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Moving frames and Eisenstein invariants

HIROAKI NAKAMURA

ABSTRACT. We recall combinatorial reconstitution of the periods of Eisen-
stein series of congruence subgroups of SLy(Z), and present some conse-
quence of “moving frames” in a free profinite group.

Plan:

1. Moving frames (review)

2. Eisenstein periods

3. Combinatorics in Fy = nét(s"= )
4. Some applications -

1. Review: Moving frames

Suppose we are given a sequence of linear transformations on a vector
space V:

VeV V—V

Fix a basis € = (eq,...,e,) of V, and let A; be the representative matrices
of fi (i = 1,2,3) respectively in view of the basis ;. Then, as is well
known, the composed transformation f3 o fo o f; is represented by the
matrix AszAsA;.

According to the idea of moving frames, we consider not only the initial
basis € but also the moved bases €; := fi(eo) and €2 := fafi(eo). Then,
letting B; denote the representative matrix of f; in view of the basis €;_1
for i = 1,2, 3, we derive that

Bi= A1, By=A7'AyA;, Bs= AT A7 A3AxA;.

Consequently we find that the composition f3o foo fi is represented by the
reversely multiplied matrix ByByB3 with respect to €.

We have borrowed from Spivak’s book [Sp99, Chap. 7] the term “moving
frames” as an English translation of E.Cartan’s notion “repére mobile”.
See loc. cit. for more sophisticated applications. A most typical example
of that idea may be what is called the Euler angle representation of the
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space rotations SO(3) = {4 € GL3(R) | YA A = 1, det(A) = 1}, which was
most impressively encountered to the author in his youth 1983 upon an
occasion of reading [YS, Chap.II, §2]: Define special matrices

cosf 0 siné cosf —sinf 0\
Roty(0) = 0 1 0 |, Rotz(d)=|sinf cosé 0].

—sinf 0 cosé 0 0 1

Then, every space rotation in SO(3) can be written
as

Aoy = Rotz(p)Rota(0)Rots(y) (0 <, <27, 0<6 <),

uniquely with only exceptions A,y = Aptap—o
for 6 € {0,7} and @ € R. The above composi-
tion of three rotation matrices may be interpreted
more naturally if it is read from the left to the right
moving xyz-coordinates

6 ¥,
(x’%z) _90_) (xl,y/,zl) 2 (m//’y//, Z”) 5 (xlll,ylll, z///)

as illustrated in the picture.

2. Eisenstein periods v

Let $ = {7 € C | Im(7) > 0} be the complex upper half plane on which
SLy(Z) acts in the usual way. For each & = % = (%, %) € Q*\ Z?, we have
the holomorphic Eisenstein series of weight 2 and ‘label’ x on $) defined by

e2mi det(2) | . / 1 1

E(r) = 2 2 2 2’ s
ac(Z/NZ)? (27‘(’2) (m1,ma)=a (ml'r + mz) |m17' + m2|

mod N 5—0

The classcial Eisenstein periods of ES*) for those & € Q2 \ Z? are well
known to be encoded in what are called the (generalized) Rademacher
functions ®, : SLy(Z) — Q, which are good extensions of the period
mapping A > szz E®(7)dr for A € I(N) with N € Z2. The value of
. (A) € Q for every © € Q?\ Z? and A € SLy(Z) is explicitly calculated in
terms of Bernoulli polynomials and Dedekind sums (B.Schoeneberg [Sc74]).
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Based on our recent work [N13], we can introduce a (profinite) combina-
torial avatar “E,” of @, : SLy(Z) — Q. Here, we consider the label x to
lie in Q% := (Q ® Z)? (adelic row vectors) and replace SLy(Z) by a certain
profinite group m¢*(9M) which is:

(1) in the form of a semi-direct product Gg x Bs of two profinite groups,
where Bs is a central extension of ng?Z) and Gg = Gal(Q/Q);

(2) equipped with a standard representation p : 7é(9) — GLy(Z);
as explained soon in more details. Throughout below, we write A, €

~

GLy(Z) for the transposed matrix of p(c):
A, ="o(0) (o €M) = G x Bs).

The main aim of the present article is to illustrate roughly a use of
“moving frames” idea to get the following composition law for our invariant
Eg:

Theorem 2.1 (Composition law [N16b]). Let € Q} := (Q® Z)?. Then,
Eyz(0102) = Eza,,(01) + det(Ay, )Ey(02)

holds for o1, 05 € TE(M) = Go x Bs. O

Before going further, we quickly introduce a relation between the classical
period @, and our avatar E.. Just for now, we recall that the discrete Artin
braid group Bs with three strands fits in a central extension '

157 —SLy(Z)= By 25 SLy(Z) — 1.
(2.2) w w
o = plo)

As seen later in §3, the above p extends to a continuous homomorphism
p: wE(OM) = G x By — GLy(Z)

representing the monodromy actions on the torsion points of an elliptic

curve.
If o lies in the discrete part Bs of Bs C w(9M), then p(c) and A, lie in
SLo(Z).

The following theorem is based on our work [N13].



Theorem 2.3. One can introduce By (o) € Z for o € nf(M) = G x Bs
and € ch in a purely combinatorial way (Fox calculus) so that when

x € Q? and 0 € Bz with A, € SLy(Z),

Ex(o) = —®4(As;) + (explicit error term).
m m m
Z Q Q g

Remark 2.4. It is noteworthy to observe that the above error term sweeps
out the denominator of ®,(A,) € Q to obtain an integer value E; (o) € Z.
The explicit form of the error term ‘Ky(A,) — %pa(o)’ is calculated in
[N13, Th.7.2.3]. As a consequence, it follows, e.g., that the denominator
of ®u 4)(A) for A € SLy(Z) is bounded by 12N?.

3. Combinatorics in Fy = 7y

In order to introduce our combinatorial avatar of Eisenstein periods, we
shall set up the universal elliptic curves E \ {O} := {¢* = 42® — gox — g3}
over the parameter space M := {(g2,93) | A = g5 — 27g% # 0}. We
consider both £\ {O} and 9 as affine varieties over Q. The natural
projection E \ {O} — 9 is the Weierstrass family of elliptic curves whose
structured chart from a viewpoint of anabelian geometry was discussed in
[N13, §5]. In summary, we have a tangential section w : I --» E \ {O}
(normalized with ¢ := —2z/y) and a tangential fiber Tate(q) — E \ {O}.
Using the van-Kampen construction of the Tate curve, we also introduced
standard loops x;, Xz, z of 711 = 7§ (Tate(q) ®Q) based at Im ()N Tate(q)
on E(C) \ {O} with [x1, %)z = 1 ([x1,X2] := X1XoX] 'X; ). Note that 77,
is isomorphic to a free profinite group B freely generated by x;,xs.

E\{O} = {y* = 42® — gox — ga} ¢ - -~ () Tate(q)

[ ﬂ)

M = {(g2,93) | A := g3 —27g5 # 0} « - = Spec Q((q))

It is natural to employ the images of Spec Q((¢)) as base
points of those étale fundamental groups of individual
spaces in the above diagram. Then, we obtain the basic
identification :

B\ {0}) = 7%(M) x 711, 7(M) = Go x Bs.

165



166

In fact, the moduli space 9 is naturally interpreted as the space of (nor-
malized) cubics, and a topological loop in 71 (9(C)) is a motion of three
points on the plane: we may identify m; (9%(C)) with the Artin braid group
Bj of three strands, consequently, 7$'(9) as the semidirect product of
Go = Gal(Q/Q) with the profinite completion Bs.

The conjugate action in the above splitting 7{*(E'\ {O}) = 7 (M) X 7y 4
induces the monodromy action of ¢*(91) on T = By

M) = Go x By 2 Aut*(Fy) ™% QL(2?)
W [\ w
o — o) — plo)

where Aut” (Fg) denotes the group of special automorphisms defined by
Aut*(F) = {0 € Aut(Fy) | o((z)) = (2)}.
Given m > 1, o € w¥(9M) and (u,v) € Z2, let p(o) = (%)) and set
Swlo) = o(x; ”xf“)x{”“*b”xgwd” € = [Fy, By).

By Ihara’s theory (cf.[I99]), with the class of Sy(0) in the 2nd derived
quotient F2 / FQ” , We may associate a unique element of the complete group

algebra Z[[Z?)] = Jm %, where X;, Xy designate the abelianiza-

tion images of x;,x2 € F respectively. In order to explain this procedure
in a more fitting form with the moving frame idea, it is useful to introduce
a sequence of maps composed of the Fox derivative 9,, with projections

~

AL 2 2[Ry 2 2 iy 2%l

" 7%, %
and, writing any element of ():({,1[3‘11;_:%3-]_—1—) as D ;i o 0 ci;Xi%), define

ab
E..(0;u,v) := constant term cgp of [[5x1(:uv(01))] ] (E Z)
5 —
XP=xP=1

Cf. [N13, (3.2.3)].
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Proposition 3.1 ([N16b], Theorem A). It holds that
Ep(o109;u) = Ep(01; uA,,) + (det p(o1)) - Enn(o2;u)

for 01,09 € Aut*(Fy) and u € 72.
Proof motivation of the above composition law: Given any o € 7{*(9),
view the data E, (o) := [Em(a; u,v)](u RLE! profinite tableau on the

plane Z?2 with entries Z. Let us consider traveling in B (with portable E,,-
board in one hand) along the composition of two automorphisms o o 7 €
Aut*(ﬁ’g) and observe effects on the E,,. Noting that the definition of E,,
depends entirely on the choice of free generator system x = (x3,x3) of By,
we are urged to look closely at the diagram

(32 ?@F A
T 1

Ao X
FzTF2

and especially at the effect of o with regard to the moved frame 7(x) =
(7(x1),7(x2)). In fact, one symbolically finds

Su(oT) = Sy(o;“rel.7(x)”) - Spra(T)
which approximately leads to
En(o7,u) ~ (det p(r)) - B0, ) + Epn(7, uA,0).

Proposition 3.1 follows then by rewriting: oy = ¢/ = 7707, 0y = 7 so that
0109 = OT. O

Remark 3.3. In [N13], it is shown that the adelic tableau E,, (o) € 77
encodes the image of o by 7{'(9) — Aut*(Fy/Fy) (the meta-abelian mon-
odromy).

4. Some applications

Let us briefly pick up a few topics from [N16b].



4.1. Homogeneity. The above composition law Proposition 3.1 leads us
to the following basic property:

Corollary 4.1 (Homogeneity [N16b] Theorem C). Let u € Z2, o € wi{(M).
Then, for each positive integer k € N, it holds that

E..(0,u) = Enk (o, ku).

In fact, by virtue of Proposition 3.1, expressing ¢ as a product of 01 € Gg
and o, € Bs, we may reduce the proof of Corollary to individual cases where
occGgoroc€ B3 In the latter case, since By x Z? is dense in B3 X Z
the result follows from the explicit forrnula of Exm(o, ku) for o € Bg,
u € Z? given in Theorem 2.3 (cf.[N13, Th.7.2.3]). In the former case
where o € Gy, the result follows from an explicit calculation of E,,(c, u)
which is based on the Grothendieck-Teichmiiller theory on 7$*(Tate(q) \ O)
(see [N16b]).

The above corollary allows us to define the “adelic Fisenstein function”
Eg(0):
(I x ch > (0,x) —> Ex(0) €Z

by assigning E,,(c,u) for any choice of m € N and u € Z?2 so that = =
+ € (@}. Then, Theorem 2.1 is only the reload of Proposition 3.1.

4.2. Level splitter homomorphism ([N16b, §7]). Let m, M be positive
integers and set N = ged(2, M) - M. We define the principal congruence
subgroup of level N by nft("MM)[N] := {o | A, = 1mod N}. Then, com-
bining results of [N12], [N13] and [N16b], we see that E,,(o, w) mod M has
m x m-periodicity in w € Z2, hence that it induces a homomorphism

Enu : 71 () [mN] — (Z/MZ)[(Z/mZ)*).

Generally, the above level splitter E, s, affords a non-trivial abelian quo-
tient of 7$*(901)[N] and should involve highly arithmetic information about
“Eisenstein quotient”. We hope to discuss it in more details on some other
occasion.
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