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Abstract

We study a certain class of q‐analogues of multiple zeta values, which appear

in the Fourier expansion of multiple Eisenstein series. Studying their algebraic
structure and their derivatives we propose conjectured explicit formulas for the

derivatives of double and triple Eisenstein series.

1 Introduction

For k_{1} ,
. . .

, k_{r-1}\geq 1, k_{r}\geq 2 the multiple zeta value  $\zeta$(k_{1}, \ldots, k_{r}) is defined by

 $\zeta$(k_{1}, \displaystyle \ldots, k_{r})=0<m<\cdot\cdot<m_{r}\sum_{1}\cdot\frac{1}{m_{1}^{k_{1}}\cdots m_{r^{r}}^{k}} . (1.1)

By r we denote its depth, k_{1}+\cdots+k_{r} will be called its weight and for the Qvector
space spanned by all multiple zeta values we write \mathcal{Z} . These numbers have been studied

recently in many different contexts in mathematics and theoretical physics. In [GKZ06]
the authors studied several connections of double zeta values (the r=2 case of (1.1))
to modular forms for the full modular group. One famous result of [GKZ06] is the

relationship between linear relations between  $\zeta$(a, b) with both a and b beeing odd and

cusp forms of weight a+b . For example it was shown, that the coefficient of the period
polynomial of the first non trivial cusp form  $\Delta$ in weight 12 can be used to obtain the

relation

\displaystyle \frac{5197}{691} $\zeta$(12)=168 $\zeta$(7,5)+150 $\zeta$(5,7)+28 $\zeta$(3,9) . (1.2)

Further it is conjectured, that there is a one‐to‐one correspondence between cusp forms

and these type of relations among double zeta values. Another connection between
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double zeta values and modular form which was first introduced in [GKZ06] are double

Eisenstein series. These can be seen as a mixture of classical Eisenstein series and

double zeta values. The higher depth case, the multiple Eisenstein series, where then

studied in [Ba], For k_{1} ,
. . .

, k_{r}\geq 2 the multiple Eisenstein series G_{k_{1},\ldots,k_{\mathrm{r}}}( $\tau$) is defined1

by

G_{k_{1},\ldots,k_{r}}( $\tau$)=0\displaystyle \prec$\lambda$_{1}\prec\cdot\cdot\prec$\lambda$_{r}\sum_{$\lambda$_{i}\in \mathbb{Z} $\tau$+\mathbb{Z}}\cdot\frac{1}{$\lambda$_{1}^{k_{1}}\cdots$\lambda$_{r^{r}}^{k}} , (1.3)

where  $\tau$\in\{x+iy\in \mathbb{C}|y>0\} is an element in the Upper half plane and the order \prec

on \mathbb{Z} $\tau$+\mathbb{Z} is defined Uy m_{1} $\tau$+n_{1}\prec m_{2} $\tau$+n_{2}:\Leftrightarrow(m_{1}<m_{2})\vee(m_{1}=m_{2}\wedge n_{1}<n_{2}) . In

the case r=1 these are the classical Eisenstein series which have the following Fourier

expansion (k\geq 2)

G_{k}( $\tau$)= $\zeta$(k)+\displaystyle \frac{(-2 $\pi$ i)^{k}}{(k-1)!}\sum_{n=1}^{\infty}$\sigma$_{k-1}(n)q^{n} (q=e^{2 $\pi$ i $\tau$}) ,

with the divisor‐sum $\sigma$_{k-1}(n)=\displaystyle \sum_{d|n}d^{k-1} . The main result of [Ba] was that the multiple
Eisenstein series also have a Fourier expansion and that it can be written as

G_{k_{1},\ldots,k_{r}}( $\tau$)= $\zeta$(k_{1}, \ldots, k_{r})+ \displaystyle \sum_{1<l<r,m_{1}+\cdots+m_{r}=k_{1}+\cdots+k_{r}}$\alpha$_{m1\cdots,m $\iota$ 1+1}\hat{g}_{m,\ldots,m_{r}}(q)+\hat{g}_{k_{1},\ldots,k_{f}}(q) ,

where the $\alpha$_{m1\cdots,m $\iota$} are \mathbb{Q}‐linear combinations of multiple zeta values of depth l and

weight m_{1}+\cdots+m_{l} and \hat{g}_{k_{1},\ldots,k_{r}}(q)=(-2 $\pi$ i)^{k_{1}+\cdots+k_{r}}g_{k_{1},\ldots,k_{r}}(q) . The series  g_{k_{1},\ldots,k_{r}}(q)\in
\mathbb{Q}[[q]] will be studied in detail in this work and its coefficient can be seen as a multiple
version of the divisor sums.

By some classical results of modular forms together with the results in [Ba] or [BT] it

can be shown that every modular form can be written in terms of multiple Eisenstein

series. For example it is

\displaystyle \frac{(2 $\pi$ i.)^{12}}{2^{6}\cdot 5691}\cdot $\Delta$=\frac{5197}{691}G_{12}-168G_{7,5}-150G_{5,7}-28G_{3,9},
which gives another way to prove the relation (1.2) since the constant term of the

Fourier expansion of the cusp form on the left hand side vanishes.

Since there just exist multiple Eisenstein series for the cases k_{1} ,
. . .

, k_{r}\geq 2 a natural

question was if there is an extended definition of G_{k_{1},\ldots,k_{r}}( $\tau$) for the cases in which the

multiple zeta value  $\zeta$(k_{1}, \ldots , k_{r}) exists. This question was answered in [BT], where the

lSince the sum in (1.3) is just absolute convergent in the cases k_{r}\geq 3 one uses Eisenstein summation

for k_{r}=2
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authors introduced the functions G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}( $\tau$) for all k_{1} ,
. . .

, k_{r}\geq 1 , which coincide with

G_{k_{1},\ldots,k_{r}}( $\tau$) in the cases k_{1} ,
. . .

, k_{r}\geq 2 . These series have a Fourier expansion of the

form

G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}( $\tau$)=$\zeta$^{\mathrm{m}}(k_{1}, \ldots, k_{r})+ \displaystyle \sum_{1<l<r,m_{1}+\cdots+m_{r}=k_{1}+\cdots+k_{r}}$\alpha$_{m_{1},\ldots,m_{l}}\cdot\hat{g}_{m_{l+1},\ldots,m_{r}}^{\mathrm{m}}(q)+\hat{g}_{k_{1},\ldots;k_{r}}^{\mathrm{m}}(q) ,

where the $\zeta$^{\mathrm{m}} (kl, . . .

, k_{r} ) \in \mathcal{Z} are the shuflle‐regularized multiple zeta values ([IKZ06])
and again $\alpha$_{m1,\ldots,m $\iota$}\in Z . Here it is \hat{g}_{k_{1},\ldots,k_{r}}^{\mathrm{m}}(q)=(-2 $\pi$ i)^{k_{1}+\cdots+k_{r}}g_{k_{1},\ldots,\grave{k}_{r}}^{\mathrm{m}}(q) , where the g^{\mathrm{m}}
can be seen as

�� shuflle regularized�� versions of the functions g . For example it is

G_{1,3}^{\mathrm{m}}( $\tau$)= $\zeta$(1,3)- $\zeta$(2)\cdot(2 $\pi$ i)^{2}\cdot g_{2}^{\mathrm{m}}(q)+(2 $\pi$ i)^{4}\cdot g_{1,3}^{\mathrm{m}}(q) .

We will study the algebraic structure of the series g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}(q) ,
to make progress towards

a question on multiple Eisenstein series and their derivatives which we will describe in

the following.
Denote by \mathcal{E} the \mathbb{Q}‐vector space spanned by all G_{k_{1},\ldots,k_{r}}^{\mathrm{m}} for2 r\geq 0 and k_{1} ,

. . .

, k_{r}\geq 1
and consider the projection  $\pi$ to the constant term in the Fourier expansion, i.e.

 $\pi$:\mathcal{E}\rightarrow \mathcal{Z}

G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}\mapsto$\zeta$^{\mathrm{m}}(k_{1}, \ldots, k_{r}) .

Since the space of modular forms is contained in the space \mathcal{E} it is clear that the space

of cusp forms is contained in the kernel of the map  $\pi$.

It is therefore an interesting question if the kernel of  $\pi$ consists more than just of cusp

forms. In fact there are already non‐trivial elements in the kernel of  $\pi$ in weight 3.

Since  $\zeta$(1,2)- $\zeta$(3)=0 it is  G_{1,2}^{\mathrm{m}}-G_{3}^{\mathrm{m}}\in \mathrm{k}\mathrm{e}\mathrm{r} $\pi$ , but  G_{1,2}^{\mathrm{m}}-G_{3}^{\mathrm{m}}\neq 0 . We will see that

G_{1,2}^{\mathrm{m}}-G_{3}^{\mathrm{m}}=\displaystyle \frac{(2 $\pi$ i)^{2}}{2}\mathrm{d}G_{1} , where the operator \displaystyle \mathrm{d}=q\frac{d}{dq} plays also an important role in the

theory of modular forms. Another way of interpreting this is that (2 $\pi$ i)^{2}\mathrm{d}G_{1} is again
an element in \mathcal{E} . In general it is not known, but expected, that the space \mathcal{E} is closed

under \mathrm{d}, \mathrm{i}:\mathrm{e}. (2 $\pi$ i)^{2}\mathrm{d}\mathcal{E}\subset \mathcal{E} . This question will be one motivation for the present paper.

For this we will study two types of q‐series. The first one, first introduced in [BK] and

[B], will be the double indexed series g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})}(q) for d_{1} ,
. ..

, d_{r}\geq 0 and k_{1} ,
. . .

, k_{r}\geq 1.
Similar to multiple zeta values there are two different ways to express the product
of these series and we will describe this double shuffle structure in detail. The other

series, already mentioned before, are the g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}(q) appearing in the Fourier expansion,
of multiple Eisenstein series. The g^{\mathrm{m}} can be written explicitly in terms of the double

indexed g . Though the behavior of g under the operator \mathrm{d} is well‐understood (See

2We set G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}( $\tau$)=1 for r=0.
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Section 4.1), the behavior of g^{\mathrm{m}} under this operator is an open problem.

\prime\prime\sim\underline{\mathrm{d}}?\backslash \cap^{\mathrm{d}} $\iota$\backslash 1L|

\langle G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}|k_{1} ,
. . .

, k_{r}\geq 1, r\geq 0\rangle_{\mathbb{C}}===:?\langle g_{k_{1},\ldots,k_{r}}|k_{1} ,
. . .

, k_{r}\geq 1 , r\geq 0\rangle_{\mathbb{C}}

\Vert |\cap ||||?||||
\langle g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}|k_{1} ,

. . .

, k_{r}\geq 1,  r\geq 0\rangle_{\mathbb{C}}\subseteq \langle g_{k_{1},\ldots,k_{r}}^{d_{1},\ldots,d_{r}}|k_{j}\geq 1, d_{j}\geq 0, r\geq 0\rangle_{\mathbb{C}}
$\iota$_{\backslash ^{\underline{\mathrm{d}}\underline{?}}}lJ;_{\overline{\backslash \prime}} \approx\approx\approx\approx\leftrightarrow-\simeq-==^{-=-\overline{\wedge}} \displaystyle \bigcup_{\mathrm{d}}

Figure 1: Overview of the spaces spanned by G^{\mathrm{m}}, g and g^{\mathrm{m}} and the behavior of the

operator \displaystyle \mathrm{d}=q\frac{d}{dq} . The dashed equalities and lines are expected but unproven so far.

Since every G^{\mathrm{m}} can be written as a \mathbb{C}‐linear combination of g^{\mathrm{m}} and vice versa, the

space spanned by them are the same. Therefore to prove that the multiple Eisenstein

series are closed under the operator \mathrm{d} it suffices to prove it for the functions g^{\mathrm{m}} . We

will present new results on this and prove the following:

Theorem 1.1. i) For k\geq 1 and \displaystyle \mathrm{d}=q\frac{d}{dq} we have

\displaystyle \frac{1}{k}\mathrm{d}g_{k}^{\mathrm{m}}=(k+1)g_{k+2}^{\mathrm{m}}-\sum_{n=2}^{k+1}(2^{n}-2)g_{k+2-n,n}^{\mathrm{m}}.
ii) For k_{1}, k_{2}, k3\geq 2 the series \mathrm{d}g_{k_{1},k_{2}}^{\mathrm{m}} and \mathrm{d}g_{k_{1},k_{2},k_{3}}^{\mathrm{m}} can be written as linear combi‐

nations of g^{\mathrm{m}}

For Theorem 1.1 ii) we will present explicit formulas for the mentioned linear com‐

bination modulo lower weight terms (Theorem 4.10). Since it is expected (Question
4.3) that the space spanned by the g^{\mathrm{m}} modulo lower weight terms has the same alge‐
braic structure as the space of multiple Eisenstein series this will lead us to propose

conjectures on explicit formulas for the derivative of double‐ and triple Eisenstein series.
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2 Algebraic setup

We recall Hoffman \mathrm{s} algebraic setup for quasi‐shuflle products ([\mathrm{H}\mathrm{o}00]) but with slightly
different notations. First we start with the two product structures coming from the

theory of multiple zeta values. After this we introduce an analogue setup for the

product structure of the q‐analogues which will be introduced in the next section.

2.1 Classical case

Write \mathfrak{H}=\mathbb{Q}\langle e_{0},  e_{1}\rangle for the non commutative polynomial algebra of indeterminates  e_{0}

and e_{1} over \mathbb{Q} , and define its subalgebras \mathfrak{H}^{0} and \mathfrak{H}^{1} by

\mathfrak{H}^{0}=\mathbb{Q}\cdot 1+e_{1}\mathfrak{H}e_{0}\subset \mathfrak{H}^{1}=\mathbb{Q}\cdot 1+e_{1}\mathfrak{H}\subset \mathfrak{H},

where 1 denotes the empty word here. For k\geq 1 we put e_{k}=e_{1}e_{0}^{k-1} , so that the

monomials e_{k_{1}}\ldots e_{k_{r}} form a basis of \mathfrak{H}^{1} and the monomials e_{k_{1}}\ldots e_{k_{r}} with k_{r}\geq 2 form

a basis of \mathfrak{H}^{0}.
We consider two \mathbb{Q}‐bilinear commutative products \mathrm{m} on \mathfrak{H} and *\mathrm{o}\mathrm{n}\mathfrak{H}^{1} , called the

shuffle and the harmonic (or stuffle) products, which are defined by

1 \mathrm{m}w=w\mathrm{m}1=w (w\in \mathfrak{H}) ,

av \mathrm{m} bw=a(v\mathrm{m}bw)+b(av\mathrm{m}w) (a, b, \in\{e_{0}, e_{1}\}, v, w\in \mathfrak{H})

and

1*w=w*1=w (w\in \mathfrak{H}^{1}) ,

e_{k_{1}}v*e_{k_{2}}w=e_{k_{1}}(v*e_{k_{2}}w)+e_{k_{2}}(e_{k_{1}}v*w)+e_{k_{1}+k_{2}}(v*w) (k_{1}, k_{2}\geq 1, v, w\in \mathfrak{H}^{1}) .

Denote by \mathfrak{H}_{\mathrm{m}} (resp. \mathfrak{H}_{*}^{1} ) the commutative  $\Phi$‐algebra \mathfrak{H} (resp. \mathfrak{H}^{1} ) equipped with the

multiplication \mathrm{m} (resp. * ). It is easy to see that the subspaces \mathfrak{H}^{1} and \mathfrak{H}^{0} of \mathfrak{H} (resp.
the subspace \mathfrak{H}^{0} of \mathfrak{H}^{1} ) are closed under \mathrm{m} (resp. * ) and we therefore write \mathfrak{H}_{\mathrm{m}}^{1} and \mathfrak{H}_{\mathrm{m}}^{0}
(resp. \mathfrak{H}_{*}^{0} ) for the corresponding subalgeUras of \mathfrak{H}_{\mathrm{m}} (resp. \mathfrak{H}_{*}^{1} ).
Identifying an indexset (kl, . . .

, k_{r} ) with the word e_{k_{1}} ,
. . .

, e_{k_{r}} it is easy to see that the

indexsets for which the multiple zeta values  $\zeta$(k_{1}, \ldots, k_{r}) exists correspond exactly to

the words in \mathfrak{H}^{0} . One therefore can interpret the mtiltiple zeta values as a \mathbb{Q}‐linear map

 $\zeta$ : \mathfrak{H}^{0}\rightarrow \mathbb{R} , where we send the empty word in \mathfrak{H}^{0} to 1. It is well known that this map

is a \mathbb{Q}‐algebra homomorphism from both \mathfrak{H}_{\mathrm{m}}^{0} and \mathfrak{H}_{*}^{0} to \mathbb{R}
,

i.e. in particular it is

 $\zeta$(w\mathrm{m}v)= $\zeta$(w)\cdot $\zeta$(v)= $\zeta$(w*v) , (2.1)
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for any words w, v\in \mathfrak{H}^{0} . These relations are known as (finite) double shuffle relations.

Another well known fact (See [IKZ06]) is, that the map  $\zeta$ can be extended to algebra
homomorphisms  $\zeta$^{\mathrm{m}} : \mathfrak{H}_{\mathrm{n}}^{1}\rightarrow \mathbb{R} and $\zeta$^{*}:\mathfrak{H}_{*}^{1}\rightarrow \mathbb{R} , which are uniquely determined by
$\zeta$^{\mathrm{m}}(e_{1})=$\zeta$^{*}(e_{1})=0 and $\zeta$^{\mathrm{m}}(w)=$\zeta$^{*}(w)= $\zeta$(w) for w\in \mathfrak{H}^{0},
Define for words u, v\in \mathfrak{H}^{1} the element \mathrm{d}\mathrm{s}(u, v)\in \mathfrak{H}^{1} by

\mathrm{d}\mathrm{s}(u, v)=u*v-u\mathrm{m}v . (2.2).

If both u, v\in \mathfrak{H}^{0} we have by (2.1) that  $\zeta$(\mathrm{d}\mathrm{s}(u, v))= O. But more generally we have

the following Theorem, which conjecturally gives all Iinear relations between multiple
zeta values.

Theorem 2.1. (Extended double shuffle relations) For u\in \mathfrak{H}^{0} and v'\in \mathfrak{H}^{1} it is

$\zeta$^{\mathrm{m}}(\mathrm{d}\mathrm{s}(u, v))=$\zeta$^{*}(\mathrm{d}\mathrm{s}(u, v))=0.

Proof. This is Theorem 1 together with Theorem 2 (iv) and (iv�) in [IKZ06]. \square 

2.2 Setup for the q‐analogue case

We now want to recall a similar algebraic setup from [B] for our q‐analogue which will

be defined in the next section. In analogue to the space \mathfrak{H}^{1} , which was spanned by
words in the letters e_{k} with k\geq 1 , we will now� consider the space \mathfrak{H}^{2} spanned by
words in the double‐indexed letters e_{k}^{(d)} with k\geq 1 and  d\geq O. More precisely we

define \mathfrak{H}^{2}=\mathbb{Q}\langle A } to be the noncommutative polynomial algebra of indeterminates

A=\{e_{k}^{(d)}|k\geq 1, d\geq 0\} over \mathbb{Q}.

Definition 2.2. (�Harmonic product analog� on \mathfrak{H}^{2}) In analogy to the product *on

\mathfrak{H}^{1} we define the product on \mathfrak{H}^{2} by 1 w=w\underline{\mathrm{n}}1=w for w\in \mathfrak{H}^{2} and

(d_{1}) (d_{2})
e_{k_{1}} V w=e_{k_{1}}^{(d_{1})}(V

+(\displaystyle \left(\begin{array}{l}
d_{1}+d_{2}\\
d_{1}
\end{array}\right)\sum_{j=1}^{k_{1}}$\lambda$_{k_{1},k_{2}}^{j}e_{j}^{(d_{1}+d_{2})}+\left(\begin{array}{l}
d_{1}+d_{2}\\
d_{\mathrm{l}}
\end{array}\right)\sum_{j=1}^{k_{2}}$\lambda$_{k_{2},k_{1}}^{j}e_{j}^{(d_{1}+d_{2})}) (V w)\}

where the numbers $\lambda$_{a,b}^{j}\in \mathbb{Q} for 1\leq j\leq a are defined as

$\lambda$_{a,b}^{j}:=(-1)^{b-1}\displaystyle \left(\begin{array}{ll}
a+b-j & -1\\
a-j & 
\end{array}\right)\frac{B_{a+b-j}}{(a+b-j)!},
with B_{k} being the k‐th Bemoulli number.
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It can be checked that \mathfrak{H}^{2} equipped with this product becomes a commutative \mathbb{Q}‐algebra
which be denote by \mathfrak{H}_{\fbox{*}}^{2} ([B], Theorem 3.6.). For example we have

e_{2}^{(0)} , (2.3)

e_{1}^{(1)} (2.4)

Notice that up to the term − \displaystyle \frac{1}{12}e_{3}^{(0)} equation (2.3) looks exactly like the harmonic

product e_{2}*e_{3}=e_{2}e_{3}+e_{3}e_{2}+e_{5} in \mathfrak{H}^{1}.
The reason for introducing double‐indexes, i.e. the d_{j} , will become clear now when we

will introduce the second product on \mathfrak{H}^{2} corresponding to the shuflle product \mathrm{m} on \mathfrak{H}^{1}.
For this we first define for a fixed r the following generating series of monomials in

depth r

M\left(\begin{array}{llll}
X_{1} & \cdots & \cdots & X_{r}\\
Y_{1} & \cdots & ' & Y_{r}
\end{array}\right):=d_{1}^{1},\ldots,d_{r}^{r}\geq 0\displaystyle \sum e_{k_{1}}^{(d_{1})}\ldots e_{k_{r}}^{(d_{r})}X_{1}^{k_{1}-1}\ldots X_{r}^{k_{r}-1}\cdot Y_{1}^{d_{1}}\ldots Y_{r}^{d_{f}}

as an element in \mathfrak{H}^{2}[[X_{1} ,
. . .

, X_{r}, Y_{1} ,
. . .

, Y_{r} i.e. the variables X_{i} and Y_{j} are commuting
for 1\leq i,j\leq r.

Definition 2.3. For k_{1} ,
. . .

, k_{r}\geq 1, d_{1} ,
. ..

, d_{r}\geq 0 and w=e_{k_{1}}^{(d_{1})} ,
. . .

, e_{k_{r}}^{(d_{r})} define P(w)
as the coefficients of

\displaystyle \sum  P(w)X_{1}^{k_{1}-1}\ldots X_{r}^{k_{r}-1}\cdot Y_{1}^{d_{1}}\ldots Y_{r}^{d_{r}}:=M\left(\begin{array}{lllll}
Y_{r},Y_{r-1}+Y_{r} & \cdots & Y_{1}+ & \cdots & +Y_{r}\\
X_{r}-X_{r-1},X_{r-1}-X_{r-2} & \cdots & \cdots & ' & X_{1}
\end{array}\right).
d_{1}^{1},\ldots,d_{r}^{r}\geq 0k,\ldots,k\geq \mathrm{i}

We define the \mathbb{Q} ‐linear map P:\mathfrak{H}^{2}\rightarrow \mathfrak{H}^{2} by setting P(1)=1 and extending the above

definition on monomials linearly to \mathfrak{H}^{2}.

Notice that the map P is an involution on \mathfrak{H}^{2} , i.e. P(P(w))=w for all w\in \mathfrak{H}^{2} . For

r=1 the definition reads

\displaystyle \sum P(e_{k_{1}}^{(d_{1})})X_{1}^{k_{1}-1}Y_{1}^{d_{1}} :=M\left(\begin{array}{l}
Y_{1}\\
X_{1}
\end{array}\right)=\sum e_{k_{1}}^{(d_{1})}Y_{1}^{k_{1}-1}X_{1}^{d_{1}}k_{1}\geq 1 k_{1}\geq 1
d_{1}\geq 0 d_{1}\geq 0

and therefore P(e_{k_{1}}^{(d_{1})})=e_{d_{1}+1}^{(k_{1}-1)} . Other examples are

P(e_{1}^{(2)}e_{1}^{(1)})=e_{2}^{(0)}e_{3}^{(0)}+3e_{1}^{(0)}e_{4}^{(0)} , (2.5)

P(e_{1}^{(1)}e_{1}^{(2)})=e_{3}^{(0)}e_{2}^{(0)}+2e_{2}^{(0)}e_{3}^{(0)}+3e_{1}^{(0)}e_{4}^{(0)} (2.6)
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which can be obtained by calculation the coefficient of X_{1}^{0}X_{2}^{0}Y_{1}^{2}Y_{2}^{1} (resp. X_{1}^{0}X_{2}^{0}Y_{1}^{1}Y_{2}^{2} )
in M(_{X_{2}-X_{1},X_{1}}^{Y_{2},Y_{1}+Y_{2}}) .

Definition 2.4. (Shuffle product analog� \square on \mathfrak{H}^{2}) Define on \mathfrak{H}^{2} the product \square for
u, v\in \mathfrak{H}^{2} by

u\square  v=P(P(u) .

This product is commutative and associative which follows from the fact that P is

an involution together with the properties of \underline{\mathrm{n}} . We denote by \mathfrak{H}_{\square }^{2} the corresponding
\mathbb{Q}‐algebra equipped with this product.

Example 2.5. We now use (2.4), (2.5) and (2.5) together with P(e_{2}^{(0)})=e_{1}^{(1)} and

P(e_{3}^{(0)})=e_{1}^{(2)} to calculate e_{2}^{(0)}\square  e_{3}^{(0)} :

e_{2}^{(0)}\square  e_{3}^{(0)}=P(P(e_{2}^{(0)})
=P(e_{1}^{(1)}e_{1}^{(2)}+e_{1}^{(2)}e_{1}^{(1)}+3e_{2}^{(3)}-3e_{1}^{(3)})
=e_{3}^{(0)}e_{2}^{(0)}+3e_{2}^{(0)}e_{3}^{(0)}+6e_{1}^{(0)}e_{4}^{(0)}+3e_{4}^{(1)}-3e_{4}^{(0)}

Compare this to the shuffle product e_{2}\mathrm{m}e_{3}=e_{3}e_{2}+3e_{2}e_{3}+6e_{1}e_{4} on \mathfrak{H}_{\mathrm{m}}^{1}.

3 Certain q‐analogues of multiple zeta values

In recent years several different q‐analogues of multiple zeta values have been studied.

An overview of these different models can be for example found in [Zh]. Our model we

present here has its motivation in its appearance in the Fourier expansion of multiple
Eisenstein series. It was first studied in [BK] and later in more detail in [B]. In

this section we want to introduce two types of q‐series which are closely related to each

other. We will construct two maps, where the first one, denoted by \mathfrak{g} , will be an algebra
homomorphism from both \mathfrak{H}_{\fbox{*}}^{2} and \mathfrak{H}_{\text{ロ}}^{2} to \mathbb{Q}[[q]] . The multiplication of \mathbb{Q}[[q]] here is

the usual multiplication of formal q‐series. Similar to the case of multiple zeta values

we will obtain a large family of linear relations between these q‐series, by comparing

\mathfrak{g}(u and \mathfrak{g}(u\square  v) .

The second map, denoted by \mathfrak{g}^{\mathrm{m}} ,
will be more closely related to multiple zeta values,

since it will be an algebra homomorphism from \mathfrak{H}_{\mathrm{m}}^{1} to \mathbb{Q}[[q]].

3.1 The series g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d,)} and the map \mathfrak{g}

In this section we will recall some of the result of [B] and [BK]. Here we use a different

notation which matches the one used in [BT].
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Definition 3.1. For k_{1} ,
. . .

, k_{r}\geq 1, d_{1} ,
. . . , d_{r}\geq 0 we define the following q‐series3

g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})}(q):=\displaystyle \sum_{10<\mathrm{u}<\cdot.\cdot\cdot<u_{r}0<v_{1},.v_{r}}.,\frac{u_{1}^{d_{1}}}{d_{1}!} . . . \displaystyle \frac{u_{r}^{d_{f}}}{d_{r}!} . \displaystyle \frac{v_{1}^{k_{1}-1}\ldots v_{r}^{k_{r}-1}}{(k_{1}-1)!\ldots(k_{r}-1)!} . q^{u_{1}v_{1}+\cdots+ $\tau \iota$_{r}v_{r}}\in \mathbb{Q}[[q]].

By k_{1}+\cdots+k_{r}+d_{1}+\cdots+d_{r} we denote its weight and by r its depth.

Since q will be fixed the whole time we will also write g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})} instead of g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})}(q) .

For the \mathbb{Q}‐vector space spanned Uy all of these q‐series we write

\mathcal{G} :=\langle g_{k_{1},,k_{\mathrm{r}}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})}|r\geq 0, k_{1} ,
. . .

, k_{r}\geq 1, d_{1} ,
. . .

, d_{r}\geq 0\rangle_{\mathbb{Q}},
where we set g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})}=1 for r=0 . In the case d_{1}=\cdots=d_{r}=0 we write4

g_{k_{1},\ldots,k_{r}}:=g_{k_{1},,k_{r}}^{(0,..\cdot.\cdot.' 0)}
and denote the subspace spanned by all of these by

\mathcal{G}^{(0)}:=\langle g_{k_{1},\ldots,k_{r}}|r\geq 0, k_{1} ,
. . . , k_{r}\geq 1\rangle_{\mathbb{Q}}\subset \mathcal{G}.

Definition 3.2. We define the \mathbb{Q} ‐linear map \mathfrak{g} from \mathfrak{H}^{2} to \mathcal{G} on the monomials by

\mathfrak{g}:\mathfrak{H}^{2}\rightarrow \mathcal{G},

w=e_{k_{1}}^{(d_{1})}\ldots e_{k_{r}}^{(d_{r})}\mapsto \mathfrak{g}(w):=g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})},
and set \mathfrak{g}(1)=1.

Theorem 3.3. The following statements hold for the map \mathfrak{g}.

i) The map \mathfrak{g} is invariant under P, i.e . for all w\in \mathfrak{H}^{2}
�

it is

\mathfrak{g}(P(w))=\mathfrak{g}\{w) .

ii) \mathfrak{g} is an algebra homomorphism from \mathrm{S}^{2} to \mathbb{Q}[[q]] with respect to both products
and \square , i.e . we have for all u, v\in \mathfrak{H}^{2}

\mathfrak{g}(u\square  v)=\mathfrak{g}(u)\cdot \mathfrak{g}(v)=\mathfrak{g}(u ,

3In [B] a different notation and order was used. There the series g_{k_{1},.k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{f})} was called bi‐bracket

and it was denoted by [_{d_{r},\ldots,d_{1}}^{k_{r},\ldots,k_{1}} ] and instead of \mathcal{G} the author used B'D.

4The series g_{k_{1},\ldots,k_{r}} were first studied in [BK], where the author referred to it as brackets and

denoted it by [k_{r}, . . ., k_{1}] . The space \mathcal{G}^{(0)} was denoted \mathcal{M}D there.
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where. denotes the usual multiplication of forrnal q ‐series in \mathbb{Q}[[q]] . In particular
the space \mathcal{G}=\mathfrak{g}(\mathfrak{H}^{2})\subset \mathbb{Q}[[q]] is an \mathbb{Q} ‐algebra.

Proof. The first statement is Theorem 2.3 (Partition relation) in [B]. It has a nice

description using the conjugation of partitions, which is the reason for the name of the

map P . The second statement is Theorem 3.6. in [B]. \square 

The statement ii) in Theorem 3.3 can be seen as double shuffle relations for the q‐series

g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})} similar to the double shuffle relations (2.1) of multiple zeta values.

Example 3.4. We have seen before that

e_{2}^{(0)}
e_{2}^{(0)}\square  e_{3}^{(0)}=e_{3}^{(0)}e_{2}^{(0)}+3e_{2}^{(0)}e_{3}^{(0)}+6e_{1}^{(0)}e_{4}^{(0)}+3e_{4}^{(1)}-3e_{4}^{(0)}

and therefore we obtain the relation

0=g(e_{2}^{(0)}
Since \mathfrak{H}^{1} and \mathfrak{H}^{0} have a natural embedding in \mathfrak{H}^{2} by sending a monomial e_{k_{1}}\ldots e_{k_{r}} to

e_{k_{1} $\lambda$}^{(0)}.e_{k_{r}}^{(0)} we will view both \mathfrak{H}^{1} and \mathrm{S}^{0} as subspaces of \mathfrak{H}^{2} in the following, i.e.

\mathfrak{H}^{0}\subset \mathfrak{H}^{1}\subset \mathfrak{H}^{2}

In particular we can view \mathfrak{g} as a map from \mathfrak{H}^{1} (resp. \mathfrak{H}^{0} ) to \mathcal{G} . Clearly the image of \mathfrak{H}^{1}
under \mathfrak{g} is exactly the space \mathcal{G}^{(0)}=\mathfrak{g}(\mathfrak{H}^{1}) .

Proposition 3.5. The spaces \mathfrak{H}^{1} and \mathfrak{H}^{0} are closed under and therefore we also have

for u, v\in \mathfrak{H}^{1} (resp. \mathfrak{H}^{0}) that

\mathfrak{g}(u)\cdot \mathfrak{g}(v)=\mathfrak{g}(u .

In particular the space \mathcal{G}^{(0)} is a subalgebra of \mathcal{G}.

Proof. This follows directly from the definition of the product , since it does not

increase the indexes d_{j}. \square 

Notice that the analogue statement of Proposition 3.5 for the product \square is false, since

by Example 2.5 we have e_{2} ロ e_{3}\not\in \mathfrak{H}^{1}.

Remark 3.6. Even though it is not the purpose of this paper we give a remark on why
the series g can be considered as a q ‐analogue of multiple zeta values. This was discussed
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in [B $\eta$ , where the authors introduced the following map. Define for  k\in \mathbb{N} the map

\mathbb{Q}[[q]]\rightarrow \mathbb{R}\cup\{\infty\} by Z_{k}(f)=\displaystyle \lim_{q\rightarrow 1}(1-q)^{k}f(q) . One can show (BKJ, Proposition
6.4.) that for k_{1} ,

. . .

, k_{r-1}\geq 1, k_{r}\geq 2 and k=k_{1}+\cdots+k_{r} it is

Z_{k}(g_{k_{1},\ldots,k_{r}})= $\zeta$(k_{1}, \ldots, k_{r}) .

In this note we will not focus on this aspect in more detail.

We end this section by discussing the generating series of our q‐series g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})} , since we

will need them in the remaining sections. By Theorem 2.3 in [B] we have the following
explicit expression

 $\tau$\left(\begin{array}{lll}
X_{1} & \cdots & X_{r}\\
Y_{1} & \cdots & Y_{r}
\end{array}\right):=d_{1}^{1},\ldots,d_{r}^{r}\geq 0\displaystyle \sum g_{k_{1-}.,k_{r}}^{(d_{1},.\cdot.\cdot\cdot,d_{r})}X_{1}^{k_{1}-1}\ldots X_{r}^{k_{r}-1}Y_{1}^{d_{1}}\ldots Y_{r}^{d_{r}}
(3.1)

=\displaystyle \sum_{0<n1<\cdot\cdot<n_{r}}.e^{n_{1}Y_{1}}\frac{e^{X_{1}}q^{n_{1}}}{1-e^{X_{1}}q^{n_{1}}}\ldots e^{n_{r}Y_{r}}\frac{e^{X_{r}}q^{n_{f}}}{1-e^{X_{r}}q^{n_{r}}}.
Notice that with this the invariance of the map \mathfrak{g} under the involution P (Theorem 3.3

i) ) can be stated as

 $\tau$\left(\begin{array}{lll}
X_{1} & \cdots & X_{r}\\
\mathrm{Y}_{1} & \cdots & Y_{r}
\end{array}\right)=T(_{X_{r^{-\backslash }}X_{r-1},X_{r-1}-X_{r-2},.X_{1}}Y_{r},Y_{r-1}+Y_{r},\ldots, Y_{1}+\cdot\cdot.\cdot.+,Y_{r}) . (3.2)

For the generating series of the q‐series g_{k_{1},\ldots,k_{r}}=g_{k_{1},,k_{r}}^{(0,..\cdot.\cdot.' 0)} we will write

T(X_{1}, \ldots, X_{r}):=T\left(\begin{array}{llll}
X_{1} & \cdots & ' & X_{r}\\
0 & \cdots & \cdots & 0
\end{array}\right)=k_{1},\ldots,k_{r}\geq 1\displaystyle \sum g_{k_{1},\ldots,k_{r}}X_{1}^{k_{1}-1}\ldots X_{r}^{k_{r}-1}
(3.3)

=0<n<\displaystyle \cdot\cdot<n_{r}\sum_{1}\cdot\frac{e^{X_{1}}q^{n_{1}}}{1-e^{X_{1}}q^{n_{1}}}\ldots\frac{e^{X_{r}}q^{n_{r}}}{1-e^{X_{r}}q^{n_{r}}}.
3.2 The series g_{k_{1},\ldots,k_{r}}^{\mathrm{m}} and the map \mathfrak{g}^{\mathrm{m}}

Following [BT] we define for n_{1} ,
. . .

, n_{r}\geq 1 the following series

H\displaystyle \left(\begin{array}{llll}
n_{1} & \cdots & \cdots & n_{r}\\
X_{1} & \cdots & ' & X_{r}
\end{array}\right)=\sum_{0<d_{1}<\cdot\cdot<d_{r}}.e^{d_{1}X_{1}}(\frac{\backslash q^{d_{1}}}{1-q^{d_{1}}})^{n_{1}}\ldots e^{d_{f}X_{f}}(\frac{q^{d_{r}}}{1-q^{d_{ $\gamma$}}})^{n_{r}}
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Observe that by (3.1), (3.2) and (3.3) we have

T(X_{1}, \ldots,X_{r})=H\left(\begin{array}{llll}
1 & \cdots & 1 & \\
X_{r}-X_{r-1},X_{r-1}-X_{r-2} & \cdots & \cdots & X_{1}
\end{array}\right) . (3.4)

Definition 3.7. i) For k_{1} ,
. . .

, k_{r}\geq 1 define the q ‐series g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}(q)\in \mathbb{Q}[[q]] as the

coefficients of the following generating function:

T_{\mathrm{m}} (Xl, . .

., X_{r} ) =\displaystyle \sum_{k_{1},\ldots,k_{r}\geq 1}g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}(q)X_{1}^{k_{1}-1}\ldots X_{r}^{k_{r}-1}

:=\displaystyle \sum_{m=1}^{r}\sum_{i_{1}+.\cdot..\cdot+i_{m}=ri_{1},,i_{m}\geq 1}\frac{1}{i_{1}!\ldots i_{m}!}H(_{X_{r}-X_{r-i_{1}},X_{r-i_{1}}-X_{r-i_{1}-i_{2}},\ldots,X_{i_{m}}}i_{1},i_{2},\ldots,i_{m}) .

Again we also write g_{k_{1},\ldots,k_{r}}^{\mathrm{m}} instead of g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}(q) .

ii) Define the \mathbb{Q} ‐linear map \mathfrak{g}^{\mathrm{m}} from \mathfrak{H}^{1} to \mathbb{Q}[[q]] on the monomials by

\mathfrak{g}^{\mathrm{m}}:\mathfrak{H}^{1}\rightarrow \mathbb{Q}[[q]],

w=e_{k_{1}}\ldots e_{k_{r}}\mapsto \mathfrak{g}^{\mathrm{m}}(w):=g_{k_{1},\ldots,k_{r}}^{\mathrm{m}},

set \mathfrak{g}^{\mathrm{m}}(1)=1 and extend it linearly to \mathfrak{H}^{1}.

Theorem 3.8. i) For all k_{1} , \cdots

,  k_{r}\geq 1 we have g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}\in \mathcal{G}.

ii) In \cdot the cases  k_{1} ,
\cdots

,  k_{r}1\geq 2, k_{r}\geq 1 it is g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}=g_{k_{1},\ldots,k_{r}}\in \mathcal{G}^{(0)}.

iii) The map \mathfrak{g}^{\mathrm{m}} is an algebra homomorphism from \mathfrak{H}_{\mathrm{m}}^{1} to \mathcal{G}.

Proof. This is Proposition 5.5 together with Theorem 5.7 in [B], where the series g_{k_{1},\ldots,k_{f}}^{\mathrm{m}}
is denoted [k_{r} , . . .

, k_{1}!^{\mathrm{m}} . Statement iii) was originally proven in [BT], where also a

slightly weaker version of ii) can be found. Since we will need some parts of the proof
we will recall the basic ideas:

i) To show that g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}\in \mathcal{G} it is sufficient to prove that the coefficients of the series

H are elements in \mathcal{G} . This can be done by observing that (\displaystyle \frac{e^{X}q^{n}}{1-\mathrm{e}^{X}q^{n}})^{2}=\frac{d}{dX}\frac{e^{X}q^{n}}{1-e^{X}q^{n}}-
\displaystyle \frac{e^{X}q^{n}}{1-e^{X}q^{n}} . Inductively this enables one to write the terms (\displaystyle \frac{e^{X}q^{n}}{1-e^{X}q^{n}})^{n} , appearing in

the definition of H
, as derivatives of \displaystyle \frac{\mathrm{e}^{X}q^{n}}{1-e^{X}q^{n}} ,

i.e. to write H in terms of derivatives

of T . Since the coefficients of T are by definition in \mathcal{G} the statement follows.

ii) To show that g_{k_{1},\ldots,k_{r}}^{\mathrm{m}}=g_{k_{1},\ldots,k_{r}}\in \mathcal{G}^{(0)} in the cases k_{1} ,
. .

., k_{r_{1}}\geq 2, k_{r}\geq 1 , one

oUserves that there is just one summand in the definition of g_{k_{1},\ldots,k_{r}}^{\mathrm{m}} , namely the
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case i_{1}=\cdots=i_{m}=1 , where all variables X_{1} ,
. . .

, X_{r-1} appear. By (3.4) this gives
exactly g_{k_{1},\ldots,k_{r}}.

iii) The statement that \mathfrak{g}^{\mathrm{m}} is an algebra homomorphism is equivalent to prove certain

functional equations for the series T_{\mathrm{m}} . This can be done by using results of Hoffman

on quasi‐shuffle product. In the lowest depth case this functional equation reads

T_{\mathrm{m}}(X)\cdot T_{\mathrm{m}}(Y)=T_{\mathrm{m}}(X, X+Y)+T_{\mathrm{m}}(Y, X+Y) , (3.5)

which we will use later in the proof of Theorem 4.1.

\square 

Due to the proof of Theorem 3.8 i), writing g^{\mathrm{m}} as elements in \mathcal{G} can be done explicitly:

Proposition 3.9. i) In depth two it is

g_{k_{1},k_{2}}^{\mathrm{m}}=g_{k_{1},k_{2}}+$\delta$_{k_{1},1\frac{1}{2}}(g_{k_{2}}^{(1)}-g_{k_{2}})
ü) And in depth three it is

g_{k_{1},k_{2},k_{3}}^{\mathrm{m}}=g_{k_{1},k_{2},k_{3}}+$\delta$_{k_{1},1\frac{1}{2}}(g_{k_{2},k_{3}}^{(1,0)}-g_{k_{2},k_{3}})+$\delta$_{k_{2},1\frac{1}{2}}(g_{k_{1},k_{3}}^{(0,1)}-g_{k_{1},k_{ $\theta$}}^{(1,0)}-g_{k_{1},k_{3}})
+$\delta$_{k_{1}\cdot k_{2},1}\displaystyle \cdot(\frac{1}{6}g_{k_{3}}^{(2)}-\frac{1}{4}g_{k_{3}}^{(1)}+\frac{1}{6}g_{k_{3}})

Here $\delta$_{a,b} denotes the Kronecker delta which is 1 in the case a=b and 0 otherwise.

Proof. This is i) and ii) of Corollary 5.8 in [B]. \square 

4 Derivatives

In this section we will discuss the behavior of the above introduced q‐series under the

operator \displaystyle \mathrm{d}=q\frac{d}{dq} . Since this operator acts on a q‐series by \displaystyle \mathrm{d}\sum_{n\geq 0}a_{n}q^{n}=\sum_{n>0}na_{n}q^{n}
it is easy to see that by definition we have

\displaystyle \mathrm{d}g_{k_{1},,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{r})}=\sum_{j=1}^{r}(d_{j}+1)\cdot k_{j}\cdot g_{k_{1},,k_{j}+1,,k_{r}}^{(d_{1}.'.\cdot.\cdot\cdot,d_{j}+1.'.\cdot.\cdot\cdot,d_{ $\tau$})} (4.1)

In particular it follows that the space \mathcal{G} is closed under \mathrm{d}.

34



4.1 Derivatives of g and g^{\mathrm{m}}

In [BK] it was proven, that also the subspace \mathcal{G}^{(0)} is closed under the operator \mathrm{d} (The‐
orem 1.7 [BK]). This is not obvious at all, since by (4.1) we have for example

\mathrm{d}g_{k_{1},k_{2}}=\mathrm{d}g_{k_{1},k_{2}}^{(0,0)}=k_{1}g_{k_{1}+1,k_{2}}^{(1,0)}+k_{2}g_{k_{1},k_{2}+1}^{(0,1)},
and a priori g_{k_{1}+1,k_{2}}^{(1,0)} and g_{k_{1},k_{2}+1}^{(0,1)} are not elements in \mathcal{G}^{(0)} . In [BK] the authors also

give explicit formulas for \mathrm{d}g_{k} and \mathrm{d}g_{k_{1},k_{2}} . Numerical experiments suggest, that also

the space spanned by all g^{\mathrm{m}} is closed under \mathrm{d} , but so far there are no known results on

this. We now give the first result on this observation by the following explicit formula

for \mathrm{d}g_{k}^{\mathrm{m}}.

Theorem 4.1. (Theorem 1.1 i)) For k\geq 1 and \displaystyle \mathrm{d}=q\frac{d}{dq} we have

\displaystyle \frac{1}{k}\mathrm{d}g_{k}^{\mathrm{m}}=(k+1)g_{k+2}^{\mathrm{m}}-\sum_{n=2}^{k+1}(2^{n}-2)g_{k+2-n,n}^{\mathrm{m}} . (4.2)

Proof. To prove (4.2) we will construct the generating functions of both sides and then

show that they are equal. First notice that

\displaystyle \mathrm{d}T_{\mathrm{m}}(Y)=q\frac{d}{dq}T_{\mathrm{m}}(\mathrm{Y})=q\frac{d}{dq}H\left(\begin{array}{l}
1\\
Y
\end{array}\right)=\sum_{0<d}e^{dY}q\frac{d}{dq}(\frac{q^{d}}{1-q^{d}})
=\displaystyle \sum_{0<d}de^{dY}((\frac{q^{d}}{1-q^{d}})^{2}+\frac{q^{d}}{1-q^{d}})=\frac{d}{dY}(H\left(\begin{array}{l}
2\\
Y
\end{array}\right)+H\left(\begin{array}{l}
1\\
Y
\end{array}\right))

(4.3)

Applying \displaystyle \int_{0}^{X}\ldots dY to both sides of (4.3) and using H\left(\begin{array}{l}
2\\
0
\end{array}\right)+H\left(\begin{array}{l}
1\\
0
\end{array}\right)=g_{2} we obtain

g_{2}+\displaystyle \sum_{k>0}\frac{1}{k}\mathrm{d}g_{k}X^{k}=H\left(\begin{array}{l}
1\\
X
\end{array}\right)+H\left(\begin{array}{l}
2\\
X
\end{array}\right)=T(X)+H\left(\begin{array}{l}
2\\
X
\end{array}\right).
This is the generating series of the left‐hand side of (4.2), where we also included the

term g_{2} in the case k= O. This will also be included in the generating function of

(k+1)g_{k+2}^{\mathrm{m}} for which we get

\displaystyle \sum_{k\geq 0}(k+1)g_{k+2}^{\mathrm{m}}X^{k}=\sum_{k\succ 1}(k-1)g_{k}^{\mathrm{m}}X^{k-2}=\frac{d}{dX}\sum_{k>0}g_{k}^{\mathrm{m}}X^{k-1}=\frac{d}{dX}T_{\mathrm{m}}(X)=\frac{d}{dX}T(X) .
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The generating function of‐the second part on the right‐hand side of (4.2) is given by

\displaystyle \sum_{k>0}(\sum_{n=2}^{k-1}(2^{n}-2)g_{k+2-n,n}^{\mathrm{m}})X^{k}=2T_{\mathrm{m}}(X, 2X)-2T_{\mathrm{m}}(X, X) .

We therefore need to show

T(X)+H\displaystyle \left(\begin{array}{l}
2\\
X
\end{array}\right)=!\frac{d}{dX}T(X)-2T_{\mathrm{m}}(X, 2X)+2T_{\mathrm{m}}(X,X) . (4.4)

Using the shuffle product formula (3.5) for T_{\mathrm{m}} ,
we obtain

T(X)^{2}=T_{\mathrm{m}}(X)^{2}=T_{\mathrm{m}}(X, X+X)+T_{\mathrm{m}}(X, X+X)=2T_{\mathrm{m}}(X, 2X) . (4.5)

Using (\displaystyle \frac{e^{X}q^{n}}{1-e^{X}q^{n}})^{2}=\frac{d}{dX}\frac{\mathrm{e}^{X}q^{n}}{1-e^{X}\mathrm{q}^{n}}-\frac{e^{X}q^{n}}{1-e^{X}q^{n}} we also derive

T(X)^{2}=2T(X, X)+\displaystyle \frac{d}{dX}T(X)-T(X) . (4.6)

Combining (4.5) and (4.6) we obtain

2T_{\mathrm{m}}(X, 2X)=2T(X, X)+\displaystyle \frac{d}{dX}T(X).-T(X) . (4.7)

By definition of T_{\mathrm{m}} we have

2T_{\mathrm{m}}(X,X)=2T(X, X)+H\left(\begin{array}{l}
2\\
X
\end{array}\right) . (4.8)

Equation (4.4) now follows by combining (4.7) and (4.8). \square 

Remark 4.2. Multiplying both sides in Theorem 4.1 with (1-q)^{k-2} , taking the limit

q\rightarrow 1 and making a shift from k+2 to k we get as a Corollary for k\geq 3 the following
formula

(k-1) $\zeta$(k)=\displaystyle \sum_{n=2}^{k-1}(2^{n}-2) $\zeta$(k-n, n) ,

which is a combination of the classical and the weighted sum formula (OZ], Theòrem

3) for double zeta values.
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4.2 Multiple Eisenstein series and derivatives of g^{\mathrm{m}}

As mentioned in the introduction our motivation of studying the series g^{\mathrm{m}} are their

appearance in the Fourier expansion of the multiple Eisenstein series G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}\in \mathbb{C}[[q]].
For the \mathbb{Q}‐vector space spanned by all multiple Eisenstein series of weight k we write

\mathcal{E}_{k} :=\langle G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}\in \mathbb{C}[[q\mathrm{J}]|k_{1}+\cdots+k_{r}=k, 0\leq r\leq k\rangle_{\mathbb{Q}} and set \displaystyle \mathcal{E}=\sum_{k\geq 0}\mathcal{E}_{k}.
The connection of G^{\mathrm{m}} and g^{\mathrm{m}} is given by a complicated but explicit formula, the

Goncharov coproduct, in [BT]. By abuse of notation we will consider G^{\mathrm{m}} as a \mathbb{Q}‐linear

map

G^{\mathrm{m}}:\mathfrak{H}^{1}\rightarrow \mathbb{C}[[q]],
w=e_{k_{1}}\ldots e_{k_{r}}\mapsto G^{\mathrm{m}}(w):=G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}.

As shown in [BT], this map is an algebra homomorphism from \mathfrak{H}_{\mathrm{m}}^{1} to \mathbb{C}[[q]] . Recall

that we defined for words u, v\in \mathfrak{H}^{1} the element ds (u, v)\in \mathfrak{H}^{1} by

\mathrm{d}\mathrm{s}(u, v)=u*v —umv.

As seen in Theorem 2.1 it is $\zeta$^{\mathrm{m}}(\mathrm{d}\mathrm{s}(u, v))=0 for all u\in \mathfrak{H}^{1}, v\in \mathfrak{H}^{0} and conjecturally
these give all relations between multiple zeta values. A natural question therefore is,
in which cases we have G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(u, v))=0 . This will not be the case for all u\in \mathfrak{H}^{1} and

v\in \mathfrak{H}^{0} and we will see below, that the failure of the extended double shuffle relations

for multiple Eisenstein series has a connection to the action of the operator \mathrm{d} . But

since the definition of G^{\mathrm{m}} is quite complicated, we need to restrict our attention to the

series g^{\mathrm{m}} . Luckily numerical calculations suggests, that these two objects have a really
close connection. To make clear what we mean by this we first define for k\geq 1

\mathcal{G}_{\leq k}^{\mathrm{m}}:=\langle g_{k_{1},\ldots,k,}^{\mathrm{m}}\in \mathcal{G}|k_{1}+\cdots+k_{r}\leq k, 0\leq r\leq k\rangle_{\mathrm{Q}}.
The motivation for this are the following questions, which are all motivated by numerical

experiments and which are expected to be true.

Question 4.3. i) Do we have (2 $\pi$ i)^{2}\mathrm{d}\mathcal{E}_{k}\subset \mathcal{E}_{k+2} and \mathrm{d}\mathcal{G}_{\leq k}^{\mathrm{m}}\subset \mathcal{G}_{\leq k+2}^{\mathrm{m}} �?

ii) Is the map F
, given by

F:\mathcal{E}_{k}\rightarrow \mathcal{G}_{\leq k}^{\mathrm{m}}/\mathcal{G}_{\leq k-1}^{\mathrm{m}}
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G_{k_{1},\ldots,k_{r}}^{\mathrm{m}}\mapsto g_{k_{1},\ldots,k_{r}}^{\mathrm{m}},

an isomorphism of \mathbb{Q}‐vector spaces

iii) Assuming i)_{f} does the map F satisfy dF(f)=F((2 $\pi$ i)^{2}\mathrm{d}f) for all f\in \mathcal{E}_{k} ?

Proposition 4.4. For k\geq 1 we have

\mathrm{d}g_{k}^{\mathrm{m}}\equiv 2k\cdot \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k+1})) mod \mathcal{G}_{\leq k+1}^{\mathrm{m}}

Proof Notice that by Proposition 3.9

g_{k_{1},k_{2}}^{\mathrm{m}}=g_{k_{1},k_{2}}+$\delta$_{k_{1},1}\displaystyle \cdot\frac{1}{2}g_{k_{2}}^{(1)} mod \mathcal{G}_{\leq k_{1}+k_{2}-1}^{\mathrm{m}}

and since the quasi‐shuflle product equals the harmonic product * if one divides out

lower weight, it is

g_{k_{1}}^{\mathrm{m}}\cdot g_{k_{2}}^{\mathrm{m}}=g_{k_{1}}\cdot g_{k_{2}}\equiv g_{k_{1},k_{2}}+g_{k_{2},k_{1}}+g_{k_{1}+k_{2}} mod \mathcal{G}_{\leq k_{1}+k_{2}-1}^{\mathrm{m}}.

With this we obtain

\mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{1}}, e_{k_{2}}))=\mathfrak{g}^{\mathrm{m}}(e_{k_{1}}*e_{k_{2}})-\mathfrak{g}^{\mathrm{m}}(e_{k_{1}}\mathrm{m}e_{k_{2}})

=g_{k_{1},k_{2}}^{\mathrm{m}}+g_{k_{2},k_{1}}^{\mathrm{m}}+g_{k_{1}+k_{2}}^{\mathrm{m}}-g_{k_{1}}^{\mathrm{m}}\cdot g_{k_{2}}^{\mathrm{m}}

\displaystyle \equiv\frac{1}{2}$\delta$_{k_{1},1}g_{k_{2}}^{(1)}+\frac{1}{2}$\delta$_{k_{2},1}g_{k_{1}}^{(1)} mod \mathcal{G}_{\leq k_{1}+k_{2}-1}^{\mathrm{m}}.

The statement now follows since \mathrm{d}g_{k}^{\mathrm{m}}=k\cdot g_{k+1}^{(1)}. \square 

Remark 4.5. We remark that the explicit expression of \mathrm{d}g_{k}^{\mathrm{m}} in Theorem 4.2 can also

be written as

\displaystyle \frac{1}{k}\mathrm{d}g_{k}^{\mathrm{m}}=\sum_{i=1}^{k-1}\mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{i}, e_{k+2-i})) .

Therefore from Proposition 4.4 we can deduce \displaystyle \sum_{i=2}^{k-2}\mathrm{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{i}, e_{k+2-i}))\in \mathcal{G}_{\leq k+1}^{\mathrm{m}}.
Considering question 4.3 one should have the same formula for the derivative of Eisen‐

stein series as the above Proposition. This is indeed the case:

Theorem 4.6. For k\geq 1 ,
the derivative of the Eisenstein series G_{k}^{\mathrm{m}} is given by

(2 $\pi$ i)^{2}\mathrm{d}G_{k}^{\mathrm{m}}=2k\cdot G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k+1}))=G_{1,k+1}^{\mathrm{m}}+G_{k+1,1}^{\mathrm{m}}+G_{k+2}^{\mathrm{m}}-G_{k+1}^{\mathrm{m}}\cdot G_{1}^{\mathrm{m}}\in \mathcal{E}_{k+2}.
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Proof. This was first proven by M. Kaneko in an unpublished work. It can also be

obtained by using the explicit formulas for the Fourier expansions of Double Eisen‐

stein series presented in [BT] and the quasi‐shuffle product formula for the functions g

introduced in the beginning. \square 

We now want to give the depth 2 and 3 version of Proposition 4.4. For this we need

the following two Lemma.

Lemma 4.7. For k_{1}, k_{2}\geq 2 it is g_{k_{1},k_{2}}^{(1,0)},g_{k_{1},k_{2}}^{(0,1)}\in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}}.
Proof. Recall that we have g_{k}=g_{k}^{\mathrm{m}} for all k\geq 1 and g_{a,b}=g_{a,b}^{\mathrm{m}} when a>1 and b\geq 1.
First we notice that also g_{1,b}\in \mathcal{G}_{\leq b+1}^{\mathrm{m}} for all b\geq 1 : By the quasi‐shuffle product it is

g_{1}\displaystyle \cdot g_{b}=g_{1,b}+g_{b,1}+\sum_{j=1}^{b+1}$\alpha$_{j}g_{j} for some $\alpha$_{j}\in \mathbb{Q} . Since g_{1}\cdot g_{b}, g_{j}\in \mathcal{G}_{b+1}^{\mathrm{m}} we deduce

g_{1,b}\in \mathcal{G}_{\leq b+1}^{\mathrm{m}}.
Now consider the quasi‐shuffle product in depth 3

g_{1}\displaystyle \cdot g_{k_{1},k_{2}}=g_{1,k_{1},k_{2}}+g_{k_{1},1,k_{2}}+g_{k_{1},k_{2},1}+\sum_{a+b\leq h_{1}+k_{2}}$\beta$_{a,b}\cdot g_{a,b},
for some $\beta$_{a,b}\in \mathbb{Q} . Since for k_{1}, k_{2}\geq 2 we have g_{a,b}, g_{1}\cdot g_{k_{1},k_{2}}, g_{k_{1},k_{2},1}\in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}} it

follows that g_{1,k_{1},k_{2}}+g_{k_{1},1,k_{2}}\in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}}.
Using the explicit formula for g_{a,b,c}^{\mathrm{m}} from Proposition 3.9 it is easy to see that for

k_{1}, k_{2}\geq 2

2g_{1,k_{1},k_{2}}^{\mathrm{m}}+2g_{k_{1},1,k_{2}}^{\mathrm{m}}=2g_{1,k_{1},k_{2}}+2g_{k_{1},1,k_{2}}-2g_{k_{1},k_{2}}+g_{k_{1},k_{2}}^{(0,1)}.
From this we observe g_{k_{1},k_{2}}^{(0,1)}\in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}} since by the discussion above every other term

in this equation is also in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}}.
Now we want to show that also g_{k_{1},k_{2}}^{(1,0)}\in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}} . For this consider again that for some

$\gamma$_{j}\in \mathbb{Q} the quasi‐shuffle product of g_{k_{1}}^{(1)}\cdot g_{k_{2}} reads

g_{k_{1}}^{(1)}\displaystyle \cdot g_{k_{2}}=g_{k_{1},k_{2}}^{(1,0)}+g_{k_{2},k_{1}}^{(0,1)}+\sum_{j=1}^{k_{1}+k_{2}}\prime$\gamma$_{j}g_{j}^{(1)}
By Theorem 4.1 we know that g_{j}^{(1)}=\displaystyle \frac{1}{(j-1)}\mathrm{d}g_{j-1} is again an Element in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}} for

j\leq k_{1}+k_{2} . Since we proved g_{k_{1},k_{2}}^{(0,1)}\in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}} above we therefore also obtain that

g_{k_{1},k_{2}}^{(1,0)}\in \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}}.
\square 

Similar to the depth 1 case we will�measure� the failure of the double shuffle relations

of g^{\mathrm{m}} and then relate this to the action of the operator \mathrm{d}.
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Lemma 4.8. Let k_{1}, k_{2}, k_{3}, k_{4}\geq 1 and k=k_{1}+\cdots+k_{4} be such that there is exactly
one index 1\leq j\leq 4 with k_{j}=1 . Then we have

i) \displaystyle \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{1}} , e_{k_{2}}e_{k_{3}}))\equiv$\delta$_{k_{1},1}\frac{1}{2}g_{k_{2},k_{3}}^{(0,1)}+$\delta$_{k_{8},1}\frac{1}{2}(g_{k_{2},k_{1}}^{(0,1)}-g_{k_{2},k_{1}}^{(1,0)}) mod \mathcal{G}_{\leq k_{1}+k_{2}+k_{3}-1}^{\mathrm{m}}.

ii) \displaystyle \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{1}}, e_{k_{2}}e_{k_{3}}e_{k_{4}}))\equiv$\delta$_{k_{1},1}\frac{1}{2}g_{k_{2},k_{3},k_{4}}^{(0,0,1)}+$\delta$_{k_{4},1}\frac{1}{2}(g_{k_{2},k_{3},k_{1}}^{(0,0,1)}-g_{k_{2},k_{3},k_{1}}^{(0,1,0)}) mod \mathcal{G}_{\leq k-1}^{\mathrm{m}}.

\ddot{n}i)\mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{1}}e_{k_{2}}, e_{k_{3}}e_{k_{4}}))\equiv$\delta$_{k_{2},1^{\frac{1}{2}}}(g_{k_{1},k_{3},k_{4}}^{(0,0,1)}-g_{k_{1},k_{3},k_{4}}^{(1,0,0)}+g_{k_{3},k_{1},k_{4}}^{(0,0,1)}-g_{k_{3},k_{1},k_{4}}^{(0,1,0)})
+$\delta$_{k_{2},1^{\frac{1}{2}}}(g_{k_{1+k_{3},k_{4}}}^{(0,1)}-g_{k_{1}+k_{3},k_{4} ,,}^{(1,0)})
+$\delta$_{k_{4},1^{\frac{1}{2}}}(g_{k_{1},k_{3},k_{2}}^{(0,0,1)}-g_{k_{1},k_{3},k_{2}}^{(0,1,0)}+g_{k_{3},k_{1},k_{2}}^{(0,0,1)}-g_{k_{3},k_{1},k_{2}}^{(1,0,0)})
+$\delta$_{k_{4},1}\displaystyle \frac{1}{2}(g_{k_{1}+k_{3},k_{2}}^{(0,1)}-g_{k_{1}+k_{3},k_{2}}^{(1,0)}) mod \mathcal{G}_{\leq k-1}^{\mathrm{m}}.

Proof. i) Since g_{k_{1},k_{3}}\in \mathcal{G}_{\leq k_{1}+k_{2}+k_{3}-1}^{\mathrm{m}} and we assume that there is just one index j with

k_{j}=1 , i.e. the term with $\delta$_{k_{1}\cdot k_{2},1} does not play a role, we get by Proposition 3.9 that

g_{k_{1},k_{2},k_{8}}^{\mathrm{m}}\displaystyle \equiv g_{k_{1},k_{2},k_{3}}+$\delta$_{k_{1},1}\cdot\frac{1}{2}g_{k_{2},k_{8}}^{(1,0)}+$\delta$_{k_{2},1}\cdot\frac{1}{2}(g_{k_{1},k_{3}}^{(0,1)}-g_{k_{1},k_{3}}^{(1,0)}) mod \mathcal{G}_{\leq k_{1}+k_{2}+k_{3}-1}^{\mathrm{m}} (4.9)

and therefore

\mathfrak{g}^{\mathrm{m}}(e_{k_{1}}*e_{k_{2}}e_{k_{3}})=g_{k_{1},k_{2},k_{3}}^{\mathrm{I}\mathrm{l}\mathrm{I}}+g_{k_{2},k_{1},k_{3}}^{\mathrm{m}}+g_{k_{2},k_{8},k_{1}}^{\mathrm{m}}+g_{k_{1}+k_{2},k_{3}}^{\mathrm{m}}+g_{k_{2},k_{1}+k_{3}}^{\mathrm{m}}

\displaystyle \equiv \mathfrak{g}(e_{k_{1}}*e_{k_{2}}e_{k_{3}})+$\delta$_{k_{1},1}\cdot\frac{1}{2}g_{k_{2},k_{3}}^{(1,0)}+$\delta$_{k_{2},1\frac{1}{2}}(g_{k_{1},k_{3}}^{(0,1)}-g_{k_{1},k_{8}}^{(1,0)})
+$\delta$_{k_{2},1}\displaystyle \cdot\frac{1}{2}g_{k_{1},k_{3}}^{(1,0)}+$\delta$_{k_{1},1\frac{1}{2}}(g_{k_{2},k_{3}}^{(0,1)}-g_{k_{2},k_{3}}^{(1,0)})
+$\delta$_{k_{2},1}\displaystyle \cdot\frac{1}{2}g_{k_{3},k_{1}}^{(1,0)}+$\delta$_{k_{3},1\frac{1}{2}}(g_{k_{2},k_{1}}^{(0,1)}-g_{k_{2},k_{1}}^{(1,0\rangle})
+$\delta$_{k_{2},1}\displaystyle \frac{1}{2}g_{k_{1}+k_{3}}^{(1)} mod \mathcal{G}_{\leq k_{1}+k_{2}+k_{3}-1}^{\mathrm{m}}.

On the other hand we have

\mathfrak{g}^{\mathrm{m}}(e_{k_{1}}\mathrm{m}e_{k_{2}}e_{k_{3}})=\mathfrak{g}^{\mathrm{m}}(e_{k_{1}})\cdot \mathfrak{g}^{\mathrm{m}}(e_{k_{2}}e_{k_{8}})

\displaystyle \equiv g_{k_{1}} (g_{k_{2},k_{3}}+$\delta$_{k_{2},1}\frac{1}{2}(g_{k_{3}}^{(1)}-g_{k_{3}}))
\displaystyle \equiv \mathfrak{g}(e_{k_{1}}*e_{k_{2}}e_{k_{3}})+$\delta$_{k_{2},1}\frac{1}{2}(g_{k_{1},k_{3}}^{(0,1)}+g_{k_{3},k_{1}}^{(1,0)}+g_{k_{1}+k_{3}}^{(1)}) mod \mathcal{G}_{\leq k_{1}+k_{2}+k_{3}-1}^{\mathrm{m}}

Here we used again that the extra terms appearing in the quasi‐shuffle product all

vanish since they are elements in \mathcal{G}_{\leq k_{1}+k_{2}+k_{3}-1}^{\mathrm{m}} . For the product g_{k_{1}}\cdot g_{k_{3}}^{(1)} this is the case
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because we know by Theorem 4.1 that g_{j}^{(1)}\in \mathcal{G}_{\leq k_{1}+k_{2}+k_{3}-1}^{\mathrm{m}} for j<k_{1}+k_{2}+k_{3}-1.
The result follows from \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{1}}, e_{k_{2}}e_{k_{3}}))=\mathfrak{g}^{\mathrm{m}}(e_{k_{1}}*e_{k_{2}}e_{k_{3}})-\mathfrak{g}^{\mathrm{m}}(e_{k_{1}}\mathrm{m}e_{k_{2}}e_{k_{3}}) .

To prove ii) and iii) we use the same idea as in i). First calculate \mathfrak{g}^{\mathrm{m}}(e_{k_{1}}*e_{k_{2}}e_{k_{3}}e_{k_{4}}) and

\mathfrak{g}^{\mathrm{m}}(e_{k_{1}}*e_{k_{2}}e_{k_{3}}e_{k_{4}}) by using (4.9) and the following formula, which can be obtained using
the same technique as in the proof of Proposition 3.9 together with our assumptions on

the k_{j} :

g_{k_{1},k_{2},k_{3},k_{4}}^{\mathrm{m}}\displaystyle \equiv g_{k_{1},k_{2},k_{3},k_{4}}+$\delta$_{k_{1},1}\cdot\frac{1}{2}g_{k_{2},k_{3},k_{4}}^{(1,0,0)}+$\delta$_{k_{2},1\frac{1}{2}}(g_{k_{1},k_{3},k_{4}}^{(0,1,0)}-g_{k_{1},k_{3},k_{4}}^{(1,0,0)})
+$\delta$_{k_{3},1}\displaystyle \frac{1}{2}(g_{k_{1},k_{2},k_{4}}^{(0,0,1)}-g_{k_{1},k_{2},k_{4}}^{(0,1,0)}) mod \mathcal{G}_{\leq k-1}^{\mathrm{m}}.

When calculating \mathfrak{g}^{\mathrm{m}}(e_{k_{1}}\mathrm{m}e_{k_{2}}e_{k_{3}}e_{k_{4}}) and \mathfrak{g}^{\mathrm{m}}(e_{k_{1}}\mathrm{m}e_{k_{2}}e_{k_{3}}e_{k_{4}}) one derives again the the

quasi‐shuflie products and then apply Lemma 4.7 to argue why the appearing error

terms of the form g_{a,b}^{(1,0)} and g_{a,b}^{(0,1)} with a, b\geq 2 vanish. \square 

Remark 4.9. Since it is expected that \mathcal{E}_{k} and \mathcal{G}_{\leq k}^{\mathrm{m}}/\mathcal{G}_{\leq \mathrm{h}-1}^{\mathrm{m}} are isomorphic as \mathbb{Q} ‐vector

spaces, Lemma 4.8 can be used to guess which extended double shuffle relations are

fulfilled by multiple Eisenstein series. In lBTJ it is proven, that for k_{1}, k_{2}, k_{3}\geq 2

G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{1}} , e_{k_{2}}e_{k_{3}}))=0 . (4.10)

But due to Lemma 4.8 i) it is expected that (4.10) also holds for the cases k_{2}=1
and k_{1}, k_{3}\geq 2 . In other words the triple Eisenstein‐ series may satisfv all finite double

shuffle relations. The special case k_{2}=1 and k_{1}=k_{3}=2 of (4.10) was proven in [B]
Example 6.14.

Theorem 4.10. For k_{1}, k_{2}, k_{3}\geq 2 and \displaystyle \mathrm{d}=q\frac{d}{dq} we have

i) \mathrm{d}g_{k_{1},k_{2}}^{\mathrm{m}}\equiv 2k_{1}(\mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}+1}e_{k_{2}}))-\mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{2}}, e_{k_{1}+1}\mathrm{e}_{1}

+2k_{2}\cdot \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}}e_{k_{2}+1})) mod \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}}

ii) \mathrm{d}g_{k_{1},k_{2},k_{3}}^{\mathrm{m}}\equiv 2k_{1}\cdot \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}+1}e_{k_{2}}e_{k_{3}})+\mathrm{d}\mathrm{s}(e_{k_{3}}, e_{k_{2}}e_{k_{1}+1}e_{1}))
+2k_{1}\cdot \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{3}}, e_{k_{1}+1+k_{2}}e_{1})-\mathrm{d}\mathrm{s}(e_{k_{1}+1}e_{1}, e_{k_{2}}e_{k_{\mathrm{S}}}))

+2k_{2}\cdot \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}}e_{k_{2}+1}e_{k_{3}})-\mathrm{d}\mathrm{s}(e_{k_{3}}, e_{k_{1}}e_{k_{2}+1}e_{1}))
+2k_{3}\cdot \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}}e_{k_{2}}e_{k_{3}+1})) mod \mathcal{G}^{\mathrm{m}}

‐ \leq k_{1}+k_{2}+k_{3}+1

Proof. i) Since for k_{1}, k_{2}\geq 2 it is g_{k_{1},k_{3}}^{\mathrm{m}}=g_{k_{1},k_{2}}=g_{k_{1},k_{2}}^{(0,0)} we have by (4.1) that

\mathrm{d}g_{k_{1},k_{2}}^{\mathrm{m}}=k_{1}g_{k_{1}+1,k_{2}}^{(1,0)}+k_{2}g_{k_{1},k_{2}+1}^{(0,1)}.
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By Lemma 4.8 we obtain

1 (1,0)
\overline{2}g_{k_{1}+1,k_{2}}\equiv \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}+1}e_{k_{2}}))-\mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{2}}, e_{k_{1}+1}e_{1}) mod \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}},
1 (0,1)

\overline{2}g_{k_{1},k_{2}+1}\equiv \mathfrak{g}^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}}e_{k_{2}+1}) mod \mathcal{G}_{\leq k_{1}+k_{2}+1}^{\mathrm{m}},

from which the statement follows.

ii) Similar to i) one uses Lemma 4.8 to get explicit formulas for g_{k_{1}+1,k_{2},k_{3}}^{(1,0,0)}, g_{k_{1},k_{2}+1,k_{3}}^{(0,1,0)}
and g_{k_{1},k_{2},k_{3}+1}^{(0,0,1)} , which we will omit here since the calculation is easy but messy. \square 

Fkom Theorem 4.10 the statement of Theorem 1.1 ii) follows.

Example 4.11.

\mathrm{d}g_{2,2}^{\mathrm{m}}\equiv 4g_{2,4}^{\mathrm{I}\mathrm{l}\mathrm{I}}+4g_{3,3}^{\mathrm{m}}+4g_{4,2}^{\mathrm{m}}-4g_{5,1}^{\mathrm{m}}
-4g_{1,2,3}^{\mathrm{m}}+4g_{1,3,2}^{\mathrm{m}}+24g_{1,4,1}^{\mathrm{m}}-4g_{2,1,3}^{\mathrm{m}}-4g_{2,2,2}^{\mathrm{m}}+8g_{2,3,1}^{\mathrm{m}} mod \mathcal{G}_{\leq \mathrm{s}}^{\mathrm{m}}

Conjecture 4.12. For k_{1}, k_{2}, k_{3}\geq 2 the derivative of the Double and Triple Eisenstein

series are given by

(-2 $\pi$ i)^{2}\mathrm{d}G_{k_{1},k_{2}}^{\mathrm{m}}=2k_{1}(G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}+1}e_{k_{2}}))-G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{2}}, e_{k_{1}+1}e_{1}
+2k_{2}\cdot G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}}e_{k_{2}+1})) ,

and

(-2 $\pi$ i)^{2}\mathrm{d}G_{k_{1},k_{2},k_{3}}^{\mathrm{m}}=2k_{1}\cdot G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}+1}e_{k_{2}}e_{k_{3}})+\mathrm{d}\mathrm{s}(e_{k_{3}}, e_{k_{2}}e_{k_{1}+1}e_{1}))
+2k_{1}\cdot G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{k_{3}}, e_{k_{1}+1+k_{2}}e_{1})-\mathrm{d}\mathrm{s}(e_{k_{1}+1}e_{1}, e_{k_{2}}e_{k_{3}}))

+2k_{2}\cdot G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}}e_{k_{2}+1}e_{k_{3}})-\mathrm{d}\mathrm{s}(e_{k_{3}}, e_{k_{1}}e_{k_{2}+1}e_{1}))
+2k_{3}\cdot G^{\mathrm{m}}(\mathrm{d}\mathrm{s}(e_{1}, e_{k_{1}}e_{k_{2}}e_{k_{3}+1})) .

References

[Ba] H. Bachmann: Multiple Zeta‐Werte und die Verbindung zu Modulformen durch

Multiple Eisensteinreihen, Master thesis, Hamburg University (2012).

[B] H. Bachmann: The algebra of bi‐brackets and regularized multiple Eisenstein series,
arXiv:1504.08138 [math.NT].

[BK] H. Bachmann, U. Kühn: The algebra of generating functions for multiple divisor

sums and applications to multiple zeta values, The Ramanujan Journal, August
2016, Volume 40, Issue 3, pp 605‐648.

42



[BT] H. Bachmann, K. Tasaka: The double shuffle relations for multiple Eisenstein

series, \mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}:1501.03408 [math.NT]. To appear in Nagoya Math. J..

[GKZ06] H. Gangl, M.Kaneko, D. Zagier: Double zeta values and modular forms, in
��

Automorphic forms and zeta functions� World Sci. Publ., Hackensack, NJ (2006),
71‐106.

[Ho00] M.E. Hoffman: Quasi‐shuffle products. J. Algebraic Combin. 11(1) (2000), 49‐

68.

[IKZ06] K. Ihara, M. Kaneko, D. Zagier: Derivation and double shuffle relations for
multiple zeta values, Compositio Math. 142 (2006), 307‐338.

[OZ] Y. Ohno, W. Zudilin: Zeta stars, Communication in number theory and physics,
Volume 2, Number 2, 325347, 2008.

[Zh] J. Zhao: Uniform approach to double shuffle and duality relations of various q‐

analogs of multiple zeta values via Rota‐Baxter algebras, preprint, arXiv:1412.8044

[math.NT].

43


