Linear independence results for the values of divisor functions series

FLORIAN LUCA School of Mathematics University of the Witwatersrand

YOHEI TACHIYA Graduate School of Science and Technology, Hirosaki University

Abstract

Let $\{a_1(n)\}_{n\geq 1}$ be a purely periodic sequence of nonnegative integers, not identically zero, and $\{a_\ell(n)\}_{n\geq 1}$ $(\ell=2,3,\ldots)$ be the sequences defined inductively by $a_\ell(n):=\sum_{d\mid n}a_{\ell-1}(d)$. Then, for an arbitrary integer q (|q|>1), the numbers

1 and
$$\sum_{n=1}^{\infty} a_{\ell}(n)q^{-n}$$
 $(\ell = 2, 3, ...)$

are linearly independent over Q. In particular, the numbers

1 and
$$\sum_{n=1}^{\infty} d_{\ell}(n)q^{-n}$$
 $(\ell = 2, 3, ...)$

are linearly independent over \mathbb{Q} , where $d_{\ell}(n)$ are generalized divisor functions.

2010 Mathematics Subject Classification: 11J72, 11A25.

Key words: irrationality, linear independence, divisor function.

1 Introduction

For an integer $\ell \geq 1$, we define the arithmetic function $d_{\ell}(n)$ as the number of ordered factorization of n into exactly ℓ factors, namely, the number of ℓ -tuples of positive integers (d_1, \ldots, d_{ℓ}) with $n = d_1 \cdots d_{\ell}$. For example, $d_1(n) = 1$ $(n \geq 1)$ and $d_2(n)$ denotes the number of positive divisors of n. The arithmetic function $d_{\ell}(n)$ is sometimes called the *generalized divisor function*. For each $\ell \geq 1$, the functions $d_{\ell}(n)$ is multiplicative. Indeed, the function $d_{\ell}(n)$ is given by the Dirichlet convolution

$$d_{\ell}(n) = (d_1 * d_{\ell-1})(n) = \sum_{m|n} d_{\ell-1}(m) \quad (n \ge 1),$$

where the sum is taken over all positive divisors m of n. This relation implies that the function $d_{\ell}(n)$ can be obtained from the Dirichlet series expression of the ℓ th power of Riemann zeta function

 $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$:

$$\zeta(s)^{\ell} = \sum_{n=1}^{\infty} \frac{d_{\ell}(n)}{n^s} \quad (\text{Re } s > 1).$$

Let $\{a_1(n)\}_{n\geq 1}$ be a sequence of integers and $\{a_\ell(n)\}_{n\geq 1}$ $(\ell=1,2,\dots)$ be the sequences defined inductively by

$$a_{\ell}(n) := \sum_{m|n} a_{\ell-1}(m) \quad (n \ge 1).$$
 (1)

For example, the functions $d_{\ell}(n)$ ($\ell=1,2,\ldots$) are generated from the unit function $a_1(n)=1$ ($n\geq 1$). Consider the power series

$$f_{\ell}(z) := \sum_{n=1}^{\infty} a_{\ell}(n) z^n \quad (\ell = 1, 2, \dots).$$
 (2)

If $\{a_1(n)\}_{n\geq 1}$ is a periodic sequence, then the functions (2) converge in |z|<1, since $a_\ell(n)=O(n^{\varepsilon})$ for any $\varepsilon>0$ (see Lemma 3). Furthermore, the function $f_1(z)$ is a rational function in z in the region |z|<1 and the functions $f_\ell(z)$ ($\ell=2,3,\ldots$) are expressed by (1) as Lambert series

$$f_{\ell}(z) = \sum_{n=1}^{\infty} \frac{a_{\ell-1}(n)z^n}{1-z^n} \quad (|z| < 1).$$

In 1948, Erdős [2] gave the irrationality of

$$\sum_{n=1}^{\infty} d_2(n)q^{-n} = \sum_{n=1}^{\infty} \frac{1}{q^n - 1}$$

for any integer q>1 by showing that the q-adic expansion contains any arbitrary long string of zeros without being identically zero from some point on. In [3], we generalized Erdős' result as follows:

Theorem A ([3, Theorem 1.1]) Let $\{a_1(n)\}_{n\geq 1}$ be a purely periodic sequence of integers, not identically zero, and $\{a_2(n)\}_{n\geq 1}$ be a sequence defined by (1). Then the value

$$f_2(q^{-1}) = \sum_{n=1}^{\infty} a_2(n)q^{-n} = \sum_{n=1}^{\infty} \frac{a_1(n)}{q^n - 1}$$

is irrational for any integer q (|q| > 1).

In this paper, under the nonnegativity condition on $\{a_1(n)\}_{n\geq 1}$, we generalize Theorem A by proving the linear independence result for the values of the power series (2).

Throughout this paper, let q be an integer with |q| > 1.

Theorem 1. Let $\{a_1(n)\}_{\geq 1}$ be a purely periodic sequence of nonnegative integers, not identically zero, and $\{a_\ell(n)\}_{n\geq 1}$ $(\ell=2,3,\ldots,m)$ be sequences defined by (1). Then the m numbers

1 and
$$f_{\ell}(q^{-1}) = \sum_{n=1}^{\infty} a_{\ell}(n)q^{-n}$$
 $(\ell = 2, 3, \dots, m)$ (3)

are linearly independent over Q.

Example 1. The m numbers

1 and
$$\sum_{n=1}^{\infty} d_{\ell}(n)q^{-n} = \sum_{n=1}^{\infty} \frac{d_{\ell-1}(n)}{q^n - 1}$$
 $(\ell = 2, 3, \dots, m)$

are linearly independent over Q.

Example 2. Let $\{a_1(n)\}_{n\geq 1}$ be the sequence defined by $a_1(2k-1)=1$ and $a_1(2k)=0$ for $k\geq 1$, and $\{a_\ell(n)\}_{n\geq 1}$ $(\ell=2,3,\ldots)$ be the sequences defined by (1). Then the numbers

1,
$$\sum_{n=1}^{\infty} \frac{1}{q^{2n-1}-1}$$
, $\sum_{n=1}^{\infty} \frac{a_2(n)}{q^n-1}$, ... , $\sum_{n=1}^{\infty} \frac{a_\ell(n)}{q^n-1}$, ...

are linearly independent over Q.

Remark 1. It should be noted that the proof of Theorem 1 is elementary in the sense that we do not need a deep result about primes in arithmetic progressions by Alford, Granville, and Pomerance [1], as in our previous paper [3] for example. This simplification is due to the nonnegativity condition on $\{a_1(n)\}_{n\geq 1}$.

2 Lemmas

In this section, we derive an upper bound for the summatory function of $a_{\ell}(n)$ over arithmetic progressions (Lemma 4). Let $d(n) := d_2(n)$ be the number of positive divisors of n.

Lemma 1. Let $k \ge 1$ be an integer. Then we have for $N \ge 1$

$$\sum_{n=1}^{N} \frac{d(n)^k}{n} \le (1 + \log N)^{2^k}.$$

Proof. Since $d(m\ell) \leq d(m)d(\ell)$ for any integers m and ℓ , we have

$$\sum_{n=1}^{N} \frac{d(n)^k}{n} = \sum_{n=1}^{N} \sum_{m|n} \frac{d(n)^{k-1}}{n} = \sum_{m=1}^{N} \left(\sum_{\substack{1 \le n \le N \\ m|n}} \frac{d(n)^{k-1}}{n} \right)$$

$$= \sum_{m=1}^{N} \sum_{\ell=1}^{\lfloor \frac{N}{m} \rfloor} \frac{d(m\ell)^{k-1}}{m\ell} \le \sum_{m=1}^{N} \frac{d(m)^{k-1}}{m} \sum_{\ell=1}^{\lfloor \frac{N}{m} \rfloor} \frac{d(\ell)^{k-1}}{\ell}$$

$$\le \left(\sum_{m=1}^{N} \frac{d(m)^{k-1}}{m} \right)^2.$$

Hence we obtain inductively

$$\sum_{n=1}^{N} \frac{d(n)^k}{n} \le \left(\sum_{m=1}^{N} \frac{1}{m}\right)^{2^k} \le (1 + \log N)^{2^k}.$$

Lemma 2. Let $k \ge 1$ be an integer. Let $A \ge 1$ and B be coprime integers with -A < B < 2A. Then we have

$$\sum_{i=1}^{N} d(Ai + B)^k \le 2^{2^{k+1}} N (1 + \log N)^{2^k}$$

for every integer N with $N \ge (2A)^{2^k-1}$.

Proof. Since $\sqrt{AN+B} \le \sqrt{2AN} \le N$,

$$\sum_{i=1}^{N} d(Ai + B)^{k} = \sum_{i=1}^{N} d(Ai + B)^{k-1} \sum_{m|Ai + B} 1$$

$$\leq \sum_{i=1}^{N} d(Ai + B)^{k-1} \left(2 \sum_{\substack{m|Ai + B \\ m \leq \sqrt{Ai + B}}} 1 \right)$$

$$\leq 2 \sum_{m=1}^{N} \sum_{\substack{1 \leq i \leq N \\ m|Ai + B}} d(Ai + B)^{k-1}. \tag{4}$$

Suppose that m divides Ai+B. Since A and B are coprime, so are A and m. Hence there exists a unique integer r_m in the range $-m+1 \le r_m \le 0$ such that $i \equiv -A^{-1}B \equiv r_m \pmod m$. Let $i = mj + r_m$. Then there exist at most $\lfloor \frac{N+m-1}{m} \rfloor \le \lfloor \frac{N}{m} \rfloor + 1$ numbers j such that $1 \le i \le N$, so that

$$\sum_{\substack{1 \le i \le N \\ m \mid Ai + B}} d(Ai + B)^{k-1} \le \sum_{j=1}^{\lfloor \frac{M}{m} \rfloor + 1} d(Amj + Ar_m + B)^{k-1} \\
\le d(m)^{k-1} \sum_{j=1}^{\lfloor \frac{M}{m} \rfloor + 1} d\left(Aj + \frac{Ar_m + B}{m}\right)^{k-1}.$$
(5)

Thus, for k = 1, we obtain by (4) and (5)

$$\sum_{i=1}^{N} d(Ai + B) \leq 2 \sum_{m=1}^{N} \left(\left\lfloor \frac{N}{m} \right\rfloor + 1 \right) \leq 4N \sum_{m=1}^{N} \frac{1}{m}$$
$$\leq 4N(1 + \log N).$$

We continue the proof of Lemma 2 by induction on k. By the above argument, the claim holds for k = 1. Let $k \ge 2$ and assume the lemma is true for k - 1. In the right hand side of (5), the integers A and $\frac{Ar_m + B}{m}$ are coprime with

$$-A < \frac{Ar_m + B}{m} < 2A.$$

Furthermore by the assumption $N \ge (2A)^{2^k-1}$,

$$\left\lfloor \frac{N}{m} \right\rfloor + 1 \ge \frac{N}{m} \ge \frac{N}{\sqrt{AN + B}} \ge \frac{N}{\sqrt{2AN}} \ge (2A)^{2^{k-1} - 1}.$$

Hence, we obtain, by the induction hypothesis

$$\sum_{j=1}^{\lfloor \frac{N}{m} \rfloor + 1} d \left(Aj + \frac{Ar_m + B}{m} \right)^{k-1} \leq 2^{2^k} \left(\frac{2N}{m} \right) \left(1 + \log \left(\frac{2N}{m} \right) \right)^{2^{k-1}}$$

$$\leq 2^{2^k + 2^{k-1} + 1} \left(\frac{N}{m} \right) (1 + \log N)^{2^{k-1}}. \tag{6}$$

Therefore by Lemma 1 together with (4), (5), and (6),

$$\sum_{i=1}^{N} d(Ai + B)^{k} \leq 2^{2^{k+1}} N (1 + \log N)^{2^{k-1}} \sum_{m=1}^{N} \frac{d(m)^{k-1}}{m}$$
$$\leq 2^{2^{k+1}} N (1 + \log N)^{2^{k}}.$$

This completes the proof of Lemma 2.

Let $\{a_1(n)\}_{n\geq 1}$ be a purely periodic sequence of nonnegative integers, not identically zero, and $\{a_\ell(n)\}_{n\geq 1}$ $(\ell=2,3,\ldots)$ be sequences defined by (1). Define $a:=\max\{a_1(n):n\geq 1\}>0$.

Lemma 3. For each $\ell = 1, 2, ...,$ we have

$$a_{\ell}(n) \le a \cdot d(n)^{\ell-1} \quad (n \ge 1).$$

Proof. The assertion is trivial for $\ell = 1$ and we have by the induction on ℓ

$$\begin{aligned} a_{\ell}(n) &&= \sum_{m|n} a_{\ell-1}(m) \leq \sum_{m|n} a \cdot d(m)^{\ell-2} \\ &\leq a \cdot d(n)^{\ell-2} \sum_{m|n} 1 \\ &= a \cdot d(n)^{\ell-1}. \end{aligned}$$

Lemma 4. Let A and B be coprime integers with -A < B < 2A. For each $\ell = 1, 2, ...,$ the inequality

$$\sum_{i=1}^{N} a_{\ell}(Ai + B) \le 2^{2^{\ell}} aN (1 + \log N)^{2^{\ell-1}}$$

holds for any integer N with $N \geq (2A)^{2^{\ell-1}-1}$.

Proof. This follows immediately from Lemmas 2 and 3.

Lemma 5. Let $s \ge 1$ be a period length of $\{a_1(n)\}_{\ge 1}$. Suppose that the positive integer n has the form $n = m \prod_i p_i^{e_i}$, where p_i are distinct prime numbers with $p_i \equiv 1 \pmod{s}$ and coprime with m. Then, for each $\ell = 1, 2, \ldots$, the function $a_\ell(n)$ is expressed as

$$a_{\ell}(n) = a_{\ell}(m) \prod_{i} \binom{e_i + \ell - 1}{\ell - 1}. \tag{7}$$

Proof. The claim holds for $\ell = 1$, since $n \equiv m \pmod s$ and $\{a_1(n)\}_{\geq 1}$ is periodic sequence with a period length s. Let $\ell \geq 2$ and assume that (7) holds for $\ell - 1$. Then we have by the induction hypothesis

$$\begin{aligned} a_{\ell}(n) &= \sum_{d|n} a_{\ell-1}(d) = \sum_{d_1|m \prod_{i=1}^{k-1} p_i^{e_i}} \left(\sum_{d_2|p_k^{e_k}} a_{\ell-1}(d_1 d_2) \right) \\ &= \sum_{d_1|m \prod_{i=1}^{k-1} p_i^{e_i}} \sum_{j=0}^{e_k} a_{\ell-1}(d_1 p_k^j) \\ &= \sum_{d_1|m \prod_{i=1}^{k-1} p_i^{e_i}} \sum_{j=0}^{e_k} a_{\ell-1}(d_1) \binom{j+\ell-2}{\ell-2} \\ &= \binom{e_k+\ell-1}{\ell-1} \sum_{d_1|m \prod_{i=1}^{k-1} p_i^{e_i}} a_{\ell-1}(d_1), \end{aligned}$$

where we used the equality

$$\sum_{j=0}^{e_k} \binom{j+\ell-2}{\ell-2} = \binom{e_k+\ell-1}{\ell-1}.$$

Repeating this process, or applying induction over the values of k = 1, 2, ..., we obtain

$$\begin{aligned} a_{\ell}(n) &= \left(\sum_{d|m} a_{\ell-1}(d)\right) \prod_{i} \binom{e_{i} + \ell - 1}{\ell - 1} \\ \\ &= a_{\ell}(m) \prod_{i} \binom{e_{i} + \ell - 1}{\ell - 1}, \end{aligned}$$

which gives the desired result.

Applying Lemma 5 to the function $d_{\ell}(n)$, we have the formula

$$d_{\ell}(n) = \prod_{p|n} \binom{v_p(n) + \ell - 1}{\ell - 1},$$

where $v_p(n)$ is the exponent of p in the prime factorization of n (cf. [4, Theorem 7.5]).

3 Preliminaries

Let $m \ge 2$ be an integer and $\{\theta(n)\}_{n\ge 1}$ a sequence defined by the linear combination of $\{a_\ell(n)\}_{n\ge 1}$ $(\ell=2,3,\ldots,m)$ over \mathbb{Z} :

$$\theta(n) := \sum_{\ell=2}^{m} b_{\ell} a_{\ell}(n) \quad (b_{\ell} \in \mathbb{Z}). \tag{8}$$

Let p_1 be the least prime with $p \equiv 1 \pmod{s}$ and p_1, p_2, \ldots be increasing sequence of all the primes which are congruent to 1 modulo s, where $s \geq 1$ be a period length of $\{a_1(n)\}_{n\geq 1}$. We choose a sufficiently large integer k with $k > p_1$ and put

$$t_k := \frac{k(k+1)}{2}, \qquad r_k := t_k + 1.$$

We denote $q_1, q_2, \ldots, q_{t_{2k}}$ by the first t_{2k} odd prime numbers satisfying $q_i \equiv 1 \pmod{s}$ and all greater than $4k^3$. Let L := m! and q be an integer with |q| > 1. Then, by the Chinese Remainder Theorem, there exists an integer B_k satisfying the congruences

$$\begin{cases}
B_{k} - k + 1 \equiv q_{1}^{|q|L-1} & (\text{mod } q_{1}^{|q|L}), \\
B_{k} - k + 2 \equiv (q_{2}q_{3})^{|q|L-1} & (\text{mod } (q_{2}q_{3})^{|q|L}), \\
\vdots & \vdots & \vdots \\
B_{k} - 1 \equiv (q_{r_{k-2}} \cdots q_{t_{k-1}})^{|q|L-1} & (\text{mod } (q_{r_{k-2}} \cdots q_{t_{k-1}})^{|q|L}), \\
B_{k} + 1 \equiv (q_{r_{k}} \cdots q_{t_{k+1}})^{|q|L-1} & (\text{mod } (q_{r_{k}} \cdots q_{t_{k+1}})^{|q|L}), \\
\vdots & \vdots & \vdots \\
B_{k} + k \equiv (q_{r_{2k-1}} \cdots q_{t_{2k}})^{|q|L-1} & (\text{mod } (q_{r_{2k-1}} \cdots q_{t_{2k}})^{|q|L}),
\end{cases}$$
(9)

which furthermore is unique under the additional inequality

$$1 \leq B_k \leq A_k$$

where

$$A_k := \prod_{\substack{i=1\\i\neq r_{k-1},\dots,t_k}}^{t_{2k}} q_i^{|q|L}.$$

In what follows, let c_1, c_2, \ldots be positive constants which may depend on q, m, and the function $\{a_1(n)\}_{n\geq 1}$ (in fact, only on s and $a:=\max\{a_1(n):1\leq n\leq s\}$) but are independent of k. Since the nth prime p_n in the arithmetic progression $p_i\equiv 1\pmod s$ satisfies the inequality

$$p_n \leq 2sn \log n$$

for large n, we have

$$B_k \le A_k \le \prod_{i=1}^{t_{2k}} p_{i+4k^3}^{|q|L} \le e^{c_1 k^2 \log k}. \tag{10}$$

Let $N_k := 2^{k^3}$ and

$$S(k) := \{u_{k,i} := A_k i + B_k \mid i = 1, \dots, N_k\}.$$

We put $p := p_1$ and choose a positive integer ν with $p < |q|^{\nu}$. Let $h \ge 1$ be the least integer with a(h) = a. Define the subsets of S(k):

$$T_1 = T_1(k) := \{ u_{k,i} \in S(k) \mid u_{k,i} \equiv 0 \pmod{hp^{\lfloor \frac{k}{\nu+1} \rfloor}} \},$$

$$T_{\ell} = T_{\ell}(k) := \{ u_{k,i} \in S(k) \mid a_{\ell}(u_{k,i}) < 2^{2^{\ell}} a p^{\frac{k}{\nu}} (1 + \log N_k)^{2^{\ell-1}} \}$$

for each $\ell=2,3,\ldots,m$, and put

$$T=T(k):=igcap_{\ell=1}^m T_\ell.$$

Lemma 6. There exists an integer i_k $(1 \le i_k \le N_k)$ such that

$$u_{k,i_k} = A_k i_k + B_k \in T,$$

such that

$$\sum_{n=1}^{2mk^3} |\theta(u_{k,i_k} + n + k)| \le p^{\frac{k}{\nu}}.$$

Proof. First, we estimate lower bounds for the number of elements in each T_{ℓ} . Since $1 \leq h \leq s$ and

$$p_1 = p < k < 4k^3 < q_i < A_k,$$

the integer A_k is coprime with hp. Hence, we have

$$\sharp T_1 \ge \left\lfloor \frac{N_k}{hp^{\lfloor \frac{k}{\nu+1} \rfloor}} \right\rfloor \ge \frac{N_k}{hp^{\frac{k}{\nu+1}}} - 1,\tag{11}$$

where $\sharp T_1$ denotes the number of elements in the set T_1 . On the other hand, for each $\ell=2,3,\ldots,m$, we have, by Lemma 4,

$$\sum_{i=1}^{N} a_{\ell}(Ai + B) \le 2^{2^{\ell}} aN (1 + \log N)^{2^{\ell-1}}$$

for any coprime integers A and B with -A < B < 2A, if $N \ge (2A)^{2^{\ell-1}-1}$. Hence, putting $A := A_k$, $B := B_k$, and $N := N_k$, we get for each $\ell = 2, 3, \ldots, m$,

$$2^{2^{\ell}} a N_k (1 + \log N_k)^{2^{\ell-1}} \ge \sum_{i=1}^{N_k} a_{\ell}(u_{k,i}) \ge \sum_{\substack{i=1 \ u_{k,i} \notin T_{\ell}}}^{N_k} a_{\ell}(u_{k,i})$$

$$\geq (N_k - \sharp T_\ell) \cdot 2^{2^\ell} a p^{\frac{k}{\nu}} (1 + \log N_k)^{2^{\ell-1}},$$

which implies

$$\sharp T_\ell \geq \left(1 - \frac{1}{p^{rac{k}{
u}}}\right) N_k.$$

Thus, we have

$$\sharp (T_2\cap T_3)\geq \sharp T_2+\sharp T_3-N_k\geq \left(1-\frac{2}{p^{\frac{k}{\nu}}}\right)N_k,$$

and inductively

$$\sharp (\cap_{\ell=2}^m T_\ell) \ge \left(1 - \frac{m-1}{p^{\frac{k}{\nu}}}\right) N_k. \tag{12}$$

Therefore, we obtain, by (11) and (12),

$$\sharp T = \sharp (\cap_{\ell=1}^m T_\ell) \ge \left(\frac{N_k}{h p^{\frac{k}{\nu+1}}} - 1\right) - \frac{m-1}{p^{\frac{k}{\nu}}} N_k \ge \frac{N_k}{2h p^{\frac{k}{\nu+1}}}.$$
 (13)

Define

$$\beta_k := \sum_{i=1}^{N_k} \sum_{n=1}^{2mk^3} |\theta(u_{k,i} + n + k)|.$$

By Lemma 4 with $A := A_k$, $B := B_k + n + k$ and $N := N_k$, we have the following upper bound which is uniform in $n \in \{1, 2, ..., 2mk^3\}$:

$$\beta_{k} \leq M \sum_{n=1}^{2mk^{3}} \sum_{\ell=2}^{m} \sum_{i=1}^{N_{k}} a_{\ell} (A_{k}i + B_{k} + n + k)$$

$$\leq M \sum_{n=1}^{2mk^{3}} \sum_{\ell=2}^{m} 2^{2^{\ell}} a N_{k} (1 + \log N_{k})^{2^{\ell-1}}$$

$$\leq 2am^{2} M k^{3} \cdot 2^{2^{m}} N_{k} (1 + \log N_{k})^{2^{m-1}}$$

$$\leq c_{2} k^{3 \cdot 2^{m}} N_{k}, \tag{14}$$

where $M := \max_{s} |b_{s}|$. Thus, putting

$$lpha_k := \min_{\substack{i=1,2,...,N_k \ u_{k,i} \in T}} \left(\sum_{n=1}^{2mk^3} | heta(u_{k,i}+n+k)|
ight),$$

we obtain, by (13) and (14),

$$\begin{split} \alpha_k \frac{N_k}{2hp^{\frac{k}{\nu+1}}} & \leq \sum_{i=1}^{N_k} \left(\sum_{n=1}^{2mk^3} |\theta(u_{k,i} + n + k)| \right) \\ & \leq \beta_k \\ & \leq c_2 k^{3 \cdot 2^m} N_k, \end{split}$$

which implies that $\alpha_k \leq p^{\frac{k}{\nu}}$ for all sufficiently large k.

Let i_k be as in Lemma 6 and put $u_k := u_{k,i_k} \in T$.

Lemma 7. For sufficiently large k, we have

$$\left| \sum_{n=1}^{\infty} \frac{\theta(u_k + n + k)}{q^n} \right| \le 2p^{\frac{k}{\nu}}.$$

Proof. By (10), we have

$$u_k + 2mk^3 + k = A_ki_k + B_k + 2mk^3 + k < 2^{2k^3}$$

and hence, by Lemma 3,

$$|\theta(u_k + 2mk^3 + n + k)| \leq M \sum_{\ell=2}^{m} a_{\ell}(u_k + 2mk^3 + n + k)$$

$$\leq aM \sum_{\ell=2}^{m} d(u_k + 2mk^3 + n + k)^{\ell-1}$$

$$\leq aM \sum_{\ell=2}^{m} (u_k + 2mk^3 + n + k)^{\ell-1}$$

$$\leq 2^{2mk^3} mMn^m. \tag{15}$$

Thus, we get, by Lemma 6 together with (15),

$$\begin{split} \left| \sum_{n=1}^{\infty} \frac{\theta(u_k + n + k)}{q^n} \right| & \leq \sum_{n=1}^{2mk^3} |\theta(u_k + n + k)| + \sum_{n=2mk^3 + 1}^{\infty} \frac{|\theta(u_k + n + k)|}{|q|^n} \\ & \leq p^{\frac{k}{\nu}} + \sum_{n=1}^{\infty} \frac{|\theta(u_k + 2mk^3 + n + k)|}{|q|^{2mk^3 + n}} \\ & \leq p^{\frac{k}{\nu}} + mM \left(\frac{2}{|q|}\right)^{2mk^3} \sum_{n=1}^{\infty} \frac{n^m}{|q|^n} \\ & \leq 2p^{\frac{k}{\nu}}. \end{split}$$

Lemma 8. Suppose that the infinite series

$$b_1 := \sum_{n=1}^{\infty} \frac{\theta(n)}{q^n} \tag{16}$$

is an integer. Then $\theta(u_k) = 0$ holds for every large k.

Proof. We have, by (9),

$$u_k + j = A_k i_k + B_k + j = m_{k,j} \prod_{i=r_{j+k-1}}^{t_{j+k}} q_i^{|q|L-1}$$

for each nonzero integer $j=-k+1,\ldots,k$, where $m_{k,j}$ is a positive integer coprime with all the primes q_i for $i\in\{r_{j+k-1},\ldots,t_{j+k}\}$. By (7), we get

$$\begin{split} a_\ell(u_k+j) &= a_\ell(m_{k,j}) \binom{|q|L+\ell-1}{\ell-1}^{t_{j+k}-r_{j+k-1}+1} \\ &= \mu_{k,j,\ell}|q|^{k+j} \end{split}$$

for $\ell = 2, 3, ..., m$, where $\mu_{k, j, \ell}$ is an integer because $(\ell - 1)! \mid L$. Hence,

$$\theta(u_k+j) = \sum_{\ell=2}^m b_\ell a_\ell(u_k+j) \equiv 0 \pmod{|q|^{k+j}},$$

for each $j = -k + 1, ..., k \ (j \neq 0)$ and, by (16),

$$b_{1} = \sum_{n=1}^{u_{k}-k} \frac{\theta(n)}{q^{n}} + \left(\sum_{n=u_{k}-k+1}^{u_{k}-1} \frac{\theta(n)}{q^{n}}\right) + \frac{\theta(u_{k})}{q^{u_{k}}} + \sum_{n=u_{k}+1}^{u_{k}+k} \frac{\theta(n)}{q^{n}} + \sum_{n=u_{k}+k+1}^{\infty} \frac{\theta(n)}{q^{n}} = \frac{r_{k}}{q^{u_{k}-k}} + \frac{\theta(u_{k})}{q^{u_{k}}} + \sum_{n=u_{k}+k+1}^{\infty} \frac{\theta(n)}{q^{n}},$$

$$(17)$$

where r_k is an integer. Multiplying both sides of (17) by q^{u_k} and using Lemma 7, we obtain

$$|b_1 q^{u_k} - r_k q^k - \theta(u_k)| = \left| \frac{1}{q^k} \sum_{n=1}^{\infty} \frac{\theta(u_k + n + k)}{q^n} \right| \le 2 \left(\frac{p}{|q|^{\nu}} \right)^{k/\nu}.$$
 (18)

By the definition of ν , the right-hand side in (18) tends to zero as k tends to infinity, and so the integer

$$b_1 q^{u_k} + r_k q^k + \theta(u_k)$$

must be zero for sufficiently large k. Hence, $\theta(u_k)$ is a multiple of q^k because

$$u_k = A_k i_k + B_k \ge A_k \ge q_1 > 4k^3 > k$$

On the other hand, since $u_k \in T$,

$$\begin{aligned} |\theta(u_k)| &\leq M \sum_{\ell=2}^m a_\ell(u_k) \leq M \sum_{\ell=2}^m 2^{2^\ell} a p^{\frac{k}{\nu}} (1 + \log N_k)^{2^{\ell-1}} \\ &\leq 2^{2^m} a m M p^{\frac{k}{\nu}} (1 + \log N_k)^{2^{m-1}} \\ &< |q|^k. \end{aligned}$$

Therefore, $\theta(u_k) = 0$ for every large k and Lemma 8 is proved.

4 Proof of Theorem 1

Proof of Theorem 1. Suppose on the contrary that the m numbers given at (3)

1 and
$$f_{\ell}(q^{-1}) = \sum_{n=1}^{\infty} a_{\ell}(n)q^{-n}$$
 $(\ell = 2, 3, \dots, m)$

are linearly dependent over \mathbb{Q} . Then there exist integers b_1 and b_ℓ for $\ell=2,3,\ldots,m$, not all zero, such that

$$b_1 \cdot 1 - \sum_{\ell=2}^{m} b_{\ell} f_{\ell}(q^{-1}) = 0,$$

and hence

$$b_1 = \sum_{\ell=2}^{m} b_{\ell} f_{\ell}(q^{-1}) = \sum_{n=1}^{\infty} \frac{\theta(n)}{q^n}$$
(19)

is an integer, where

$$\theta(n) := \sum_{\ell=2}^m b_\ell a_\ell(n).$$

Applying Lemma 8, we see that there exists $u_k \in T$ with $\theta(u_k) = 0$ for sufficiently large k.

On the other hand, the sequences $\{a_{\ell}(n)\}_{n\geq 1}$ $(\ell\geq 1)$ consist of nonnegative integers, and so we have

$$a_{\ell}(n) = \sum_{d|n} a_{\ell-1}(d) \ge a_{\ell-1}(n)$$
 (20)

for every integer n. Furthermore, for each $\ell \geq 1$

$$a_{\ell}(u_k) \ge a_1(h) = a > 0, \tag{21}$$

since $u_k \in T_1$, so that $h \mid u_k$. Thus, by (20) and (21),

$$|\theta(u_{k})| = \left| \sum_{\ell=2}^{m} b_{\ell} a_{\ell}(u_{k}) \right|$$

$$\geq |b_{r} a_{r}(u_{k})| - \left| \sum_{\ell=2}^{r-1} b_{\ell} a_{\ell}(u_{k}) \right|$$

$$\geq a_{r}(u_{k}) - M(r-2) \cdot a_{r-1}(u_{k})$$

$$= a_{r-1}(u_{k}) \left(\frac{a_{r}(u_{k})}{a_{r-1}(u_{k})} - mM \right), \tag{22}$$

where $r \geq 2$ is the largest integer with $b_r \neq 0$. Since $u_k \in T_1$, the integer u_k has the form $u_k = p^{\lambda_k} \eta_k$ with $\lambda_k \geq \lfloor k/(\nu+1) \rfloor$, where p and η_k are coprime. Hence, we have, by (7) and (20),

$$\frac{a_r(u_k)}{a_{r-1}(u_k)} = \left(1 + \frac{\lambda_k}{r-1}\right) \cdot \frac{a_h(\eta_k)}{a_{h-1}(\eta_k)} \ge 1 + \frac{\left\lfloor \frac{k}{\nu+1} \right\rfloor}{m-1} > mM$$

for all sufficiently large k, which implies that $\theta(u_k) \neq 0$ by (22). This is a contradiction which completes the proof of Theorem 1.

Acknowledgments.

The second author would like to express his gratitude to the conference organizers Professor Yuich Kamiya and Professor Hideaki Ishiokawa for giving him the possibility to give a talk in this pleasant conference. The present research was supported by Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B), 15K17504.

References

- [1] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, *Ann. Math.* **140** (1994) 703–722.
- [2] P. Erdős, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12 (1948) 63–66.
- [3] F. Luca and Y. Tachiya, Irrationality of Lambert series associated with a periodic sequence, Int. J. Number Theory 10 (2014), 623-636.
- [4] M. B. Nathanson, Elementary methods in number theory, Graduate Texts in Mathematics 195, Springer-Verlag, New York, 2000.

F. Luca

School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa

e-mail: Florian.Luca@wits.ac.za

Y. Tachiya

Graduate School of Science and Technology, Hirosaki University, Hirosaki 036–8561,

Japan

e-mail: tachiya@hirosaki-u.ac.jp