n<N
min
N N
_§h st Dt S dim S d(g*?
m=1 ¢=1 mé a m=1 m £=1 ¢

Hence we obtain inductively
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Lemma 2. Let k > 1 be an integer. Let A > 1 and B be coprime integers with —A < B < 24.
Then we have

N
3" d(Ai+ BY* < 2 N(1 +log N)**

i=1
for every integer N with N > (24)#~1.
Proof. Since VAN + B < v2AN <N,

N N
> d(4i + B) S d4i+ BT 1

i=1 i=1 m|Ai+B

N
Ydi+BEtl2 Y o1

<
i=1 m|Ai+B
m<VAi+B
N
< 2 Y dAi+ B @
m=1 1<i<N
m|Ai+B

Suppose that m divides Ai + B. Since A and B are coprime, so are A and m. Hence there exists
a unique integer r,, in the range —m + 1 < 7, < 0 such that i = —A™'B = r,,, (mod m). Let
i = mj + rp. Then there exist at most [%J < ]_%J + 1 numbers j such that 1 < < N, so
that

[X]+1
> d(4i+ Bt < Y d(Amj + Arp + B)F?
1<i<N j=t
m}Ai+B
1+ k—1
ke Ar,, + B
< k-1 . m R
< d(m) ; d(AJ+——-—m ) (5)

Thus, for k¥ = 1, we obtain by (4) and (5)

Zd(AH—B) <22 ([ J+1> <4NZ—

m=1
< 4N(1 +1logN).

We continue the proof of Lemma 2 by induction on k. By the above argument, the claim holds
for £ = 1. Let k > 2 and assume the lemma is true for £ — 1. In the right hand side of (5), the
integers A and ﬂlg‘ﬁ are coprime with

Arpm+ B
m

A< < 2A.
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Furthermore by the assumption N > (24)2°-1,

N N N N k-1
+1>=> > > (24)27 L

[ J > m 2 JANTE > vaan - 4

Hence, we obtain, by the induction hypothesis
[X)+1

k-1
Z d(Aj‘f-ATm-I-B)
m

=1

ok—-1

IA

(2) on(2)

92t42+714+1 (%) (1 +log N2, (6)

I\

Therefore by Lemma 1 together with (4), (5), and (6),

N k ok+1 ok-1 N d(m)k-1
i < o Lol
E d(Ai+ B)® <27 N(1+1logN) E -

=1l m=1
< 22" N(1 +log N)2".
This completes the proof of Lemma 2. 0

Let {a1(n)}n>1 be a purely periodic sequence of nonnegative integers, not identically zero, and
{ae(n)}n>1 (£=2,3,...) be sequences defined by (1). Define a := max{a;(n) : n > 1} > 0.

Lemma 3. For each£=1,2,..., we have
ag(n) <a-dn)' (n>1).

Proof. The assertion is trivial for £ = 1 and we have by the induction on ¢

a(n) =3 ap1(m) <Y a-dim)t?

min m|n
<a-d(n)t? Z 1
min

=a-dn)* L

O

Lemma 4. Let A and B be coprime integers with —A < B < 2A. For each ¢ = 1,2,..., the

inequality
N

S ay(4i+ B) < 2%aN(1 +1og N)* ™

i=1
holds for any integer N with N > (2 A)gt—1_1.

Proof. This follows immediately from Lemmas 2 and 3. O
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Lemma 5. Let s > 1 be a period length of {a1(n)}>1. Suppose that the positive integer n has the
form n=mT];pf, where p; are distinct prime numbers with p; = 1 (mod s) and coprime with m.
Then, for each £ =1,2,..., the function as(n) is expressed as

amn-wmmn(“+‘ . ™

Proof. The claim holds for £ = 1, since n = m (mod s) and {a3(n)}>; is periodic sequence with
a period length s. Let £ > 2 and assume that (7) holds for £ — 1. Then we have by the induction
hypothesis

daa@d= Y > ara(dida)

dln dim 15 ot \ dalpi®

> Zk ae-1(d1p})

dijm Hi_1 Ptl 3=0

= > Zae 1(d1)(3+£ 2)

dim T3 pt 7=0

= (ek;_zl_l) > aea(d),

difm T ot

ezk JHE-2\  [ex+l-1
-2 )\ ¢-1 )

ae(n)

where we used the equality

§=0
Repeating this process, or applying induction over the values of £k = 1,2,..., we obtain
e;+€—1
(Zae 1<d)n( )
dim

_ e;+£4—1

-mmg(e_l)
which gives the desired result. O

Applying Lemma 5 to the function dy(n), we have the formula
vp(n) +4—1
drm) = [ »(n) ’
-1
pln

where vp(n) is the exponent of p in the prime factorization of n (cf. [4, Theorem 7.5]).
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3 Preliminaries

Let m > 2 be an integer and {#(n)},>1 a sequence defined by the linear combination of {as(n)}n>1
(£=2,8,...,m) over Z:

m
0(n) == bay(n) (b€ Z). (8)

=2
Let p; be the least prime with p = 1 (mod s) and p1, pe, ... be increasing sequence of all the primes
which are congruent to 1 modulo s, where s > 1 be a period length of {a1(n)}n>1. We choose a
sufficiently large integer k£ with & > p; and put

ty = @, T =t + L.

We denote g1, go,...,qs,, by the first tor odd prime numbers satisfying ¢; = 1 (mod s) and all
greater than 4k%. Let L := m! and q be an integer with |g| > 1. Then, by the Chinese Remainder
Theorem, there exists an integer By, satisfying the congruences

( Br—k+1= qllq[L'l (mod q|1q|L),
By, — k +2 = (gags)l?L? (mod (g2g3)9IL),
< Bk -1= (qu_g tot qtk_1)mL-1 (mOd (qu_g e qtk_l)lqu‘)’ (9)

Br+1= (g - .thl)IqlL—l (mod  (gr, - - 'Qt,,.,_,)lq'L),

{ Be+ k= (Gray - @) 57 (mod  (graiy -+ 42 )95,

which furthermore is unique under the additional inequality

1 < By < Ay,
where
tok lalL
Ap = H qiq .
=1
TFE g 15eitle
In what follows, let c¢i,c2,... be positive constants which may depend on g, m, and the function

{a1(n)}n>1 (in fact, only on s and a := max{a1(n) : 1 < n < s}) but are independent of k. Since
the nth prime p, in the arithmetic progression p; =1 (mod s) satisfies the inequality

pn < 2snlogn
for large n, we have

bk
L k2 log k
By, < Ay < [[ Pl < 118k, (10)

i=1



Let Nj := 2¥° and
: S(k) == {ug; == Axi+ B |i =1,...,Ng}.

We put p := p; and choose a positive integer v with p < |g|¥. Let h > 1 be the least integer with

a(h) = a. Define the subsets of S(k):
Ty = Ti(k) = {urs € S(K) |ugg =0 (mod hpl71))},

Ty = To(k) = {u; € S(k) | agluns) < 22aps (1 + log Ni)* ™'}

for each £ = 2,3,...,m, and put
m

T =T(k):=(Te
=1

Lemma 6. There exists an integer iy, (1 < ix < Ni) such that
Uk, = Arig + B €T,

such that
2mk3

3 1O(uk, +n+ k)| < pv.

n=1

Proof. First, we estimate lower bounds for the number of elements in each T;. Since 1 < h < s and

p1=p<k<4k3<qi<Ak,

the integer Ay is coprime with hp. Hence, we have

> || s My
hplostl | 7 ppieT

where T denotes the number of elements in the set 73. On the other hand, for each £ = 2,3,.

we have, by Lemma 4,
N

S ay(4i+ B) < 2%aN(1 +log N)¥ ™
i=1
for any coprime integers A and B with —A < B < 2A,if N > (24)
B := By, and N := N, we get for each £ = 2,3,...,m,

2¢-1

N N
22laNk(1 + log ]\]']‘,)22_1 > Zag(uk,,-) > Z a,g(uk,,-)
= u;,i=¢1T¢

> (Nk - §T2) - 22 aps (1 + log Ni) 2",

1Ty > (1 - %) Np.
pu

which implies

—1, Hence, putting A :=

(11)

..,m,

Ak,
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Thus, we have

(T2 NT3) > §To + T3 — Ni > (1 -

) N,

‘?lwl N

and inductively

m—1
H(NEeoTe) > (1 -—x )Nk. (12)
pv
Therefore, we obtain, by (11) and (12),
N, m-—1 N;
HT = #(Ngz1Te) 2 ( . —1) - BN > 5 (13)
hpvH pv 2hpv+1
Define
Ni 2mk3
Bri=Y_ > 0(uks +n+k).
i=1 n=1

By Lemma 4 with A := A, B := Bx +n+ k and N := Nj, we have the following upper bound
which is uniform in n € {1,2,...,2mk%}:

2mk® m N

MY N> a(Ari+ By +n+k)

n=1 {=2 i=1

Bk

IA

2mk® m

MY 3 2% aNe(1 +log Ny
n=1 £=2

IA

2am?Mk3 - 22" Ni.(1 + log Nk)2m_l

IA

IA

c2k®?" N, (14)
where M := max, |bs|. Thus, putting
‘ 2mk3
ag = i=1ry121’i3'1,Nk (Z |O(urs +n + k)l) "
uy ;€T n=1

we obtain, by (13) and (14),

Nk N 2mk3
ap—— < Y | D [B(uri+n+k)|
2hpv+1 =1\ n=1
uk,iGT
< Bk
< k3" N,

which implies that oy < p% for all sufficiently large k. O
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Let ik be as in Lemma 6 and put uy := uk,;, € T.
Lemma 7. For sufficiently large k, we have
N O(uy +n+ k)
5 e tnt k)

< 2p'75.

n=1

Proof. By (10), we have

ug + 2mk® + k = Agix + Bi + 2mk3 + k < 228°

and hence, by Lemma 3,

m
|0(ug +2mk3 +n+ k)| < MZag(uk +2mk® +n+k)

=2
m
< aMy_ d(ug +2mk® +n + k)*!
=2
m
< aM Z(uk +2mk® +n+ Is:)l‘1
=2
< 22K Mn™, (15)
Thus, we get, by Lemma 6 together with (15),
S B(up +n+k)| K = 0w + 1+ k)|
Z———-—n—-—- < Z [0(ux +n+ k)| + Z ————I-—In———————
n=1 q n=1 n=2mk3+1 g
o |0(ug 4 2mk3 + n + k)|
<pv+ Z [q[2mkS+n
n=1
k 2\ 2mk* =2 m
oo e (2 £
? @) ZiF
< 2pv
m]
Lemma 8. Suppose that the infinite series
o0
4(n
b= ——(n) (16)
n=1 q

is an integer. Then O(ux) = 0 holds for every large k.



Proof. We have, by (9),

itk
. . . L-1
up +J = Agip + Bp +j = myj H 'JlQI
i=rjtk-1
for each nonzero integer j = —k + 1,...,k, where my ; is a positive integer coprime with all the

primes g¢; for i € {rj4k—1,...,tj4x}. By (7), we get

) L+ £ — 1\ btk Tite-1+1
outwe-+3) = aelme) (151477

= jelg/*+
for £=2,3,...,m, where i j, is an integer because (£ —1)! | L. Hence,

O(uk +7) = ) beae(uk +5) =0 (mod |g[*+?),
=2

for each j = ~k+1,...,k (j # 0) and, by (16),

up—k up—1
o(n) Cem)\  (ur)
b = Z —'—'qn +( Z —""q,n + poms
n=1 n=up—k+1
up+k 00
o 0
+ Y MRy » AR
n=ug+1 q n=ug+k+1
k| O(uk) = 6(n)
+—+ —_— 17
quk—k gtk n=ukz+k+l q° ( )

where 7 is an integer. Multiplying both sides of (17) by ¢“* and using Lemma 7, we obtain

1 S O(up+n+k kfv

bag® = it = ue)| = |5 3 AR D) < () (18)
et q lal

By the definition of v, the right-hand side in (18) tends to zero as k tends to infnity, and so the

integer

b1g™* + rig® + 6(ux)
must be zero for sufficiently large k. Hence, 8(uy) is a multiple of ¢¥ because
ury=Axir+Br > A > q1 >4k > k.
On the other hand, since u; € T,

m m
[6(ue)] < MZag(uk) < ME22lap§(1 +log N2
=2 =2

< 22mamMp§ (1+log Ny)2™™!

<lal*.
Therefore, 0{ug) = 0 for every large k and Lemma 8 is proved. [m]
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4 Proof of Theorem 1

Proof of Theorem 1. Suppose on the contrary that the m numbers given at (3)

1 and fe(4“1)=zaz(n)q‘" (£=2,3,...,m)

n=1

are linearly dependent over Q. Then there exist integers b; and b, for £ = 2,3,...,m, not all zero,
such that

by-1— befa(q™!) =0,

=2

and hence

=3 belg =3 A0 (19)

=2 n=1 "
is an integer, where
m
0(n) := Zbgal(n).
=2 .
Applying Lemma 8, we see that there exists uy € T with 8(ug) = 0 for sufficiently large k.
On the other hand, the sequences {ag(n)}n>1 (£ > 1) consist of nonnegative integers, and so we

have
ag(n) = Z ag—1(d) > ag—1(n) (20)
dln

for every integer n. Furthermore, for each £ > 1
ae(ux) 2 a1(h) =a >0, (21)

since uy € 17, so that h | ug. Thus, by (20) and (21),

> beas(us)

=2

16 ()|

I

r—1

> beag(ur)

=2

ar(ug) — M(r —2) - ap_1(ug)

v

lbrar (ug)| —

v

]

oratun) (28— mar), (22)

ar—-l(uk) a

where r > 2 is the largest integer with b, # 0. Since ux € T}, the integer uy, has the form uy = p'\knk
with Ap > [k/(v + 1)}, where p and 7 are coprime. Hence, we have, by (7) and (20),

K
ar(uk) _ (1+ Ak ) anme) L"+1J > mM
ar—1(uk) r—1) ap-1(m) m=1
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for all sufficiently large k, which implies that (ux) # 0 by (22). This is a contradiction which
completes the proof of Theorem 1.
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